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THE CYLINDER OVER THE KORAS-RUSSELL CUBIC THREEFOLD HAS A TRIVIAL

MAKAR-LIMANOV INVARIANT

ADRIEN DUBOULOZ

Abstract. We show that the cylinder X × A1 over the Koras-Russell cubic threefold

X = {x + x2y + z2 + t3 = 0} ⊂ A
4

has a trivial Makar-Limanov invariant ML(X×A1) = C. This means equivalently that the only regular functions
on X × A1 that are invariant under all algebraic actions of the additive group Ga on X × A1 are constants.

Introduction

The Koras-Russell cubic threefold is the subvariety X = Spec (A) of the affine space A4 = Spec (C [x, y, z, t])
defined by the equation x + x2y + z2 + t3 = 0. It first appeared in the work of Koras and Russell [9, 10] on
the linearization problem for algebraic actions of the multiplicative group Gm on the affine space A3. The
question at that time was to decide if X is algebraically isomorphic to A

3 or not, and a positive answer would
have led to an example of a non linearizable Gm-action on A3. One of the difficulties is that when equipped
with the euclidean topology X is diffeomorphic to the euclidean space R6(see e.g. [1]). So it is impossible to
distinguish X from A3 by topological invariants. Actually, it turned out that all classical algebraic invariants
fail to distinguish X from A3.

Nowadays, the fact that X is not algebraically isomorphic to A3 can be derived from a result of Kaliman [5]
which says that if the general fibers of regular function f : A3 → A1 are isomorphic to the affine plane A2, then
all the closed fibers of f are isomorphic to A2. On the other hand, it is easily seen that the closed fibers of the
projection prx : X → A

1 are isomorphic to A
2 except for pr−1

x (0) which is isomorphic to the cylinder C × A
1

over the cuspidal cubic curve C ≃ Spec
(

C [z, t] /
(

z2 + t3
))

.
But the problem was originally solved by Makar-Limanov [12] by a different method, based on the study

of algebraic actions of the additive group Ga on X . He established that X is not algebraically isomorphic to
A3 because it admits “fewer” algebraic Ga-actions than A3. More precisely, Makar-Limanov introduced a new
invariant of affine algebraic varieties V defined as the sub-algebra ML (V ) of the coordinate ring of V consisting
of regular functions on V which are invariants under all algebraic Ga-actions on V . For affine spaces, this
invariant consists of constants only. In contrast, Makar-Limanov established that ML (X) is isomorphic to the
polynomial ring C [x]. To compute ML (X), Makar-Limanov used the correspondence between algebraic Ga-
actions on an affine variety V and locally nilpotent C-derivations of its coordinate ring C [V ], that is, derivations
∂ : C [V ] → C [V ] such that every element of C [V ] is annihilated by a suitable power of ∂. Under this
correspondence, Ga-invariant regular functions coincide with the elements of the kernel Ker∂ of the associated
locally nilpotent derivation, and ML (V ) can be equivalently defined as the intersection in C [V ] of the kernels
of all locally nilpotent derivations of C [V ].

It is easy to see that ML (X) ⊂ C [x]. For instance, the locally nilpotent derivations x2∂z − 2z∂y and
x2∂t − 3t2∂y of C [x, y, z, t] annihilate the defining equation x + x2y + z2 + t3 = 0 of X and induce non trivial
locally nilpotent derivations ∂1 and ∂2 of the coordinate ring A of X such that Ker (∂1) ∩ Ker (∂2) = C [x].
The main achievement of Makar-Limanov was to show that ∂ (x) = 0 for every locally nilpotent derivation of
A. The original proof has been simplified and generalized by many authors, but the key arguments remain
quite elaborate and depend on techniques of equivariant deformations to reduce the problem to the study of
homogeneous Ga-actions on certain affine cones associated with X (see e.g., [6], [7] and [14] ).

Now, given a new variable w, we can identify X × A1 with the subvariety of A5 = Spec (C [x, y, z, t, w])
defined by the equation x+ x2y + z2 + t3 = 0. Again, it is not difficult to see that ML

(

X × A1
)

⊂ C [x], and

it is natural to ask if ML
(

X × A1
)

6= C or not. In turned out that Makar-Limanov techniques are inefficient
in this context, and very few progress has been made on this particular problem since the late nineties. In this
note, we prove the following result.

Theorem. ML
(

X × A1
)

= C.

A consequence of this result is that the Makar-Limanov invariant carries no useful information to decide if
X × A1 is an exotic A4, i.e. a variety diffeomorphic to R8 but not algebraically isomorphic to A4.
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1. A Danielewski trick proof that ML
(

X × A1
)

= C

Before giving the proof, we find it enlightening to review Danielewski’s classical counter-example to the
Zariski Cancellation Problem. Indeed, it formally contains, in a simpler form, all the ingredients needed for the
proof of the Theorem.

1.1. Danielewski’s construction.

1.1. Danielewski [2] established that the smooth affine surfaces S1 =
{

xz = y2 − 1
}

and S2 =
{

x2z = y2 − 1
}

in A
3 = Spec (C [x, y, z]) provide a counter example to the generalized Cancellation Problem, that is, S1 × A

1

is isomorphic to S2 × A1 but S1 is not isomorphic to S2. To show that S1 × A1 is isomorphic to S2 × A1,
he exploited the fact that S1 and S2 can be equipped with set-theoretically free Ga-actions induced by the
Ga-actions on A3 associated with the locally nilpotent C [x]-derivations x∂y +2y∂z and x2∂y+2y∂z of C [x, y, z]
respectively. The fibers of the Ga-invariant projections πi = prx |Si

: Si → A1 = Spec (C [x]), i = 1, 2 coincide
with the orbits of the Ga-actions except π−1

i (0) which consists of the disjoint union of two distinct orbits.
In particular, πi : Si → A1 is not a Ga-bundle. However, Danielewski observed that the πi’s factor through
Zariski locally trivial Ga-bundles ρi : Si → Ã1, i = 1, 2, over the affine line with a double origin, obtained from
A1 = Spec (C [x]) by replacing its origin by two closed points, one for each of the connected components of
π−1
i (0).

1.2. In turn, this implies that there exists a cartesian diagram

S1 ×Ã1 S2

pr
1

zzuu
uu

uu
uu

uu pr
2

$$II
II

II
II

II

S1

ρ1

$$IIIIIIIIII S2

ρ2

zzuuuuuuuuuu

Ã1

where S1 ×Ã1 S2 is a Ga-bundle over S1 and S2 via the first and the second projections respectively. Since S1

and S2 are both affine, it follows that S1×Ã1 S2 is simultaneously isomorphic to the trivial Ga-bundles S1×A1

and S2 × A1 over S1 and S2 respectively (see e.g., XI.5.3 in [4]). This implies the existence of an isomorphism

Θ : S1 ×A1 ∼
→ S2 ×A1 of A2-bundles over Ã1, whence of schemes over A1 ≃ Spec

(

Γ(Ã1,O
Ã1)

)

= Spec (C [x]).

1.3. Although Danielewski argument was different, the fact that S2 and S1 are not isomorphic can be deduced
from a result of Makar-Limanov [13] asserting that ML (S2) = C [x], together with the observation that due
to the symmetry between the variables x and z in the defining equation of S1, one has ML (S1) = C. Since
S2 × A1 is isomorphic to S1 × A1, it follows in particular that ML

(

S2 × A1
)

≃ ML
(

S1 × A1
)

= C. This can

be reinterpreted more explicitly as follows. Certainly, one has ML
(

S2 × A1
)

⊂ C [x]. On the other hand, the
locally nilpotent derivation z∂y+2y∂x of C [x, y, z, w] induces a locally nilpotent derivation δ1 of the coordinate

ring C [x, y, z, w] /
(

xz − y2 + 1
)

of S1×A1 such that δ1 (x) 6= 0. Since Θ : S1×A1 ∼
→ S2×A1 is an isomorphism

of schemes over Spec (C [x]), it follows that (Θ∗)
−1
δ1Θ

∗ is a locally nilpotent derivation δ of the coordinate ring
of S2 × A

1 such that δ (x) 6= 0, and so, ML
(

S2 × A
1
)

= C.

1.2. Proof of the Theorem.

1.4. For our purpose, it is more convenient to rewrite the defining equation of X = Spec (A) as x2z = y2+x−t3.
This corresponds to making the coordinate change (x, y, z, t) 7→ (−x, z, iy, t) on the ambient space A4. As
observed in the introduction, one has certainly ML

(

X × A1
)

⊂ C [x]. So ML
(

X × A1
)

= C provided that we

can find a locally nilpotent derivation ∂ of the coordinate ring A [w] of X × A1 such that ∂x 6= 0. We may
even suppose that we are looking for such a derivation with the additional property that ∂t = 0. With this
hypothesis, we can further reduce the problem to finding a locally nilpotent C

[

t, t−1
]

-derivation δ of

A [w]⊗C[t] C
[

t, t−1
]

≃ C
[

x, y, z, t±1
]

[w] /
(

x2z − y2 − x+ t3
)

such that δ (x) 6= 0. Indeed, since A [w] is a finitely generated algebra, for a suitably chosen k ≥ 0, tkδ will
extend to a locally nilpotent derivation ∂ of A [w] such that ∂ (x) 6= 0.

1.5. We let Y∗ = Spec
(

C
[

x, t±1
])

≃ A1 × A1
∗ and we consider the affine varieties X1 = Spec (B1) and

X2 = X \ {t = 0} = Spec (B2) where
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B1 = C
[

x, y, z, t±1
]

/
(

xz − y2 + t3
)

and B2 = C
[

x, y, z, t±1
]

/
(

x2z − y2 − x+ t3
)

The locally nilpotent C
[

x, t±1
]

-derivations x∂y+2y∂z and x2∂y+2y∂z of C
[

x, y, z, t±1
]

induce locally nilpotent
derivations of B1 and B2 respectively, defining set-theoretically free Ga-actionsmi : Ga×Xi → Xi, i = 1, 2. The
Ga-equivariant projections πi = prx,t |Xi

: Xi → Y∗ restrict to trivial Ga-bundles over Y∗ \{x = 0}. In constrast,
the fibers of the πi’s over every closed point of the punctured line {x = 0} ⊂ Y∗ consist of the disjoint union of
two Ga-orbits, and their fiber over the point (x) ∈ Y∗ = Spec

(

C
[

x, t±1
])

is isomorphic to the affine line over

the Galois extension C (t) [y] /
(

y2 − t3
)

≃ C (t) [µ] /
(

µ2 − t
)

of the residue field κ ((x)) = C (t). Informally, this
indicates that πi : Xi → Y∗ should factor through a Ga-bundle ρi : Xi → S, i = 1, 2 over a geometric object S

obtained from Y∗ by replacing the point (x), i.e., the punctured line {x = 0} ⊂ Y∗, not by two disjoint copies
of itself as in Danielewski’s construction, but rather by a nontrivial étale double covering of itself.

1.6. Clearly, an object S with the required property cannot exist in the category of schemes. However, one
can construct such an S in the larger category of algebraic spaces as follows. We let Z∗ = Spec

(

C
[

x, µ±1
])

and we let S be the quotient of Z∗ by the étale equivalence relation (x, µ) ∼ (x,−µ) if x 6= 0. More formally,
this means that S = Z∗/R where (s, t) : R→ Z∗ × Z∗ is the étale equivalence relation defined by

(s, t) : R = Z∗ ⊔ Z∗ \ {x = 0} → Z∗ × Z∗ (x, µ) 7→

{

((x, µ) , (x, µ)) if (x, µ) ∈ Z∗ ⊂ R

((x, µ) , (x,−µ)) if (x, µ) ∈ Z∗ \ {x = 0} ⊂ R

Now the R-invariant morphism Z∗ → Y∗, (x, µ) 7→
(

x, µ2
)

descends to a morphism ψ : S → Y∗ restricting to

an isomorphism outside {x = 0} and with fiber over (x) isomorphic to Spec
(

C (t) [µ] /
(

µ2 − t
))

as desired.

Remark 1.7. An alternative construction of S is the following : First we let W be the scheme obtained by
gluing two copies W± of Z∗ = Spec

(

C
[

x, µ±1
])

by the identity outside the punctured line {x = 0}. The group
Z2 acts freely on W by W± ∋ (x, µ) 7→ (x,−µ) ∈ W∓, and S coincides with the quotient W/Z2 taken in the
category of algebraic spaces. Note that this Z2-action is properly discontinuous in the analytic topology on W ,
so that S equipped with the quotient analytic topology has the structure of a locally separated analytic space.

1.8. Let us assume for a moment that we have factorizations

πi = ψ ◦ ρi : Xi
ρi

→ S
ψ
→ Y∗, i = 1, 2

where ρi : Xi → S, i = 1, 2 is an étale locally trivial Ga-bundle. Then X1 ×S X2 is an étale locally trivial
Ga-bundle over X1 and X2 via the first and the second projection respectively. Again, these bundles are both
trivial as X1 and X2 are affine, and we obtain isomorphisms X1 × A1 ∼

→ X1 ×S X2
∼
← X2 × A1. The induced

isomorphism Θ : X1 × A1 ∼
→ X2 × A1 is an isomorphism of étale locally trivial A2-bundles over S, whence,

in particular, of schemes over Y∗. Now the locally nilpotent C
[

t±1
]

-derivation 2y∂x + z∂y of C
[

x, y, z, t±1, w
]

induces a locally nilpotent derivation d of the coordinate ring B1 [w] of X1 × A1 such that d (x) 6= 0. Since

Θ : X1×A1 ∼
→ X2×A1 is an isomorphism of schemes over Y∗ = Spec

(

C
[

x, t±1
])

, it follows that δ = (Θ∗)−1 dΘ∗

is a locally nilpotent C
[

t±1
]

-derivation of the coordinate ring B2 [w] of X2×A1 such that δ (x) 6= 0. Combined

with the previous discussion, this shows that ML
(

X × A1
)

= C.

1.9. So it remains to check that the Ga-invariant morphisms πi : Xi → Y∗, i = 1, 2, admit the required
factorization. It is a standard fact that a set-theoretically free Ga-action on a scheme V admits a categorical
quotient in the form of a Ga-bundle ρ : V → V/Ga over an algebraic space V/Ga (see e.g. 10.4 in [11]).
Thus we only need to check that Xi/Ga ≃ S, i = 1, 2, and that the morphisms π̄i : Xi/Ga → Y∗ induced by
the Ga-invariant morphisms πi : Xi → Y∗ coincide with ψ : S → Y∗. This can be seen as follows. Letting
U = Ga × Z∗ = Spec

(

C [v]
[

x, µ±1
])

, one checks first that the Ga-equivariant morphisms

φ1 : Ga × Z∗ → X1, (v, x, µ) 7→
(

x, µ3 + xv, 2µ3v + xv2, µ2
)

φ2 : Ga × Z∗ → X2, (v, x, µ) 7→

(

x, µ3 −
1

2µ3
x+ x2v,

1

4µ6
+

(

2µ3 − µ−3x
)

v + x2v2, µ2

)

define étale trivializations of the Ga-actions mi : Ga×Xi → Xi on Xi, i = 1, 2. Then one checks easily that we
have Ga-equivariant isomorphisms

ξ1 : Ga ×R
∼
−→ U ×X1

U

(x, µ) 7→

{

(φ1 (v, x, µ) , φ1 (v, x, µ)) if (v, x, µ) ∈ Ga × Z∗ ⊂ R
(

φ1 (v, x, µ) , φ1

(

v + 2µ3x−1, x,−µ
))

if (v, x, µ) ∈ Ga × Z∗ \ {x = 0} ⊂ R
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and

ξ2 : Ga ×R
∼
−→ U ×X2

U

(v, x, µ) 7→

{

(φ2 (v, x, µ) , φ2 (v, x, µ)) if (v, x, µ) ∈ Ga × Z∗ ⊂ R
(

φ2 (v, x, µ) , φ2

(

v − µ−3x−1 + 2µ3x−2, x,−µ
))

if (v, x, µ) ∈ Ga × Z∗ \ {x = 0} ⊂ R.

By construction, the projections (pr1, pr2) : U ×Xi
U ⇉ U = Ga × Z∗ are étale and descend to the ones

(s, t) : R ≃ U ×Xi
U/Ga ⇉ Z∗ = Ga × Z∗/Ga in such a way that we have a cartesian diagram

U ×Xi
U

pr
1

//

pr
2

//

��

U

��

R = U ×Xi
U/Ga

s
//

t
// Z∗ = U/Ga

Since Xi coincides with the quotient of U ×Xi
U by the étale equivalence relation (pr1, pr2) : U ×Xi

U ⇉ U ,
it follows from I.5.8 in [8] that the Ga-bundle U → Z∗ = U/Ga descends to a morphism of algebraic spaces
ρi : Xi → S = Z∗/R, and that we have a commutative diagram

U ×Xi
U

pr
1

//

pr
2

//

��

U

��

// Xi

ρi

��

R
s

//

t
// Z∗ = U/Ga

// S = Z∗/R

in which the right hand side square is cartesian. This implies that ρi : Xi → S is an étale locally trivial
Ga-bundle, which shows that S is isomorphic to Xi/Ga, i = 1, 2 as desired. Now the fact that πi : Xi → Y∗
factors as ψ ◦ ρi, i = 1, 2, follows trivially from the construction.

Remark 1.10. The maps ρi : Xi → S, i = 1, 2, are holomorphic Ga-bundles when the Xi’s and S are equipped
with the analytic topology. Indeed, one can check that the Ga-invariant maps pr2 |X̃i

: X̃i = Xi ×Y∗ Z∗ → Z∗

obtained from the base change by the étale Galois covering Z∗ → Y∗, (x, µ) 7→
(

x, µ2
)

factor through Z2-

equivariant holomorphic Ga-bundles ρ̃i : X̃i →W such that ρi = ρ̃i/Z2 : Xi ≃ X̃i/Z2 →W/Z2 ≃ S, i = 1, 2.

Remark 1.11. The above descriptions imply that the isomorphy classes of the Ga-bundles ρ1 : X1 → S and
ρ2 : X2 → S in H1

ét (S,Ga) ≃ H
1
ét (S,OS) are represented by the non cohomologous Čech 1-cocycles

{

0, 2µ3x−1
}

∈ Γ (R,OR) and
{

0,−µ−3x−1 + 2µ3x−2
}

∈ Γ (R,OR)

for the étale covering Z∗ → S . So the varieties X1 and X2 are not isomorphic as Ga-bundles over S. Actually,
one can check that ML (X1) = C

[

t±1
]

whereas ML (X2) = C
[

t±1
]

[x], so that X1 and X2 are not even
isomorphic as abstract affine varieties. Thus they provide a counter-example to the Cancellation Problem for
factorial affine threefolds (see [3] for other counter-examples).
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