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Multi-weighting for FDR control

Étienne Roquain, Mark A. van de Wiel

July 25, 2008

Abstract

In the context of multiple hypothesis testing, we propose a new method of p-value
weighting when controlling the false discovery rate (FDR). To deal with all the possible
rejection numbers in the FDR, we consider a matrix of weights and we integrate it in a
new class of procedures, called the “multi-weighted” procedures. First, we propose multi-
weighted step-up and step-down procedures which control rigourously the FDR under
independence, positive dependence (PRDS) and general dependence. Second, we propose
a way to derive a weight matrix which is optimal in the sense of power. When the optimal
weight matrix is reasonably well approached, we demonstrate in a simulation study that
the corresponding multi-weighted procedures outperform the standard uniformly-weighted
Benjamini-Hochberg procedure. Finally, we apply our method to the two sample multiple
comparison problem, and we demonstrate its interest in practice with an application to
microarray experiments.

1 Introduction

1.1 Generalities

In high dimensional data, e.g. functional Magnetic Resonance Imaging (fMRI) or microarray
data, thousands of null hypotheses have to be tested at the same time. Therefore, many
researches have focused on building multiple testing procedures. The false discovery rate
(FDR) i.e. the expected proportion of erroneously rejected hypotheses among the rejected
ones is the most popular one in practice because of its “scale-invariant” property.

The first proposed procedure that has a provably controlled FDR is the procedure of
Benjamini-Hochberg (1995), also called the linear step-up procedure (LSU) [1]. The control
was proved when the p-values p1, ..., pm are assumed to be independent. Later, this procedure
was proved to control the FDR under positive dependencies (PRDS, see [4]) and some other
works show that this should also be the case under “realistic” general dependencies (see e.g.
[10] and [18]). However, power is always a concern, so an important research field aims to
increase power of the LSU procedure, while maintaining the FDR control.

1.2 The p-value weighting problem

In many practical situations, the p-values cannot be considered interchangeably, because we
know a priori (e.g. from previous independent experiments) that some nulls are more likely
to be rejected than others. A major problem is thus to find a convenient way to capture this
prior information in order to improve the performance of the LSU procedure. Therefore,
p-value weighting is currently an active research topic (see e.g. [27], [15]).
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The idea of p-value weighting can be traced back to [16]. In general, any multiple testing
procedure has a “p-value weighted version”, defined as the original procedure but taking in
input a set of the weighted p-values (p′1, ..., p

′
m) = (p1/w1, ..., pm/wm) instead of the initial

set of p-values (p1, ..., pm). For normalization, the possible weight vectors w = (w1, . . . , wm)
are assumed to sum up to m,

∑m
i=1 wi = m. Weighted procedures that will be studied

in this paper are the weighted linear step-up procedures: for a given weight vector w, the
corresponding weighted linear step-up procedures LSU(w) procedure rejects the nulls with
weighted p-value upper bounded by

max{p′(i) | p′(i) ≤ αi/m}.

An important property of such p-value weighting principle is that this transformation main-
tains the desired type I error control for many classical multiple testing procedures. Recently,
[15] and [7] have proved that for any weight vector w, LSU(w) controls the FDR at level α,
when the p-values are supposed independent or PRDS. When the p-values have unspecified
dependencies, [5] and [7] proved that the FDR control is still provided for the weighted version
of the Benjamini Yekutieli (2001) procedure.

Since it is possible to use any weight vector w in LSU(w) for FDR control at a given level
α, a main issue is to find the best weight vector , i.e. the one which maximizes the power of
LSU(w), where the power is defined as the expected number of true discoveries. For multiple
testing procedures using deterministic thresholds, [20] addressed this maximization problem
in a quite general framework. However, such a power computation is very difficult to make
for weighted step-wise procedures, even in the asymptotic framework where the number of
p-values m tends to infinity (see [15]).

1.3 Contributions of the paper

In this paper, we propose new weighted procedures which optimize power while maintaining
FDR control. Initially, our multi-weighted procedure simply replaces the ordinary weights w

by multi-weights w(r). We develop weight vectors w(r) that maximize the power of LSU(w)
for a given rejection volume parameter r, and we collect all these optimal weight vectors
in an optimal weight matrix W = (w(r))1≤r≤m. Both in the independent and dependent

case it is necessary to adjust W to W̃ somewhat in order to provide FDR control. The
resulting weighted p-values p′i = pi/w̃i(r) are integrated recursively into a linear step-up or

step-down procedure, denoted by LSU(W̃) and LSD(W̃) respectively, which will be detailed
later. Hence, we modify weighted linear step-wise procedures by introducing multi-weights
that depend on the rejection volume.

When the p-values are independent, we first prove that both LSU(W̃) and LSD(W̃)
control rigorously the FDR. Under positive regression dependency (PRDS), the FDR control

will be still provided up to a more conservative modification for W̃ which is proven to be less
conservative than the “Benjamini-Yekutieli (2001) correction”. Under unspecified dependen-
cies, the FDR control is provided by replacing the conventional threshold αr/m by αβ(r)/m
where β is a function of a specific form. The proofs use recent techniques developed in [7], [11]
and [12]. In particular, we will use that all the above procedures satisfy a “self-consistency”
condition.

An important part of the present work will be to derive in a general setting an explicit
formula for the weight vectors w(r), r = 1, ...,m defined above. The corresponding weight
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matrix will be referred as the optimal weight matrix. We will then demonstrate the interest
of the Gaussian case, by proving that it can be seen as the limit case of several non-Gaussian
setting. This will allows us to use our new procedure for the two-sample multiple comparison
problem using Mann-Whitney test statistics. When the sample sizes available to test each
hypothesis are different, our new procedures will improve substantially the LSU procedure,
as we will see on an application to microarray data.

Finally, an important property of the new procedures LSU(W̃) and LSD(W̃) will be
that the they behave like the best procedure among {LSU(w(r)), r = 1, ...,m}, up to some
remaining term (close to 0 when α is small). This means in other words that they are adaptive
to the parameter r. We will exhibit this property on simulations.

The paper is organized as follows: Section 2 presents some preliminary definitions, and
introduces multi-weighted procedures. The FDR control of the multi-weighted procedures
is stated in Section 3 for a general form of weight matrix. Section 4 then deals with the
weight matrix choice in the Gaussian and asymptotically Gaussian cases. The performances
of the new procedures are exhibited in Section 5 using a simulation study. Our method is
then extended to the random effects model in Section 6, to be applied to the two sample
multiple comparison problem in Section 7, where an application to microarray data is also
given. Several discussions and a conclusion are given in Section 8, while we gathered the
technical proofs in Section 9. All computer programs are written in R and are available upon
request.

2 Preliminaries

2.1 Setting

We consider the classical statistical multiple testing framework: let be (X ,X, P ) a probability
space and let be a random variable X taking values in (X ,X) such that X ∼ P . Let (X ,X)
be a finite set of null hypotheses (Hi, i ∈ {1, ...,m}) for the underlying distribution P . Each
hypothesis is formally defined as a subset of distributions on (X ,X), and we say that this
hypothesis is true if P belongs to the corresponding distribution set. We denote by H0 = {i ∈
{1, ...,m} | Hi is true} the set corresponding to the true null hypotheses and by m0 = |H0|
its cardinal. Analogously, we define H1 = {i ∈ {1, ...,m} | Hi is false} and m1 = |H1| for the
alternative hypotheses. Since H1 is the complement of H0 in {1, ...,m}, we have m1 = m−m0.

We suppose that for any null hypothesis Hi, it is given a p-value pi, i.e. a measurable
function from (X ,X, P ) to [0, 1] such that the distribution of pi(X) is uniform on [0, 1] as
soon as Hi is true:

∀i ∈ H0, ∀t ∈ [0, 1], P(pi(X) ≤ t) = t. (1)

Under the alternative i.e. for i in H1, we denote by Fi the cumulative distribution function
of pi(X): ∀t ∈ [0, 1], Fi(t) = P(pi(X) ≤ t). In our setting, the Fi’s are allowed to be different.

A multiple testing procedure R is defined as an algorithm which, from the data, aims to
reject part of the null hypotheses. Formally, a multiple testing procedure is defined as a
function R : x ∈ X 7→ R(x) ⊂ {1, ...,m} such that for each i, 1{i ∈ R} is measurable. The
rejected null hypotheses are then the hypotheses Hi, for i in R. Below, we will consider, as is
usually the case, multiple testing procedure R which can be written as function R̃(p) of the
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family of p-values p = (pi, i ∈ {1, ...,m}). We will always identify R and R̃ in our notations,
writing e.g. R(p).

As introduced by [1], the false discovery rate (FDR) of a multiple testing procedure is
defined as the average proportion of true hypotheses in the set of the rejected hypotheses:

FDR(R) = E

[ |H0 ∩ R(X)|
|R(X)| ∨ 1

]
. (2)

In the notations below, we will always drop the explicit dependency in X for short.
The problem of finding procedures that control the above quantities has been widely

studied in the multiple testing literature (see e.g. [1, 4, 23, 14, 20, 3]). For this, various
conditions on the p-values (pi, i ∈ {1, ...,m}) have been considered. In this paper, we will
restrict our attention to the three following cases: the p-values are mutually independent;
the p-values are PRDS on H0; the p-values have unspecified dependencies. One way to
establish FDR control is to consider step-up and step-down procedures. They are defined in
the following section.

2.2 Weighted step-up and step-down procedures

In this paper, we will use a general definition of a step-up and step-down procedures. First,
define a thresholding-based multiple testing procedure as a level set of the p-values

L∆(r) := {i | pi ≤ ∆(i, r)}, (3)

where r represents a rejection volume and ∆ : (i, r) ∈ {1, ...,m} × {0, 1, ...,m} 7→ ∆(i, r) is
a threshold collection, assumed nonnegative and nondecreasing in its second variable. The
general definition of a step-up procedure with a threshold collection ∆ is given by

SU(∆) = L∆(r̂), where r̂ = max{r ∈ {0, 1, ...,m} | |L∆(r)| ≥ r}. (4)

On the other hand, the general definition of a step-down procedure with a threshold collection
∆ is given by

SD(∆) = L∆(r̃), where r̃ = max{r ∈ {0, 1, ...,m} | ∀r′ ≤ r, |L∆(r′)| ≥ r′}. (5)

Of course, we classically have that for the same threshold collection ∆, SU(∆) rejects always
more hypotheses than SD(∆). However, SD(∆) has a more constrainted form which can be
useful in some situations, as we will see later.

Remark 2.1 From the nondecreasing property of r 7→ ∆(i, r), note that r 7→ L∆(r) is non-
decreasing (as set), which implies that a step-wise procedure R satisfies the following self-
consistency property:

R ⊂ L∆(|R|). (6)

[7] have shown this condition to be crucial for FDR control. The main reason is that it allows

to bound the false discovery proportion |R∩H0|
|R| by the ratio |L∆(|R|)∩H0|

|R| , which is more simple

to bound (on average), because the numerator becomes a function of the denominator. Note
also that the number of rejections of a step-wise procedure is exactly r̂ (resp. r̃) , which means
that (6) is in fact an equality.
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Particular step-up and step-down procedures are defined with a threshold collection ∆(i, r)
which is factorized with respect to i and r, that is, with ∆ of the form

∆(i, r) = αwiβ(r)/m,

where w = (wi)i are non negative weights summing up to m and β is some nonnegative
nondecreasing function called the shape function. The latter name comes from the fact that
β(r) gives the “shape” of the threshold collection with respect to the rejection volume. We
will refer the corresponding step-up procedure as the weighted β-step-up procedure with weight
vector w, denoted by SU(β,w). In the case β(r) = r the latter is called the weighted linear
step-up procedure and is simply denoted by LSU(w). Analogously, we define SD(β,w) and
LSD(w) for step-down procedures.

The above definitions are equivalent to the classical re-ordering based definition of the
weighted step-up and step-down procedure: consider the weighted p-values p′i = pi/wi, ordered
in the following way

p′(1) ≤ · · · ≤ p′(m).

Since for any integer r ∈ {1, ...,m}, we have

|L∆(r)| ≥ r ⇐⇒ p′(r) ≤ αβ(r)/m, (7)

SU(β,w) rejects the Hi such that p′i ≤ αβ(r̂)/m, with

r̂ = max{r ∈ {0, 1, ...,m} | p′(r) ≤ αβ(r)/m},

with the convention p(0) = 0. Similarly, SD(β,w) rejects Hi for which p′i ≤ αβ(r̃)/m, with

r̃ = max{r ∈ {0, 1, ...,m} | ∀r′ ≤ r, p′(r′) ≤ αβ(r′)/m}.

Remark 2.2 Since wi is allowed to be equal to zero, we must define pi/wi in this particular
case. We will suppose the latter ratio is equal to zero when both wi = 0 and pi = 0, and to ∞
when wi = 0 and pi > 0, implying pi ≤ αwiβ(r)/m ⇔ pi/wi ≤ αβ(r)/m.

2.3 Multi-weighted procedures

To integrate several weight vector w(r), r = 1, ...,m in a step-wise procedure, we consider
weight vector w which can depend on r. This extension is directly possible using the general
definitions of a step-up and step-down procedures presented in previous section, by considering
(non factorized) threshold collections of the form

∆(i, r) = αwi(r)β(r)/m, (8)

where W = (wi(r))i,r is a weight matrix i.e. is such that ∀r,
∑m

i=1 wi(r) = m. We also make
the following convention: ∀i, wi(0) = 0.

Definition 2.3 Consider a weight matrix W = (wi(r))i,r and a shape function β such that

∀i ∈ {1, . . . ,m}, r 7→ wi(r)β(r) is nondecreasing. (9)

Then the step-up procedure SU(∆) defined in (4) using the threshold collection (8) is called
the multi-weighted β-step-up procedure with weight matrix W = (wi(r))i,r, and is denoted by
SU(β,W). When β(r) = r, the procedure is called the multi-weighted linear step-up procedure,
and is simply denoted by LSU(W). In the multi-weighted step-down case, we define similarly
SD(β,W) and LSD(W).
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As for the standard weighted procedures, the multi-weighted procedures can be derived
from a re-ordering based algorithm. The main difference is that the original p-values are
ordered in several ways, because several weighting are used. Namely, if for r ≥ 1, qr denotes
the r-th smallest w(r)-weighted p-value i.e. is equal to p′(r) where ∀i, p′i = pi/wi(r), then
the multi-weighted β-step-up procedure rejects the hypotheses with a p-value pi smaller than
αwi(r̂)β(r̂)/m, where

r̂ = max{r ∈ {0, 1, ...,m} | qr ≤ αβ(r)/m},

(using (4), (7), and putting q0 = 0). Equivalently, the multi-weighted step-up procedure is
obtained using the following algorithm:

Algorithm 2.4 (Step-up algorithm for SU(β,W))

- Step 1: compute for each i the weight vector (wi(m))i and the weighted p-values p′i =
pi/wi(m). If all the weighted p-values are less than or equal to αβ(m)/m, then reject
all the null hypotheses. Otherwise go to step 2.

- Step j (j ≥ 2): put r = m− j + 1 and compute for each i the weight vector (wi(r))i and
the weighted p-values p′i = pi/wi(r). Order the weighted p-values following p′(1) ≤ ... ≤
p′(m). If p′(r) ≤ αβ(r)/m, then reject the r null hypotheses corresponding to the smaller

weighted p-values p′(i), 1 ≤ i ≤ r. Otherwise go to step j + 1 (if j = m stop and reject

no null hypothesis).

Similarly, the multi-weighted β-step-down procedure rejects the hypotheses with a p-value
pi smaller than αwi(r̃)β(r̃)/m, where

r̃ = max{r ∈ {0, 1, ...,m} | ∀r′ ≤ r, qr′ ≤ αβ(r′)/m},

and is obtained using the following algorithm:

Algorithm 2.5 (Step-down algorithm for SD(β,W))

- Step 1: compute for each i the weight vector (wi(1))i and the weighted p-values p′i =
pi/wi(1). If the smallest weighted p-values is strictly larger than αβ(1)/m, then reject
no null hypothesis. Otherwise go to step 2.

- Step j (j ≥ 2): put r = j and compute for each i the weight vector (wi(r))i and the
weighted p-values p′i = pi/wi(r). Order the weighted p-values following p′(1) ≤ ... ≤ p′(m).

If p′(r) > αβ(r)/m, then reject the r − 1 null hypotheses corresponding to the smaller

weighted p-values p′(i), 1 ≤ i ≤ r − 1. Otherwise go to step j + 1 (if j = m stop and

reject all the null hypotheses).

3 FDR control for multi-weighted procedures

In this section, we state the main results of this paper, which provides FDR control for quite
general multi-weighted procedures. Since particular multi-weighted β-step-up procedures
SU(β,W) are just the standard weighted β-step-up procedures SU(β,w) (by taking a matrix
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W = (w(r))r such that ∀r, w(r) = w), it can be helpful to recall first what are the known
results for SU(β,w).

Recent works (see [15, 5, 7]) showed that for any choices of weight vector w = (w1, ..., wm)
with

∑
i wi = m, the weighted β-step-up procedures SU(β,w) with weight vector w controls

the FDR at level α in the three following cases :

• with β(r) = r, when the p-values are independent,

• with β(r) = r, when the p-values are PRDS on H0 (which is a form of positive depen-
dency, see definition in Section 3.2),

• with β of the form β(r) =
∑

1≤i≤r iνi, where ν = (νi)i is a probability distribution on
{1, ...,m} i.e. is a family of nonnegative real numbers such that

∑
i νi = 1.

In the case (iii), no assumption is made on the dependencies between the p-values. Note also
that νi ∝ i−1 gives the Benjamini-Yekutieli correction β(r) = r/(1 + 1/2 + ... + 1/m).

3.1 Independent case

First assume that the p-values are independent. Even under this assumption, LSU(W) does
not rigorously control the FDR for any choice of weight matrix W and for any value of m
(see Appendix B for a counterexample in the case m = m0 = 2). Therefore, in order to get a
rigorous FDR control for each m, we need to slightly correct LSU(W). We first propose the
following step-up modification:

Theorem 3.1 Fix W = (wi(r))i,r a weight matrix such that (9) holds, and denote by W̃

the modified weight matrix with coefficient w̃i(r) = wi(r)
1+αwi(m) . Then, when the p-values of

p = (pi, i ∈ {1, ...,m}) are independent, LSU(W̃) has a FDR less than or equal to α.

The threshold collection used in LSU(W̃) is equal to the one of LSU(W) up to a factor
smaller than (1 + α maxi wi(m))−1. Therefore, provided that for all i, wi(m) is at most of
order 1, the two latter procedures are close when α is small.

The proof of Theorem 3.1 is given in Section 9.1. Intuitively, the main difficulty to
bound the FDR of a multi-weighted procedure is that the weights depend on the rejection
volume, so that we need this rejection volume to not change when we remove a given p-value
pi ∈ H0. For a step-up procedure of threshold collection ∆, this is true if the p-value pi

is larger than ∆(i,m) (because it does not affect the variables |L∆(r)|, r = 1, ...,m), which
occurs with probability 1 − ∆(i,m). Therefore, this leads to the step-up procedure with
the modification w̃i(r) = wi(r)(1 − ∆(i,m)) and ∆(i,m) = w̃i(m)α, which is exactly the
procedure of Theorem 3.1.
On the other hand, for a step-down procedure of threshold collection ∆ which rejects r̃
hypotheses, remove a true p-value pi ∈ H0 larger than ∆(i, r̃) does not change the final
number of rejections (because this operation does not change the variables |L∆(r)|, r ≤ r̃+1).
This leads to consider the modification w̃i(r) = wi(r)(1 − ∆(i, r)) and ∆(i, r) = w̃i(r)αr/m

i.e. w̃i(r) = wi(r)
1+αwi(r)r/m . This leads to the following result:

Theorem 3.2 Fix W = (wi(r))i,r a weight matrix such that (9) holds, and denote by W̃

the modified weight matrix with coefficient w̃i(r) = wi(r)
1+αwi(r)r/m . Then, when the p-values of

p = (pi, i ∈ {1, ...,m}) are independent, LSD(W̃) has a FDR less than or equal to α.
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The proof of Theorem 3.2 is given in Section 9.2. Since from (9), ∀r, wi(r)r/m ≤ wi(m),
the threshold proposed in Theorem 3.1 is more conservative than the one of Theorem 3.2.
However, the second result uses a step-down algorithm while the first one is step-up. There-
fore, no procedure dominates a priori the other. However, we will see on simulations (Sec-
tion 5) and on real data sets (Section 7) that the step-down modification is generally better.

3.2 Dependent case

We propose in this section to deal with the FDR control of the multi-weighted procedure in
the case where the p-values have some dependencies. We consider first the case where the
p-values are PRDS, which is a form of positive dependencies, defined as follows (see e.g. [4]).
A set D ⊂ [0, 1]m is said to be non-decreasing if for all x, y ∈ [0, 1]m, with x ≤ y coordinate-
wise, x ∈ D implies y ∈ D. Then, the p-values p = (pi, i ∈ {1, ...,m}) are said positively
regressively dependent on each from H0 (PRDS on H0) if for any non-decreasing measurable
set D ⊂ [0, 1]H and for all h ∈ H0, u ∈ [0, 1] 7→ P(p ∈ D | ph = u) is non-decreasing.

Theorem 3.3 Fix W = (wi(r))i,r a weight matrix such that (9) holds, and put

γ(W) = min

{
1

m

m∑

i=1

max
r

{wi(r)} , 1 +
1

m

m∑

i=1

m∑

r=2

[wi(r − 1) − wi(r)]+

}
.

Then, when the p-values of p = (pi, i ∈ {1, ...,m}) are PRDS on H0, LSU(W/γ(W)) has a
FDR less than or equal to α.

Compared to LSU(W), the above procedure loses a factor γ(W) ≥ 1 in order to get
a provable FDR control in the PRDS case. Interestingly, when W is such that for all i,
r 7→ wi(r) is constant, we have γ(W) = 1, so that the above result recovers the uni-weighted
result in the PRDS case without any loss. Moreover, for any choice W of weight matrix
satisfying (9), we have

γ(W) ≤ 1 + 1/2 + ... + 1/m, (10)

so that γ(W) is always smaller than the “Benjamini-Yekutieli correction” (see end of Sec-
tion 9.3 for a proof).

Consider now the case where the p-values have some unspecified dependencies. The fol-
lowing result states that the procedure SU(β,W) controls the FDR for a shape function β
of the same form than in the uni-weighted case and without any modification of the weight
matrix.

Theorem 3.4 Fix W = (wi(r))i,r a weight matrix such that (9) holds and consider a shape
function β of the form β(r) =

∑
1≤i≤r iνi, where ν = (νi)i is a family of nonnegative real

numbers such that
∑

i νi = 1. Then SU(β,W) has a FDR less than or equal to α for any
dependency structure on the p-values.

Of course, as in the uni-weighted or uniformly-weighted case, the latter procedure will
be quite conservative, because it controls the FDR for any dependency structure. However,
interestingly, the above result states that our multi-weighting method can be generalized to
this general dependent case without further correction.

Note that using the above theorem with νi ∝ 1/i gives β(r) = r/(1+1/2+...+1/m). Com-
pared to the PRDS result, (10) states that the procedure of Theorem 3.3 makes always more
discoveries; this is desirable because the latter uses the more restrictive PRDS assumption.
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4 Choice for the weight matrix

The theorems in Section 3 allow to use any weight matrix we want (satisfying (9)). This
section presents a way to choose the weight matrix from power considerations. The weights
are chosen for the multi-weighted procedures using the non-corrected weight matrix W, so
that, in what concerns the weights choice, we forget about the light corrections introduced in
the previous section.

4.1 Optimal choice for a fixed volume rejection

The way in which the procedures SU(β,W) and SD(β,W) are defined (see Algorithm 2.4
and Algorithm 2.5) suggests to choose the weight matrix W = (wi(r))i,r such that each weight
vector w(r) = (wi(r))i maximizes the “power at volume rejection r”:

w = (wi)i 7→ Powr(w) :=
∑

i∈H1

Fi(wiαβ(r)/m), (11)

The following proposition solves the above maximization problem.

Proposition 4.1 Assume that for each i ∈ H1, the cumulative distribution function Fi of the
p-value pi is twice differentiable and strictly concave on (0, 1) and denote by fi its derivative.
Suppose that the supremum (resp. infimum) values of the fi’s are contant over i and equal to
ℓ+ = fi(0

+) (resp. ℓ− = fi(1
−)). Consider β a nondecreasing function on R+ with β(1) > 0.

Then for any r ∈ {1, ...,m}, with β(r) < m1/α, the weight vector maximizing Powr(.) is
unique and given by:

w⋆
i (r) =

m

αβ(r)
f−1

i

(
y⋆(r)

)
1{i ∈ H1}, (12)

where y⋆(r) = Ψ−1(mβ(r)) and for any y ∈ (ℓ−, ℓ+), Ψ(y) = m
α

∑
j∈H1

f−1
j (y).

The proof, which is based on similar arguments than those proposed in [22] and [27], is given
in Section 9.5. In all what follows, the weight matrix W⋆ = (w⋆

i (r))i,r will be called the
optimal weight matrix (for each fixed rejection volume). It is worth noting that the optimal
weight matrix satisfies the assumption (9) (page 5) and thus can be used in the results of
Section 3.

4.2 Optimal weight matrix in the Gaussian case

We detail here the optimal weight matrix when the p-values are generated from a Gaussian
model. We focus on the one-sided case (a similar reasoning can be applied for the two-sided-
case).

Consider the multiple testing problem Hi : “µi ≤ 0” against Ai :“µi > 0” from Gaussian
observations Xi, i = 1, ...,m of mean µ = (µi)i and of variance 1. We use the p-values
pi = Φ(Xi), where Φ(z) = P(Z ≥ z), with Z ∼ N (0, 1), is the standard Gaussian distribution
tail. Here, H1 = {i | µi > 0} and for all i,

Fi(x) = Φ
(
Φ
−1

(x) − µi

)
and fi(x) = exp

{
µi

(
Φ
−1

(x) − µi

2

)}
. (13)

9



The p-values assumptions of Proposition 4.1 with ℓ+ = +∞ and ℓ− = 0 hold. Therefore, the
optimal weight matrix is given by

w⋆
i (r) =

m

αβ(r)
Φ

(
µi

2
+

c(r)

µi

)
1{µi > 0}, (14)

where c(r) is the unique element of R such that

m

α

∑

i | µi>0

Φ

(
µi

2
+

c(r)

µi

)
= β(r)m.

Figure 1 displays the weight vectors w⋆(r) = (w⋆
i (r))i coming from the optimal weight

matrix (14) for a particular choice of non-zero means and different values of r. This illustrates
why it is interesting to use our multi-weights (Algorithm 2.4): for r = m, the p-value con-
sidered in the algorithm is large, that is, corresponds to small means (with high probability).
Hence, in order to maximize the chance of rejection, it is better to choose large weights for
small means, as w⋆(m) does. Then, as r decreases, the p-values considered are smaller i.e.
correspond to larger means. Hence it is better to choose weights larger on the large means,
as w⋆(r) does. Of course, the same reasoning can be applied for the step-down algorithm
(Algorithm 2.5).

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 1: Plot of several optimal weights (w⋆
i (r))i in function of µi and for r = 1 (solid),

r = 10 (dashed-dotted), r = 100 (dotted), r = 1000 (dashed). Gaussian one-sided case with
β(r) = r, m = 1000, α = 0.05, µi = 5i/m for i = 1, ...,m. Here c(1) = 6.71, c(10) = 4.67,
c(100) = 2.62, c(1000) = 0.72. Each curve is normalized to have a maximum equal to 1.

The next section demonstrates that the Gaussian computations are useful in a general
asymptotic framework, even if the underlying data distributions are not Gaussian.

4.3 Optimal weight matrix in asymptotically Gaussian cases

We expose here situations where the p-values pi have a c.d.f. asymptotically equal to (13)
under local alternatives. In these asymptotically Gaussian cases, the formula (14) thus gives
the weights maximizing the asymptotic power (at each rejection volume r). The asymptotic
considered here concerns the sample size n available to test each hypothesis Hi. We emphasize
that the number of hypotheses to test m is maintained fixed here.
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Suppose that each p-value pi = pi,n tests the null Hi :“θi = 0” against the alternative
Ai :“θi > 0”for a given parameter θi. Assume that each p-value is built from a test statistic
Si,n, i.e. pi,n = ζi,n(Si,n), where ζi,n is the upper tail function of Si,n under the null distri-
bution i.e. ∀t, ζi,n(t) = PHi

(Si,n ≥ t). Then, the following proposition holds (proof given in
Section 9.5):

Proposition 4.2 Fix i ∈ {1, ...,m}. Let τi and σi be two functions from R+ to (0,∞)
respectively differentiable in 0 and continuous in 0. Assume that for all θi,n of the form
θi,n = hi/

√
n (with hi ≥ 0), we have:

√
n

Si,n − τi(θi,n)

σi(θi,n)

θi,n

 N (0, 1). (15)

Then, considering alternatives such that ∀i ∈ H1, θi,n = hi/
√

n (with hi > 0), for any r ≥ 0
and weight vector w = (wi)i, the power Powr(w) defined in (11) converges to

∑

i∈H1

Φ

(
Φ
−1

(wiαβ(r)/m) − hi
τ ′
i(0)

σi(0)

)
. (16)

In particular, under these local alternatives, the weight matrix which maximizes the asymptotic

power (16) are given by (14) with µi = hi
τ ′

i (0)
σi(0)

.

The assumption (15) is sometimes referred as “locally uniform” asymptotic normality.
In Chapter 14 of [26], several explicit instances of statistics Si,n and functions τi and σi

that satisfy (15) are exhibited e.g. the sign test, the Mann-Whitney test and the one and
two-sample t-tests. For all these classical (multiple) tests, Proposition 4.2 establishes an
asymptotically optimal way to choose the weight matrix in the multi-weighted procedures.
We focus in Section 7 on the Mann-Whitney test in the two-sample (multiple) comparison
problem.

Remark 4.3 In this approach, while the weight choice is motivated from asymptotic consid-
erations, we emphasize that the FDR control of the resulting multi-weighted procedure is still
non-asymptotic.

4.4 Weighting from prior guess

The optimal weight matrix (12) is of course an oracle weight matrix, in the sense that it
depends on the unknown underlying distribution P , or more precisely on:

- The “location information”: the set of the false null hypotheses H1,

- The “distribution information”: the alternative distributions of the p-values {Fi, i ∈
H1}.

The two latter informations are of a different nature: the first information separates the true
nulls from the false nulls; this is a strong information because directly related to the ideal
output of a multiple testing procedure. The second information is more subtile; it separates
the nulls among the false nulls.

11



In order to get computable weights, both of the above informations have to be guessed
from prior information, e.g. from independent previous experiments. Formally, the prior
information is given by the guesses H̃1 and {F̃i, i ∈ H̃1} of H1 and {Fi, i ∈ H1}, respectively.

In the (asymptotically) Gaussian case, the latter information is more handy because it is
reduced to the guessed means µ̃i, i = 1, ...,m. Namely, in the one-sided case, the guessed set

H1 is H̃1 = {i | µ̃i > 0} and the guessed alternative distributions F̃i(x) = Φ
(
Φ
−1

(x) − µ̃i

)
,

for µ̃i > 0. Our optimal weight matrix can thus be guessed by pluging directly the guessed
means µ̃i in formula (14). When µ̃i is “close enough” to µi, we will show that this way to
guess the optimal weight matrix has good performance (see simulations in Section 5).

As a consequence, the prior guess can be simply seen as a family of guessed means µ̃i.
The ‘best’ way to derive these means may dependent on the application; we discuss several
options in Sections 7 and 8.1.

5 Simulation study

5.1 Simulations framework

We consider the one-sided Gaussian testing framework, where we want to test for each i ∈
{1, ...,m}, the null Hi :“µi = 0” against the alternative Ai :“µi > 0” from the observation of
a m-dimensional Gaussian vector (Xi)i of vector mean µ. For the sake of simplicity, we will
only consider the independent case, i.e. we consider a covariance matrix equal to the identity.

In this section, the number of tests is m = 1000. We suppose that the 0 < m0 < m first
components of µ are equal to zero: µi = 0, 1 ≤ i ≤ m0. The m1 = m−m0 remaining non-zero
means are taken in the two following ways:

• Case 1: the non-zero means increase linearly from 3
m1

µ to 3µ: for m0 + 1 ≤ i ≤ m,

µi = 3µ
i − m0

m1
, (17)

• Case 2: the non-zero means are gathered in three groups of different values µ, 2µ and
3µ: for m0 + 1 ≤ i ≤ m,

µi =





µ m0 + 1 ≤ i ≤ m0 + 0.4m1

2µ m0 + 1 + 0.4m1 ≤ i ≤ m0 + 0.8m1

3µ m0 + 1 + 0.8m1 ≤ i ≤ m1

. (18)

In both cases µ is an “effect size” parameter taking values in the range 0.5 + 0.25k, k ∈
{0, ..., 10}. The proportion π0 = m0/m of zeros in the mean vector is taken equal to 0.7,
which is a quite common value in real datasets. We performed the following procedures:

- [MW-Step-up-oracle] the multi-weighted linear step-up procedure LSU(W̃⋆) of Theo-
rem 3.1, using the optimal weight matrix W⋆ given in (14),

- [MW-Step-down-oracle] the multi-weighted linear step-down procedure LSD(W̃⋆) of
Theorem 3.2, using the same optimal weight matrix as [MW-Step-up-oracle],

- [Unif-oracle] the weighted linear step-up procedure LSU(w) using a weight vector uni-
form on H1: w⋆

i = 0 for µi = 0 and w⋆
i = m/m1 for µi > 0,

12



- [WLSU(r)-oracle] the weighted linear step-up procedure LSU(w(r)) where the weight
vector w(r) = (w⋆

i (r))i is the r-th column of the optimal weight matrix given in (14),

- [WLSU-oracle-best] the procedure which is the most powerful among the procedures
[WLSU(r)-oracle], 1 ≤ r ≤ m,

- [WLSU-oracle-worst] the procedure which is the least powerful among the procedures
[WLSU(r)-oracle], 1 ≤ r ≤ m.

These procedures correspond to the case where we have a perfect prior guess of the mean vec-
tor µ, hence the name “oracle”. In situations where we replace µ by a guess µ̃ in the weights,
the procedures are called “guessed” and are denoted by [MW-Step-up-guess], [MW-Step-
down-guess], [Unif-guess], [WLSU(r)-guess], [WLSU-guess-best] and [WLSU-guess-worst] re-
spectively. The procedure [Unif-oracle/guess] gives a uniform weighting over the (guessed)
false nulls and is close in spirit to the approach of [15]. It takes only into account the subset
H1 ⊂ H where the hypotheses are false (location information), but not the values of each non
zero means. The procedures [WLSU-oracle/guess-best] and [WLSU-oracle/guess-worst] are
used to evaluate the adaptivity range in which the multi-weighted procedures are expected
to fluctuate. To compare with quite recent developments on π0-adaptive procedures (see e.g.
[2]), we also performed the step-up procedure with threshold collection αi/m0, denoted by
[LSU⋆]. Since it uses a perfect estimation of π0, it represents the best theoretical π0-adaptive
modification of the LSU that we can build. For clarity reasons, we avoid the problem of choos-
ing a particular estimator of π0 and we only considered [LSU⋆]. For coherence of notations,
the standard LSU is also denoted [LSU].

All the latter procedures have provable FDR control (see Section 3) under independence,
so that it is relevant to compare them in terms of power. In all experiments the targeted FDR
level is either α = 0.01 or α = 0.05. The different performed procedures will be compared in
terms of relative power (RelPow) with respect to the LSU procedure, defined as the expected
surplus proportion of correct rejections among the false nulls: for a multiple testing procedure
R,

RelPow(R) = (m1)
−1

(
E(|R ∩H1|) − E(|LSU ∩H1|)

)
(19)

Roughly speaking, this relative power represents the surplus “probability” of a false null to be
rejected with respect to the LSU. This power will be estimated using Monte-Carlo simulations.

5.2 Results with perfect prior guess

We consider first the ideal situation where we have a perfect prior guess of the mean vector µ,
so that we may used oracle procedures. We computed in Figure 2 the relative power (19) of
[LSU] (solid), [LSU⋆] (short-dashed), [MW-Step-up-oracle] (dotted-dashed), [MW-Step-down-
oracle] (long-dashed) and [Unif-oracle] (dotted) against the parameter µ (1000 simulations).
The gray area represents the range between [WLSU-oracle-best] and [WLSU-oracle-worst].

The conclusions of this experiment are :

- [MW-Step-up-oracle] and [MW-Step-down-oracle] seems adaptive over the range of
[WLSU(r)-oracle] procedures with respect to the parameter r, that is, they have a
power close to [WLSU-oracle-best], up to a small remaining term. However, the latter
remaining term is growing with α.

13



0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
04

0.
08

0.
12

0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
04

0.
08

0.
12

0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0.
05

0.
10

0.
15

Figure 2: Case with perfect prior guess. Relative power of the different procedures in function
of µ (see text). m = 1000; 1 000 simulations; π0 = 0.7. Left: type 1 of means, right: type 2
of means. Top α = 0.01; bottom α = 0.05.

- [MW-Step-down-oracle] performs here better than [MW-Step-up-oracle] (especially for
α = 0.05), so that the loss in the threshold of [MW-Step-up-oracle] seems significantly
larger than the loss in the threshold of [MW-Step-down-oracle].

- The gray area measuring the adaptivity range is sometimes wide, so that a bad choice
of r potentially leads to bad performance of the corresponding procedure [WLSU(r)-
oracle]. Hence the adaptive property of the multi-weighted procedures is useful.

- [MW-Step-down-oracle] is more powerful than LSU⋆ (actually, this is still true using a
smaller π0, e.g. π0 = 0.5).

- [MW-Step-down-oracle] is always better than [Unif-oracle], and allows sometimes for
much more discoveries. This seems coherent because [MW-Step-down-oracle] takes into
account more (correct) prior informations than [Unif-oracle] (namely, [MW-Step-down-
oracle] uses both the values and the location of the non-zero means, while [Unif-oracle]
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only uses the location information).

5.3 Results with non-perfect prior guess

We consider here the same experiment as before, except that we take into account the “ran-
domness” due to the prior guesses. For this, we add a misspecification parameter σ and we
suppose that the guessed means are of the form: ∀i ∈ {1, ...,m},

µ̃i = µi + εi,

where εi are i.i.d with distribution N (0, σ2) and independent of the pi’s. The misspecification
parameter (standard deviation) σ is taken in the range {j/4, j = 0, ..., 12}. Figure 3 shows
the relative power (19) of [LSU] (solid), [LSU⋆] (short-dashed), [MW-Step-up-guess] (dotted-
dashed), [MW-Step-down-guess] (long-dashed) and [Unif-guess] (dotted) with respect to σ.
The gray area represents the range between [WLSU-guess-best] and [WLSU-guess-worst]. We
performed 100 simulations to compute the relative power and the latter is moreover averaged
over 10 generated values of the µ̃i’s (for each values of σ).
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Figure 3: Case with non-perfect prior guess. Relative power of the different procedures in
function of the misspecification parameter σ (see text). Left: type 1 of means, right: type 2
of means (see text). µ = 1; α = 0.05; π0 = 0.7. Each curve is averaged on 10 simulations of
the µ̃i’s. We used 100 simulations to estimate the power.

In these experiments, the three first conclusions of the previous section are maintained
(adaptivity, [MW-Step-down-guess] better than [MW-Step-up-guess], range of adaptivity
wide), but the two last points become:

- The multi-weighted procedures are better than other procedures when the guesses are
good i.e. over the range σ ∈ [0, 1.2], but can be worst than the simple [LSU] procedure
when σ is large.

- [Unif-guess] only proposes a slight improvement of [LSU] (or [LSU⋆]) when the guesses
are good, but is “less risky” than the mutli-weighted procedures otherwise.

Therefore, the overall conclusion is that multi-weighted procedures can improve significantly
the power in situations where the guesses are good enough.
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5.4 The positive dependent case

We also performed simulations under the Gaussian positive equi-correlation case, with ρ = 0.5.
We studied the performance of the multi-weighted linear step-up procedure with weights as in
Theorem 3.3, denoted here by [MW-Step-up-γ]. The power of this procedure was compared
with [WLSU-best], [WLSU-worst] and [MW-Step-down], both with a perfect guess and a
non-perfect guess. From Section 3, remember that under positive dependencies, except for
[MW-Step-down], all the above procedures have a provable FDR control. We report here
only the conclusions of these simulations. First, we observed that in terms of power [MW-
Step-down] is close to [WLSU-best] which on its turns dominates [MW-Step-down-γ]. Second,
[WLSU-worst] is almost always better than [MW-Step-down-γ], which means that considering
the uni-weighted LSU procedure with the optimal weight vector w = w(r) at an arbitrary
volume rejection r leads almost always to a better result than [MW-Step-down-γ]. This is a
serious drawback of [MW-Step-down-γ]. On the other hand, we observed that the effective
FDR of [MW-Step-down] was still well below the targeted level, which is not guaranteed by
our theory for this procedure. This means that the correction of 3.3 is probably too much
conservative. Therefore, in practical cases, [MW-Step-down] or any weighted LSU procedure
using w(r), 1 ≤ r ≤ m should be preferred over [MW-Step-up-γ].

6 Extension to a random effects model

In this short section, we describe how our approach can be used when we have only a prior
guess on the alternative distributions of the p-values (Fi, i ∈ {1, ...,m}), without any guess
on which hypotheses are false or true (using the terms of Section 4.4, this section deals
with “distribution informations” without “location informations”). In such situation, each
hypothesis has a priori the same “prior chance” to be true, so that using a random effects
model is particularly relevant. This approach will be applied in Section 7.

6.1 Description of the model

Consider a random effects model (see e.g. [9, 24, 14]), where the null hypotheses of (Hi, i ∈
{1, ...,m}) are generated – previously and independently from all other random variables – as
i.i.d. random variables with outcomes in {0, 1} (0 codes for “Hi is true” whereas 1 codes for
“Hi is false”). We denote π0 = P(Hi = 0). In this model, note that the number of the true
hypotheses |H0| =

∑m
i=1(1−Hi) is not deterministic anymore, but is a random variable. The

marginals of the p-values are defined as in Section 2.1 but with a probability operator taken
conditionally to (Hi, i ∈ {1, ...,m}). That is, for any i ∈ H, ∀t ∈ [0, 1], P(pi ≤ t | Hi = 0) = t
and P(pi ≤ t | Hi = 1) = Fi(t). In what concerns the p-value joint distribution, we assume
for the sake of simplicity that the p-values of (pi, i ∈ {1, ...,m}) are independent conditionally
to (Hi, i ∈ {1, ...,m}) (a generalization to the case of “conditional dependent” p-values is
straightforward).

As a consequence, unconditionally, the p-values are independent and for i ∈ {1, ...,m},
each p-value pi has a c.d.f. written as the mixture

Gi(t) = π0 t + (1 − π0) Fi(t). (20)
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6.2 FDR control and power maximization

In this model, the conclusion FDR ≤ α of Theorems 3.1 and 3.2 holds conditionally to
(Hi, i ∈ {1, ...,m}), and therefore also unconditionally. As a consequence, given a correct
weight matrix, the step-up and step-down multi-weighted procedures described in Section 3.1
control the FDR at level α in this model as well.

In such a random effects model, several notions of power can be used, for instance: the
averaged number of rejections, the averaged number of correct rejections, the averaged number
of rejected hypotheses given that they were false. Conveniently, all these quantities are equal
up to some affine transformation: for any weight vector w = (wi)i,

∑
i wi = m, the averaged

number of rejections of the procedure “at volume rejection r” {i | pi ≤ wiαr/m} is

m∑

i=1

P(pi ≤ wiαr/m) =

m∑

i=1

[
π0wiαr/m + (1 − π0)Fi(wiαr/m)

]

= π0αr + (1 − π0)

m∑

i=1

Fi(wiαr/m).

Therefore, following the maximization approach of Section 4, we have to maximize in
w = (wi)i,

∑
i wi = m, the quantity

∑m
i=1 Fi(wiαr/m). Since the latter is exactly the “power

at volume rejection r” of equation (11) used with “H1 = H”, this maximization problem is
directly solved by Proposition 4.1. Furthermore, the exact expression of the optimal weight
matrix in this random effects model is simply obtained by taking “H1 = H” in the formulas
of Section 4 (formula (12) for the general case and (14) for the Gaussian case).

7 Application: increasing the power using sample sizes

In this Section, we present a direct application of our adaptive-weighting approach for the two-
sample multiple comparison problem when the data are vectors of potentially high dimension.
Our new approach allows for integrating the sample sizes into a FDR controlling procedure.
The resulting improvement will be illustrated on a microarray application.

7.1 The two-sample multiple comparison problem

For each i = 1, ...,m, suppose that we observe two independent i.i.d. samples Xi = (Xi,1, ...,Xi,ki
)

and Yi = (Yi,1, ..., Yi,ℓi
) from respective distribution G(x) and G(y − θi). We denote by

n = ki + ℓi the sample size available to test each hypothesis. The density of G w.r.t. the
Lebesgue measure on R is denoted by g and is assumed bounded. We moreover assume that
the data are row-wise independent, i.e. that {(Xi, Yi), i = 1, ...,m} is a family of indepen-
dent random variables. Our goal is to test simultaneously for each i the null Hi :“θi = 0”
against the alternative Ai :“θi > 0”, while controlling the FDR. To test each null, we use
the distribution-free Mann-Whitney test statistic Si = 1

kiℓi

∑
u,v 1{Xi,u ≤ Yi,v}, because it is

ultimately robust to outliers, which is desirable in microarray studies. Denoting by ζi the
upper-tail distribution function of Si under the null, a p-value for Hi equals pi = ζi(Si).

In all what follows, we will focus on the case where the sample sizes can be different, that
is, where ki 6= kj for some (i, j) with i 6= j (although the total sample size n does not depend
on i). This situation occurs in specific practical cases, as we will see in Section 7.3. In order to
control the FDR in such a multiple testing setting, we can use the LSU procedure. However,
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since the sample sizes are not all equal, the p-values can not be considered interchangeably:
when the proportions ki/n and ℓi/n are far from 0.5 (unbalanced case), the corresponding
p-value pi will be less able to make a rejection. The idea here is thus to use this sample size
information as a prior guess on each hypothesis in order to increase the power of the global
multiple testing procedure.

We aim to consider as prior only the sample size information, without any guess on which
hypotheses are false or true (i.e. without “location information”). Therefore, we consider the
random effects model described in Section 6: we suppose that θi, i = 1, ...,m are i.i.d. random
variable (independent of all other variables), such that P(θi = 0) = π0 and P(θi = θ) = 1−π0,
for an (unknown) probability π0 ∈ (0, 1) and an (unknown) “global effect size” θ > 0. The
variables Hi = 1{θi = 0} are then Bernoulli variables with success probability 1 − π0, as
required by the random effects model.

7.2 Applying the multi-weighted procedures

From Section 6.2, the FDR control is provided by the procedures LSU(W̃) and LSD(W̃),
for any choice of weight matrix W satisfying (9). Moreover, the optimal weight matrix is
derived from (12), applied with “H1 = H”. However, for the test statistic considered here,
the exact p-value distribution is complex and discrete, and hence we choose the weights from
the asymptotic approach of Section 4.3 (even if, again, the FDR control is non-asymptotic
i.e. holds for any values of (ki, ℓi), i = 1, ..,m).

As a consequence, the weight matrix maximizing the asymptotic power when n → ∞ with
ki/n → λi ∈ (0, 1), and under the alternative θ = θn = h/

√
n is: for all i ∈ {1, ...,m} and

r ∈ {1, ...,m},

w⋆
i (r) =

m

αr
Φ

(
δ

2
[λi(1 − λi)]

1/2 +
c(r)

δ
[λi(1 − λi)]

−1/2

)
, (21)

where c(r) is the unique element of R such that

m

α

m∑

i=1

Φ

(
δ

2
[λi(1 − λi)]

1/2 +
c(r)

δ
[λi(1 − λi)]

−1/2

)
= rm,

and where δ = 2
√

3h
∫

R
g2(x)dx. To prove this, we have to check the condition (15) and to

compute the corresponding functions τi and σi, for which we refer to Example 14.11 of [26].
Note that for standard Gaussian data, we have δ = h

√
3/π =

√
3n/π θ.

From the practical point of view, while the λi are known, the parameter θ is unknown
and must be evaluated in order to compute the optimal weight matrix. To adress this issue,
one solution could be to consider θ as a part of the prior information and we could propose a
guess θ̃ on θ, for instance θ̃ = 1. Although mathematically totally convenient, this could be
a bit dangerous solution in practice, especially when the true value of θ is far away from the
guessed value θ̃: the misspecification of θ and thus of the optimal weight matrix can make
decrease the power of the overall procedure (as it was point out in simulations of Section 5).
Therefore, we chose a different approach: we propose to estimate θ with the simple estimator:

θ̂m = (1 − π̂0)
−1m−1

m∑

i=1

Zi, (22)
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where Zi = 1
ℓi

∑ℓi

v=1 Yi,u − 1
ki

∑ki

u=1 Xi,u and where π̂0 is an estimator of π0. We emphasize
that, in order to provide the correct FDR control, our multi-weighted procedure should in
principle be used with a weight matrix fixed or independent of the data used to compute
the p-values. Therefore, in principle, the FDR control holds only if θ̂m is computed with
independent data. However, taking for instance for π̂0 the Storey estimator (see [23, 25]),
θ̂m converges in probability when m grows to infinity, so that the fluctuations of θ̂m in the
weights will have a marginal effect on the effective FDR of the so multi-weighted procedures
when m becomes large.

7.3 Application to microarray experiments

In a typical microarray experiment, we want to find the differentially expressed genes between
two groups of individuals. For the i-th gene, the level expression is of the form Xi,1, ...,Xi,ki

for group 1 and Yi,1, ..., Yi,ℓi
for group 2, where ki (resp. ℓi) is the number of individuals in

group 1 (resp. group 2). Multiple testing procedures (e.g. the LSU procedure) are widely
used to find the differentially expressed genes while controlling a given type I error rate (see
e.g. [8]).

In some microarray experiments, the sample sizes (ki, ℓi) available to assess the differential
expression of gene i may strongly depend on i. For instance, this is the case when the groups
are built from the same fixed set of n individuals, following the values of a deterministic
binary covariate Ai,j , j ∈ {1, ..., n}, i ∈ {1, ...,m}. In this situation, the variables Xi,1, ...,Xi,ki

correspond to the expression level of gene i for individual j such that Ai,j = 0 (“zero’s group”)
(with ki = |{j | Ai,j = 0}|), and the variable Yi,1, ..., Yi,ℓi

correspond to the expression level
of gene i for individual j such that Ai,j = 1 (“one’s group”) (with ℓi = |{j | Ai,j = 1}|).

In our application, the response measurements are classical mRNA gene expressions, while
the covariates are the DNA copy number statuses of the same genes on the same samples.
These are obtained from an independent array CGH experiment, after a few pre-processing
steps (see e.g. [21]). Hence, we focus on the covariate Ai,j which is equal to 1 when gene i
is gained for individual j (i.e. when sample j has an abnormally high DNA copy number of
gene i), and 0 otherwise. The biological goal behind this is to find the genes for which the
mRNA expression is induced by the DNA copy number. This is particularly useful to study
cancer pathologies (see e.g. [17]).

Using the above framework, we analyse microarray lymphoma cancer data of [19]. In these
data m = 11169 genes and n = 42 individuals are studied. The p-value of each gene was
computed using a Mann-Whitney test. We performed the LSU procedure and the step-up and
step-down multi-weighted procedures described in Section 7.2, using the estimator θ̂m ≃ 0.98
of the global effect size θ. We also performed the LSU weighted procedure LSU(w), using the
natural, although mathematically unfounded, weight vector w = (wi)i, wi ∝

√
λi(1 − λi).

For different values of α, the number of rejections of the four procedures are given in Table 1.
Note that all these procedures control the FDR at the targeted level. For our new procedures,
this holds because m is large (see end of Section 7.2).

We observe that our new step-down procedure allows to discover more differentially ex-
pressed genes when α ∈ {0.005, 0.01, 0.05}. When α = 0.1, the benefit due to the weighting in

LSD(W̃) is not large enough to compensate the correction term in the optimal weight matrix
(and also the possible bias in the θ-estimation). For what concerns the “naturally weighted
LSU(w)”, it seems correctly adjusted sometimes (here, α = 0.05) but less relevant otherwise.
The improvement of our procedures is surprisingly strong when the number of rejection of
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α LSU Natural LSU(w) LSU(W̃) LSD(W̃)

0.005 33 48 83 83
0.01 112 118 136 137
0.05 436 453 433 452
0.1 797 805 738 790

Table 1: Number of discoveries of each procedure. See text.

the LSU is small (α = 0.005). This is in accordance with our intuition: the prior information
(here the sample sizes) is particularly useful when the number of rejections is expected to
be small. Finally, let us mention that these positive results on the sample size problem have
been corroborated in a specific simulation study (not reported here).

8 Discussions and conclusion

8.1 Discussion: informative guessing of the weights in applications

A crucial part in any weighted multiple testing procedure is the choice of the weights. In our
application, we showed that in a case where the known sample sizes are integrated into the
weights, even a relatively uninformative estimate of the effect size per test item, namely the
global effect size, results in a powerful procedure. We believe even more powerful weights can
be estimated from related studies. For example, microarray studies are very often used for
studying several types of cancer. Now, suppose one wants to study a relatively rare type of
cancer for a which limited amount of samples is available. Hence, it is crucial in this case
to use a powerful multiple testing procedure to be able to discover anything. Nowadays,
microarray profiles of many common cancers are publicly available. It is known that several
genes, for example those involved in cell proliferation, play an important role in many types
of cancer. Moreover, biologists probably know to which more common cancer the rare one is
alike in terms of biological parameters (e.g. tissue type). Therefore, it can be very beneficial
to guess the weights from the common cancer data to obtain a more powerful multiple testing
procedure for the rare cancers.

When we have no prior information, we can still use our multi-weighted procedure by
splitting the data sample X in two parts (X(1),X(2)), estimating the weights from X(1)

and computing the p-values from X(2). We performed simulations with the “naive” plug in
approach, which estimates the optimal weight matrix by computing all the µ̂i’s from X(1).
This does not work: our simulations showed that the loss in power due to the splitting
approach is not compensated by the gain resulting from the weighting. This is in accordance
with the findings in [27] and [22] (related to the FWER control). Furthermore, our simulations
showed that using the data twice is really not allowed: by computing both the p-values and
the weights from the whole sample X the effective FDR of this procedure may be twice larger
than the targeted level.

However, as suggested in [22], this splitting approach can be useful in situation where we
know a prior structure on the data. For instance, if we know that the non-zero means are
smooth or organized in clusters, we need just few parameters in order to approach well the
non-zero means, so that we can used a sample X(1) very small with respect to X(2). For ex-
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ample, in microarray studies it is known that genes act together in so-called pathways. These
pathways are known a priori, and it may be reasonable to use one parameter per pathway
and estimate these parameters from X(1), thereby hoping for more informative weights since
external information has been used.

8.2 Discussion: power properties of the multi-weighted procedures

Our simulations showed that the new multi-weighted procedures are adaptive in the sense
that its power is close to the one of the (unknown) best procedure among { LSU(w⋆(r)),
1 ≤ r ≤ m}. Furthermore, we observed in all our experiments that the two above powers are
very close, as soon as we forget the correction of Section 3 in the multi-weighted procedure.
We thus conjecture that an oracle inequality holds, taking the form:

Pow(LSU(W⋆)) ≥ (1 − C)max
w

{Pow(LSU(w))} − ε, (23)

for some constants C ≥ 0 and ε ≥ 0, possibly depending on many parameters (e.g. m). In
what follows, we give an simple but informal argument establishing that (23) should hold
asymptotically in m with C = 0 and ε = 0. Consider a random effects model, with nulls
asymptotically gathered in two clusters {A,B} with proportion qA and qB, and with associated
guessed alternative distribution FA and FB , respectively. In this situation we should consider
simple weight vector w taking values wA on A and wB on B and such that qAwA +qBwB = 1.
Following the asymptotic theory developed in [13, 14], we believe that under some well chosen
regularity asumptions, the asymptotic rejection numbers (rescaled by α/m) of the LSU(w)
and LSU(W) are asymptotically

T (w) = sup{t | π0t + (1 − π0)[qAFA(wAt) + qBFB(wBt)] ≥ t/α},

and
T (W) = sup{t | π0t + (1 − π0)[qAFA(wA(t)t) + qBFB(wB(t)t)] ≥ t/α},

respectively. The latter formulas come directly from the definition (4) of a step-up proce-
dure, by taking the expectation inside the maximum and by substituting the random ef-
fects model (with two clusters). If these formulas hold, then the optimal weight matrix
W⋆ = {w⋆

A(t), w⋆
B(t)}t (i.e. maximizing the asymptotic power at each (rescaled) rejection

number t) satisfies by definition ∀w, T (w) ≤ T (W⋆). Therefore, in this situation, (23) holds
asymptotically with C = 0 and ε = 0.

8.3 Conclusion

This paper proposed a generic method to weight the Benjamini-Hochberg procedure from a
prior knowledge on the p-value distributions. From a power maximization argument, we aimed
to integrate in a step-up procedure a whole weight matrix instead of a single weight vector.
We showed that the resulting multi-weighted step-up procedure can be easily computed in
practice thanks to algorithms, which take sequentially into account the different weight vectors
contained in the weight matrix.

Under various dependency conditions on the p-values, we proposed several multi-weighted
procedures which control rigorously the FDR for a general class of weight matrix. We then
investigated the general computation of the optimal weight matrix, and we obtained a closed
formula in the Gaussian case and in the asymptotically Gaussian case, which covers a wide
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range of non-Gaussian (multiple) testing situations (e.g. Mann-Whitney test in a distribution-
free framework). We illustrated the interest of the resulting “optimal multi-weighted proce-
dure” in the two-sample multiple comparison problem, where an application to microarray is
also given. Our procedure was able to discover more than conventional state-of-the art FDR
procedures.

An interesting direction for future works will be to investigate FDR bounds sharper than
the one proposed in Section 3. First, we would like to find a way to remove (or reduce)
the correction of the weight matrix in our procedure while still providing the FDR control.
For m = 2, results in Appendix B shows that the required correction is 0 for the step-down
case while it stay quite small for the step-up case. Furthermore, we believe in both cases
that the correction is unnecessary when m grows to infinity. Second, our FDR bounds are
certainly too conservative when the proportion π0 of true nulls is small e.g. π0 ≤ 0.5 (this
situation may arises in some applications although it is quite rare). In this cases, it would
be useful to prove that the FDR of our procedures are upper bounded by π0α instead of α
(using for e.g. a random effects model). In the same spirit, it would be useful to combine our
new procedures with a π0 estimator, so building π0-adaptive and multi-weighted procedures
(using for instance techniques developed in [2] and [6]).

9 Proofs

9.1 Proof of Theorem 3.1

First, remark that a procedure R satisfying the “self-consistency condition” R = {i | pi ≤
∆(i, |R|)} has a FDR equal to

FDR(R) = E

[ |R ∩H0|
|R| ∨ 1

]
=

∑

i∈H0

E

[
1{i ∈ R}

|R|

]

=
∑

i∈H0

m∑

k=1

1

k
P [pi ≤ ∆(i, k), |R| = k] , (24)

Consider now the multi-weighted step-up procedure R of Theorem 3.1. Since any step-up
procedure satisfies the “self consistency condition” (see Remark 2.1) we can use (24). From
Lemma A.1 (first statement), if |R| = k, the assertion pi ≤ w̃i(k)αk/m is equivalent to
|R′

−i| + 1 = k, where R′
−i is the step-up procedures associated to the threshold collection

∀r ≤ m − 1, ∆′(i, r) = w̃i(r + 1)α[r + 1]/m (and ∆′(i,m) = ∆′(i,m − 1)), restricted to the
null hypotheses Hj, j 6= i. Note that from the definition, R′

−i only depends on the p-values
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of (pj, j 6= i). Therefore, the FDR can be rewritten as follows:

FDR(R) =
∑

i∈H0

m∑

k=1

1

k
P [pi ≤ w̃i(k)αk/m, |R| = k]

=
∑

i∈H0

m∑

k=1

1

k
P

[
pi ≤ w̃i(k)αk/m, |R′

−i| + 1 = k
]

=
α

m

∑

i∈H0

m∑

k=1

w̃i(k)P
[
|R′

−i| + 1 = k
]

(25)

=
α

m

∑

i∈H0

m∑

k=1

wi(k)(1 − ∆′(i,m))P
[
|R′

−i| + 1 = k
]

=
α

m

∑

i∈H0

m∑

k=1

wi(k)P
[
pi > ∆′(i,m), |R′

−i| = k − 1
]
,

where we used twice the independence between pi and |R′
−i| and the fact that pi has a uniform

distribution on [0, 1] (see (1)). Now, denoting by R′ the step-up procedures associated to the
threshold collection ∆′ over the whole set of hypotheses H, Lemma A.1 (second statement)
states that pi > ∆′(i,m) ≥ ∆′(i, |R′|) implies |R′| = |R′

−i|. Therefore,

FDR(R) ≤ α

m

∑

i∈H0

m∑

k=1

wi(k)P
[
pi > ∆′(i,m), |R′| = k − 1

]

≤ α

m

∑

i∈H0

m∑

k=1

wi(k)P
[
|R′| = k − 1

]

≤ α

m

m∑

k=1

[∑

i∈H

wi(k)

]
P

[
|R′| = k − 1

]

≤ α,

because for all k,
∑m

i=1 wi(k) = m.

9.2 Proof of Theorem 3.2

First, let us prove that for any step-down procedure R with threshold collection ∆ we have:

FDR(R) ≤
∑

i∈H0

m∑

k=1

1

k
P [|R−i| = k − 1, pi ≤ ∆(i, k)] , (26)

where R−i is the step-down procedure associated to ∆ and restricted to the hypotheses of
Hj, j 6= i. This result has been implicitly proved in [12] (Section 3), using a specific non-
weighted step-down procedure. We state (26) in a more general framework. For this, we
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apply the two first points of Lemma A.2 to show that for any i ∈ H,
m∑

k=1

1

k
P [|R| = k, pi ≤ ∆(i, k)]

=

m∑

k=1

1

k

[
P [|R| = k, pi ≤ ∆(i, k − 1)] + P [|R| = k,∆(i, k − 1) < pi ≤ ∆(i, k)]

]

=

m∑

k=1

1

k
P [|R| ≥ k,∆(i, k − 1) < pi ≤ ∆(i, k)] −

m∑

k=1

[
1{k > 1}

k − 1
− 1

k

]
P [|R| ≥ k, pi ≤ ∆(i, k − 1)]

≤
m∑

k=1

1

k
P [|R−i| ≥ k − 1,∆(i, k − 1) < pi ≤ ∆(i, k)] −

m∑

k=1

[
1{k > 1}

k − 1
− 1

k

]
P [|R−i| ≥ k − 1, pi ≤ ∆(i, k − 1)]

=

m∑

k=1

1

k
P [|R−i| = k − 1, pi ≤ ∆(i, k)] .

As a consequence, the latter combined with (24) states (26). Now, considering the step-down
procedure R of Theorem 3.2, we use the independence between the p-values to show

FDR(R) ≤
∑

i∈H0

m∑

k=1

1

k
P [|R−i| = k − 1, pi ≤ ∆(i, k)]

=
α

m

∑

i∈H0

m∑

k=1

wi(k)(1 − ∆(i, k))P [|R−i| = k − 1]

=
α

m

∑

i∈H0

m∑

k=1

wi(k)P [|R−i| = k − 1, pi > ∆(i, k)] .

The third point of Lemma A.2 thus implies

FDR(R) ≤ α

m

∑

i∈H0

m∑

k=1

wi(k)P [|R| = k − 1, pi > ∆(i, k)]

≤ α

m

m∑

k=1

[ ∑

i∈H0

wi(k)

]
P [|R| = k − 1] ,

and the result follows because for all fixed k we have
∑

i∈H0
wi(k) ≤ ∑

i∈H wi(k) = m.

9.3 Proof of Theorem 3.3

Put w̃i(r) = γ−1wi(r). Remember that from the PRDS assumption and because |R| is
nonincreasing in each p-value, we get for any i ∈ H0 and for all r ∈ {1, ...,m} and 0 ≤ u ≤
u′ ≤ 1,

P [|R| ≤ r | pi ≤ u] ≤ P
[
|R| ≤ r | pi ≤ u′

]
. (27)

Using (24), we get

FDR(R) =
∑

i∈H0

m∑

k=1

1

k
P

[
|R| = k, pi ≤ αwi(k)kγ−1/m

]

=
α

γm

∑

i∈H0

m∑

k=1

wi(k)P
[
|R| = k | pi ≤ αwi(k)kγ−1/m

]
. (28)
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On the first hand, denoting w′
i = maxr{wi(r)},

∑

i∈H0

m∑

k=1

wi(k)P
[
|R| = k | pi ≤ αwi(k)kγ−1/m

]
≤

∑

i∈H0

w′
i

m∑

k=1

P
[
|R| = k | pi ≤ αwi(k)kγ−1/m

]

=
∑

i∈H0

w′
i

m∑

k=1

[
P

[
|R| ≤ k | pi ≤ αwi(k)kγ−1/m

]
− P

[
|R| ≤ k − 1 | pi ≤ αwi(k)kγ−1/m

] ]
,

so that, by using (27) and (9), the latter quantity is smaller than or equal to

∑

i∈H0

w′
i

m∑

k=1

[
P

[
|R| ≤ k | pi ≤ αwi(k)kγ−1/m

]
− P

[
|R| ≤ k − 1 | pi ≤ αwi(k − 1)(k − 1)γ−1/m

] ]

=
∑

i∈H0

w′
i ≤

m∑

i=1

w′
i =

m∑

i=1

max
r

{wi(r)}.

On the other hand, we have similarly

∑

i∈H0

m∑

k=1

wi(k)P
[
|R| = k | pi ≤ αwi(k)kγ−1/m

]

≤
∑

i∈H0

m∑

k=1

[
wi(k)P

[
|R| ≤ k | pi ≤ αwi(k)kγ−1/m

]

− wi(k)P
[
|R| ≤ k − 1 | pi ≤ αwi(k − 1)(k − 1)γ−1/m

] ]
,

≤
∑

i∈H0

m∑

k=1

[
wi(k)P

[
|R| ≤ k | pi ≤ αwi(k)kγ−1/m

]

− wi(k − 1)P
[
|R| ≤ k − 1 | pi ≤ αwi(k − 1)(k − 1)γ−1/m

] ]
+

∑

i∈H0

m∑

k=1

(wi(k − 1) − wi(k))+

= |H0| +
∑

i∈H0

m∑

k=2

(wi(k − 1) − wi(k))+ ≤ m +
m∑

i=1

m∑

k=2

(wi(k − 1) − wi(k))+

Finally, we conclude by combining (28) and the two last displays. �

Let us prove (10): from assumption (9), we have (r − 1)wi(r − 1) − rwi(r) ≤ 0 and then:

1

m

m∑

i=1

m∑

r=2

[wi(r − 1) − wi(r)]+ =
1

m

m∑

i=1

m∑

r=2

1

r
[(r − 1)wi(r − 1) − rwi(r) + wi(r − 1)]+

≤ 1

m

m∑

i=1

m∑

r=2

wi(r − 1)

r
=

m∑

r=2

1

r
.
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9.4 Proof of Theorem 3.4

Using that for all x > 0, 1
x =

∫
y≥x y−2dy and Fubini’s theorem, we get

∑

i∈H0

E

[
1{pi ≤ αwi(|R|)β(|R|)/m}

|R|

]

=
∑

i∈H0

E

[ ∫ ∞

0
y−21{y ≥ |R|}1{pi ≤ αwi(|R|)β(|R|)/m}dy

]

≤
∑

i∈H0

E

[ ∫ ∞

0
y−21{pi ≤ αwi(y)β(y)/m}dy

]
=

∑

i∈H0

∫ ∞

0
y−2

P [pi ≤ αwi(y)β(y)/m] dy

≤ α

m

∫ ∞

0

∑

i∈H0

wi(y)y−2β(y)dy ≤ α

∫ ∞

0
y−2β(y)dy,

where we used (9) in the first inequality. We conclude because
∫ ∞
0 y−2β(y)dy = 1.

9.5 Proofs for Section 4

The Proposition 4.1 is proved using the following lemma with C = αβ(r)/m:

Lemma 9.1 Suppose that the assumptions of Proposition 4.1 hold. Let S = {w = (wi)i ∈
[0,m]m | ∑m

i=1 wi = m} and let be C a positive constant such that C < m1/m. Then the
function

Λ : w = (wi)i ∈ S 7→
∑

i∈H1

Fi(wiC),

has a unique maximum given by w⋆
i = C−1f−1

i

(
y⋆

)
1{i ∈ H1}, where y⋆ = Ψ−1(mC) and for

any y ∈ (ℓ−, ℓ+), Ψ(y) =
∑

j∈H1
f−1

j (y).

Remark 9.2 All the quantities defined in the above theorem exist : for each i, the function
fi : (0, 1) → R

+ is continous decreasing, so that f−1
i is well defined, decreasing and one to

one from (ℓ−, ℓ+) to (0, 1). Therefore, Ψ is continous decreasing from (ℓ−, ℓ+) to (0,m1),
so that Ψ−1 exists and is one to one from (0,m1) to (ℓ−, ℓ+). Hence, from assumption
mC < m1, y⋆ = Ψ−1(mC) is well defined. We can finally check that the w⋆

i ’s sum to m:∑m
i=1 w⋆

i = C−1
∑

i∈H1
f−1

i

(
y⋆

)
= C−1Ψ(y⋆) = C−1Cm = m.

Proof of Lemma 9.1. Let us solve the maximization problem of Λ under the linear con-
straint

∑m
i=1 wi = m. Trivially, we can restrict the study on the set S1 =

{
w = (wi)i ∈

[0, C−1]H1

∣∣ ∑
i∈H1

wi = m
}
, by letting wi = 0 for all i ∈ H0 and because Fi(wiC) = 1 for

any wi > C−1. Following the constrained Lagrange multiplier method, the problem is to
maximize in (λ,w) ∈ R × S1 the function:

L(λ,w) =
∑

i∈H1

Fi(wiC) − λ

( ∑

i∈H1

wi − m

)
.

First assume that (wi)i is a critical point, i.e. that for each i: ∂L
∂wi

(λ,w) = Cfi(wiC)−λ = 0,

so that wi = C−1f−1
i (λC−1). Then, λ is chosen such that

∑
i wi = m i.e. Ψ(λC−1) = mC,

which gives λC−1 = Ψ−1(mC) and we find that the only possible critical point is ∀i, wi = w⋆
i .
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To conclude, it is sufficient to prove that (w⋆
i )i is a maximum. The latter holds because for

each i, fi is decreasing : ∂2L
∂w2

i

(λ,w) = C2f ′
i(wiC) < 0. �

The proof of Proposition 4.2 is a direct consequence of the next lemma, which gives a
sufficient condition to provide that pi,n has a c.d.f. asymptotically equal to the left-hand side
of (13).

Lemma 9.3 Suppose that condition (15) of Proposition 4.2 holds, then we have

ζi,n(Si,n)
θi,n

 Φ

(
Z + hi

τ ′
i(0)

σi(0)

)
,

where Z ∼ N (0, 1) and Φ is the standard Gaussian distribution tail. In particular, under the
local alternative θn,i = hi/

√
n, the c.d.f. of pi,n converge (uniformly) to the function (13)

with µi = hi
τ ′

i(0)
σi(0)

.

Note that the latter Lemma is similar to Theorem 14.7 of [26], which was stated to study
the asymptotic relative efficiency of tests.

Proof of Lemma 9.3. Put Zn =
√

n
Si,n−τi(0)

σi(0)
and denote by ξn(t) = PHi

(Zn ≥ t) the

upper tail funtion of Zn under the null. From (15) with h = 0, we get that Zn converges in
distribution under the null to a standard Gaussian variable, so that ξn converge to Φ uniformly

over R. Moreover, since Zn =
σi(θi,n)
σi(0)

√
n

Si,n−τi(θi,n)
σi(θi,n) +

√
n

τi(θi,n)−τi(0)
σi(0)

, we have from (15)

and Slutsky lemma, Zn
θi,n

 Z + hi
τ ′

i
(0)

σi(0)
, where Z ∼ N (0, 1). Therefore, since ξn converge

uniformly to Φ, we apply Lemma A.3 and conclude ζi,n(Si,n) = ξn(Zn)
θi,n

 Φ

(
Z + hi

τ ′

i
(0)

σi(0)

)
.

�

Appendix

A Technical lemmas

The two following lemmas are easy to check from the definition of a step-up and a step-down
procedure:

Lemma A.1 Let R be a step-up procedure associated to a threshold collection ∆ . For any i,
denote by R′ the step-up procedure associated to the threshold collection ∆′(i, r) = ∆(i, r + 1)
(∆′(i,m) = ∆(i,m)). Denote by R′

−i the same step-up procedure but restricted to the null
hypotheses Hj, j 6= i. Then we get for any set of p-values:

1. i ∈ R ⇔ R = R′
−i ∪ {i} ⇔ pi ≤ ∆′(i, |R′

−i|)

2. i /∈ R′ ⇔ R′ = R′
−i ⇔ pi > ∆′(i, |R′|)
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Lemma A.2 Let R be a step-down procedure associated to a threshold collection ∆ . For any
i, denote by R−i the same step-down procedure but restricted to the null hypotheses Hj , j 6= i.
Then we get for any set of p-values:

1. |R| ≥ k and pi > ∆(i, k − 1) ⇒ |R−i| ≥ k − 1

2. |R−i| ≥ k − 1 and pi ≤ ∆(i, k − 1) ⇒ |R| ≥ k

3. |R−i| = k − 1 and pi > ∆(i, k) ⇒ |R| = |R−i|

Lemma A.3 Let fn, f : R → R such that supx∈R |fn(x) − f(x)| → 0, suppose that f is
continuous on R and that fn is measurable for all n. If Zn  Z, then fn(Zn)  f(Z).

B FDR bounds for LSU(W) and LSD(W)

B.1 Step-up case

Lemma B.1 Assume the p-values independent and consider the situation where only two
true hypotheses are tested, that is, H = {1, 2} = H0. Then, the step-up procedure R using a
given threshold collection (∆(i, r))i∈{1,2},r∈{1,2} has a FDR equal to

P [|R| > 0] = ∆(1, 1) + ∆(2, 1) + ∆(1, 2)∆(2, 2) − ∆(1, 2)∆(2, 1) − ∆(1, 1)∆(2, 2).

In particular, when m = m0 = 2, the (non-corrected) LSU(W) procedure has a FDR
equal to α+α2(1−w1(2))(w1(2)−w1(1)), which has a maximum equal to α+α2/4, attained
e.g. for the weight matrix

W =

(
0 0.5
2 1.5

)
.

B.2 Step-down case

Lemma B.2 Assume the p-values independent. Then the (non-corrected) LSD(W) proce-
dure controls the FDR at level α in the two following cases:

(i) when all the hypotheses are true, that is H0 = H,

(ii) when m = 2 (and m0 is unspecified).

To prove (i), we easily check that, when all the hypotheses are true, the FDR of LSD(W)
is 1 − P [|L∆(1)| = 0] and is thus equal to the FDR of LSD(w(1)), which is equal to α from
standard results on uni-weighted procedure (see the beginning of Section 3). For point (ii),
using point (i), we just have to check the case m0 = 1 . And this trivially holds from (25)
(which also holds in the step-down case) because all the weights are smaller than m = 2.
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