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Abstract. We document the calibration of the local volatility in a framework similar to Coleman, 
Li and Verma. The quality of a surface is assessed through a functional to be optimized; the 
specificity of the approach is to separate the optimization (performed with any suitable 
optimization algorithm) from the computation of the functional where we use an adjoint (as in 
L. Jiang et. al.) to obtain an approximation; moreover our main calibration variable is the implied 
volatility (the procedure can also accommodate the Greeks). The procedure performs well on 
benchmarks from the literature and on FOREX data. 
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1  Motivation: the local volatility surface 

 

Let us consider a security tS  (e.g. a stock, a FOREX rate, etc.) whose price, under the 

risk-neutral [Musiela and Rutkowski(2005)],[Hull(2006)] measure, follows the stochastic 
differential equation   

 ttt dWdttrSdS )(=/  (1) 

 with )(tr  being the time dependent risk-free rate and   the volatility (we will make explicit its 

dependence latter) and tW  a Brownian motion. 

Les us consider (for now) plain vanilla call options contingent on tS  and recall that when 

the volatility (and the discount rate r ) are constant the Black-Scholes model [Black and 
Scholes(1973)] gives a closed formula for the price ),( tSC  of such claims. Is is standard to note 

that the reverse is also true, i.e., provided r  is constant and known, from the observed market 

prices denoted market

l
T
l
KC ,  (with strikes lK  and maturities lT , Ll 1,...,= ) one can find (i.e. calibrate) 

the unique  implied volatilities I

l
T
l
K ,  that, when introduced in the Black-Scholes formulae, 

match the observed market prices market

l
T
l
KC , . However the implied volatilities I

l
T
l
K ,  thus obtained 

are not the same for all lK  and lT  (the  smile effect) which is inconsistent with the initial model. 

To address this issue it was independently proposed by Rubinstein [Rubinstein(1994)], Dupire 
[Dupire(1994)] and Derman and Kani [Derman and Kani(1994)] to take the volatility   as 
depending on the time and the security price S  : ),(= tS ; the model is named local 



volatility. Historically the proposals in [Rubinstein(1994)],[Derman and Kani(1994)] build on the 
Cox-Ross-Rubinstein binomial tree [Cox et al.(1979)] and are described as  implied trees. 

Let us make clear that we do not discuss here the local volatility model itself nor its 
dynamics. We only see the local volatility as a way to express the non-arbitrage relationships 
between the set of derivatives contracts contingent on the same (set of) underlying instruments 
(much similar to the the way one uses the  risk neutral probability measure as a tool to compute 
prices but does not necessarily want to assign it to any real world probabilities). 

Matching the observed prices, i.e. calibrating the local volatility ),( tS  is not 

straightforward as no closed formula exists to express the dependence C . The problem 
becomes now an inverse problem [Bouchouev and Isakov(1997)],[Bouchouev and Isakov(1999)]. 

When the number of quoted market prices market

l
T
l
KC ,  is large enough (i.e. ll TK ,  cover well 

the range of S  and t ) the local volatility can be expressed using the Dupire formula 
[Dupire(1994)],[Hull(2006)], [Achdou and Pironneau(2005)] or different asymptotics [Berestycki 
et al.(2002)]. However, when only a few prices are known, the Dupire formula is less effective 
and other methods have to be used [Avellaneda et al.(1997)Avellaneda, Friedman, Holmes, and 
Samperi],[Bodurtha and Jermakyan(1999)]. Among those, Coleman, Li & Verma [Coleman et 
al.(2001)] introduced a parametric procedure which we refine in this contribution. Further, L. 
Jiang, and co-authors established a mathematical grounding for formulating this problem as a 
control problem [Jiang et al.(2003)]; we will retain in this paper the adjoint state technique that 
we adapt to take into account the constraints (see [Lagnado and Osher(1997)],[Lagnado and 
Osher(1998)] for related endeavors). Our procedure combines the approaches above and is 
accelerated by the use of an approximation of the functional through the use of the adjoint (7). 
A particularity of the procedure is to calibrate directly the implied volatility (and can 
accommodate any Greeks); this choice enhance not only the efficiency of the numerical 
procedure but, in some extreme cases, its selection of adequate local surface as was confirmed 
in numerical experiments. This approach (rather natural since option traders often only quote 
the implied volatility and not the price) is especially useful in markets that heavily rely on Greeks 
(as is the case in the FOREX market that quotes  risk reversals which involve Deltas and the 
implied volatility. Further, since in general only limited data is available, the local surface is non-
unique: to eliminate improper candidates we set lower and upper bounds on the volatility. The 
resulting procedure is stable with respect to the number of price information used and in 
particular no interpolation is required to fill this information when missing. 

 

2  Adjoint formulas and the cost functional 
 

Under the local volatility model, the price ),( tSC  of a derivative contract on tS  with 

pay-off )(Sh  at maturity Tt = , will satisfy the (Black-Scholes) equation [Hull(2006)] for all 

0S  and ][0,Tt :   

 0=
2

22

rCC
S

CrSC SSSt 


 (2) 

 )(=)=,( ShTtSC  (3) 

 



 

Remark 1 Similar considerations apply if the security tS  distributes dividends at a known 

proportional rate )(tq  or if tS  is a FOREX spot (in this case r  is the domestic discount rate and 

)(tq  is the foreign rate).  

 

The price at 0=t  of the contract is 0)=,( 0= tSC t ; recall that the pay-off of an European 

call of strike K  is  )(=)( KSSh  (with the notation ,0}{max= xx ). Note the retrograde 

nature of the equation (2)-(3). 
We will use the technique of the adjoint state and view the price as a implicit functional 

of   (here   is the Dirac operator):   

 .>),(,=<)=0;=(
0

=0,=0 tSCSStC SSt  (4) 

 Then the variation 
)( 2

C
 of C  with respect to 2  (and respectively the variation with respect 

to  ) will be   

 ,)(
2

=
)(

2

2





C

SC
SS  (5) 
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 Here the adjoint state   is the solution of:   

 0=)
2

()(
22




 r
S

rS SSSt   (7) 

 
0

=0,==0)=,( SSttS   (8) 

 

Same technique works for any other quantity dependent on the price. A very important 

example of such quantity is the implied volatility, denoted here I . Recall that an explicit 

formula links the price to the implied volatility )(= CII   and as such 


















 C

C

II

= . We 

recognize in the term 
C

I




 the inverse of the Black-Scholes vega, that we will denote I . We 

obtain   

 .
1

=










 C
I

I

 (9) 

 

 

Remark 2 Both problems (2) and (7) can be solved e.g. through a Crank-Nicholson finite-
difference scheme [Hull(2006)],[Andersen and Brotherton-Ratcliffe(1998)]; is is best to use for (7) 
the numerical adjoint of (2).  

 To illustrate the nature of this gradient we display an example in Figure 1 where we 

note two singularities appearing in )=0,=( 0SSt  (from eqn (8)) and )=1,=( KSt  (from 



 )( KSSS ) (see also [Avellaneda et al.(1997)Avellaneda, Friedman, Holmes, and Samperi] for 

similar conclusions). 
 

   

Figure  1: Gradient 
)( 2

C
 (see eqn. (5)) of the price C  of a derivative (e.g. a plain 

vanilla call) with respect to the volatility surface squared 2 . Note the two singularities at the 
initial time (around the spot price) and at the expiration around the strike. These singularities 
prevent the direct use of any gradient method otherwise the resulting surface will be singular. 

   
Since in general several option prices (or Greeks) are available and have to be accounted 

in the calibration, we introduce a cost functional (depending on  ) which is the sum of relative 
errors of the prices computed with a given   and the market prices. Moreover, depending on 
the market (e.g. the FOREX market quotes risk-reversals in terms of implied volatility and deltas 
directly) one would also want to fit the implied volatility. Of course, if a perfect calibration is 
achieved, both results will give the same implied volatility; in practice fitting the implied 
volatility in addition or instead of the prices give better numerical stability of the procedure. 
Numerical tests (not shown here) display, for the FOREX market, a clear improvement in the 
calibration quality when the implied volatilities are used instead of just prices. 

The cost functional so far is   
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 Here marketI

l
T
l
K

;

,  is the market implied volatility while );( ll

I TK  is the implied volatility 

corresponding to the local volatility  ; 1  and 2  are some positive weights. 

Repeated application of the chain rule and the formulas (6) and (9) allow to compute the 



variation 


 eJ  of the eJ  with respect to  . Note that for each index l  one needs to solve a PDE 

for the price lC  and a corresponding PDE for the adjoint l  and use them as in (6). 

 

Remark 3 Other forms of the cost functional can also be treated, for instance the distances   

 .))(0;( 2

,0

1=

market

l
T
l
Kl

L

l

CSC   (11) 

 or, when bid/ask quotes are available, i.e. ],[)(0; ,,0

ask

l
T
l
K

bid

l
T
l
Kl CCSC   one can use as in [Coleman 

et al.(2001)]   
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Remark 4 A naive approach is to use a standard optimization algorithm [Bonnans et al.(2006)]; 
for instance, a fixed step ( 0> ) gradient algorithm would read:   

 ).(= 11 



 n

e
nn

J



  (13) 

 In this case the singularities of 


 eJ  will propagate into the solution which will have a full list of 

singularities at )(0, 0S  and ),( ll KT , Ll 1,...,= . Such properties are not natural for the local 

volatility surface ),( St  and the inversion procedure has to address them. Note that obtaining 

a smoother local surface is possible because of its underdertermination : in the extreme 

situation 1=L  only one price market

l
T
l
KC ,  is available which brings a limited information on the 

volatility surface that will not be unique; in this case the most natural volatility surface will a 
constant, equal to the Black-Scholes implied volatility.  

 

A traditional choice to avoid singularities and address the non-uniqueness is to 
parametrize the surface ),( tS  [Achdou and Pironneau(2005)],[Coleman et al.(2001)]; the 

result will be the optimal surface in the class. 
In order to ensure smoothness we add to the cost functional terms that avoid large 

variations of   by penalizing its gradient with respect to S  and t  ( 3  and 4  are positive 

weights):   
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 (recall that dxxFxF
x
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)(=)( 22

2  ). The final cost functional is   
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3  Surface space and the optimisation procedure 

  
Continuing the arguments of the previous section, we give here a possible choice to 

describe the space of available surface shapes. We consider continuous affine functions with 

degrees of freedom being the values on some grid ),=,=( 00 tjttSiSS ji  , Ii  , Jj  . 

We denote by ),( tSfij  the unique piecewise linear and continuous function that has value of 1  

at ),( ji St , and is zero everywhere else. The surfaces are linear combinations of the shapes 

),( tSfij : 

 ).,(=),( tSftS ijij   (16) 

  
The advantage of linear interpolation is that the shape functions have nice localisation 

properties: the scalar product of two such functions (or their gradient) is zero except if they are 

neighbors i.e. matrices (22)-(23) are sparse. Also setting constraints e.g. mintS  >),(  for all 

tS,  is equivalent to asking that all ij  are larger than min . 

However we also tested cubic splines interpolation and it performed equally satisfactory. 
 

   
Figure  2: The local volatility ),( tS  is sought after as a linear combination of basic 

shapes ),( tSfij : ijijij
ftS  =),( . A possible option is to take ),( tSfij  as the (unique) linear 

interpolation which is zero except in some point ),( ji tS  (part of a grid in S  and t ). We display 

here such a shape. 



   
 

 

 

 

 

 

   
Figure  3: Local volatility surface of the S&P 500 index as recovered from the published 

European call options data [Andersen and Brotherton-Ratcliffe(1998)],[Coleman et al.(2001)]; 
spot price is $590 ; discount rate 6%=r , dividend rate 2.62% . The blue marks on the surface 

indicate the option prices that were used to invert i.e. the lK  and lT  ( 70=L ). After 10  

iterations the prices are recovered up to 44. e  and the implied volatility up to 0.18% . Setting 

regularization parameters 3  and 4  to smaller values give better fit but less smooth surfaces.  

   
 

Remark 5 A possible procedure would be to optimize the cost functional (15) expressed as a 

function of the coefficients ij  of   in (16). But this dependence may be highly nonlinear and 

the resulting optimization will have many unwanted local extrema.  
 

Chain rule gives the gradient of any derivative contract ),( tSC  (among lC , Ll 1,...,= ) 

with respect to variations of the local surface   inside the admissible surface space. This is in 

fact just a matter of projecting the exact gradient (6) onto each shape ijf . We obtain an 



approximation formula around the current local volatility  :   
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Same works for the implied volatility   
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In discrete formulation the cost functional will employ the matrices   
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 for the first part of (10) and   
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 for the second part. 

Note that (18) and (17) already provide (some) second order information for eJ ; also 

note that for ),(= tSfijijij
   the smoothness terms (14) can be written as   

 >)(,<>)(,< 43   SS QQ  (21) 
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A last ingredient involves bounds on the local volatility surface; indeed, it seems natural that the 
local volatility cannot be negative. Even when this is the case, local volatilities with very low 
values (e.g. 3% !) are obviously not realistic. Enforcing constraints on the local volatilities is a 
very important step towards selecting meaningful candidates. A choice that is consistent with 
other observations in the literature [Rubinstein(1994)],[Derman and Kani(1994)] is to ask   

 withSt maxmin   ),(  
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,

;

, LlLl marketI
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l
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l
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3.1  Optimization procedure 

 

The algorithm operates as follows: first we choose as initial guess 0  to be the (projection on 

the space }{ ijfVect ) of the implied volatility surface (eventually corrected to be between 

bounds min  and max ). One can also use more specific formulas relating implied and local 



volatility see e.g. [Gatheral(2006)] formula 1.10 page 13. 
The iterative procedure operates at each step in the following order: 
1/ computes the gradient of the price and implied volatility with respect to variations of 

  in the admissible space i.e. formula (17) and (18); 
2/ constructs and solves the (quadratic) optimization problem   

  



t

tS

CT

maxmin

wQQMM 


>)(,<
2

1
min 4321  (25) 

  
3/ update the local volatility  ; if the replication error eJ  is too high return in 1/ 

otherwise exit. 
In practice very few cycles 1/-3/ are necessary. We tested on several indices and in the 

FOREX markets and the numbers varied between 5 and 10 cycles. 
 

Remark 6 The quadratic problem (25) can be solved by any suitable algorithm; for instance 
Matlab uses by default a subspace trust-region method based on the interior-reflective Newton 
method described in [Coleman and Li(1996)]. We also tested a simple projected gradient which 
performed very satisfactory. The advantage of the approach is precisely to separate the 
optimization itself from the formulation of the problem.  

 

 

Remark 7 Should a bid/ask functional (e.g. as in (12)) be used then the problem will not be 

quadratic any more but (17) is still used; the constraints arise from the requirement that k  be 

in ],[ maxmin  ; additional constraints, in a "trust-region" style, can be put to remain in a region 

where the approximation (17) holds.  
 
 

4  Results and conclusions 

 
A specificity of the approach is that instead of a unique optimization in the parametric 

space we perform one optimization around each current point; this reduces the number of 
computations of the PDE (2). But, equally importantly, the separation between the optimization 
and the approximation of the functional provides flexibility in the information that can be fitted, 
e.g. we can readily accommodate any derivative contract (as soon as an gradient formula like (5) 
exists for it; when it does not one can use Malliavin calculus) such as options on futures, 
strategies, structured products etc. This allows for instance to be very flexible in the information 
available and to ignore some prices should them not be available or if one wants to arbitrage 
against them (in contrast with the pioneering approaches [Rubinstein(1994)], [Dupire(1994)], 
[Derman and Kani(1994)] that need a uniform set of data to perform the inversion); in particular 
no interpolation is required to fill this information when missing. 

The use of the gradient not in an optimization procedure but to obtain an approximation 
of the functional around the current point is a acknowledgement of the fact that the main 
difficulty is not finding a solution but choosing one among all compatible surfaces (i.e. ill-
posedness). 



We noted that in practice the implied volatility term in the cost functional i.e.  M2  in 

(25) is more helpful to orient the optimization procedure than the price term CM1 . In fact in 

all cases we tested putting 02   and 0=1  gave better results than the reverse. 

We used throughout a grid with 24=I  values of S  and 13=J  values of t  i.e. 312  

shapes ijf , cf. eqn. (16). 

Let us now iterate through several benchmarks from the literature; we begin with the 
European call data on the S& P index from [Andersen and Brotherton-Ratcliffe(1998)],[Coleman 
et al.(2001)]. Similar to [Andersen and Brotherton-Ratcliffe(1998)], [Coleman et al.(2001)], we 
use only the options with no more than two years maturity in our computation. The initial 
index, interest rate and dividend rate are the same. We first checked (not shown) that for 1=L  
the problem recovers the implied volatility; it did so with only one cycle. When we took all the 

70=L  data the resulting local volatility surface is given Figure 3. 
We next moved to a FOREX example (from [Avellaneda et al.(1997)Avellaneda, 

Friedman, Holmes, and Samperi]) where synchronous option prices (based on bid- ask 
volatilities and risk-reversals) are provided for the USD/DEM 20,25 and 50 delta risk-reversals 
quoted on August 23rd 1995. The results in Figure 4 show a very good fit quality with only five 
cycles 1/-3/. 

 

We remain in the FOREX market and take as the next example 10,25 and 50-Delta risk-
reversal and strangles for USD/JPY dated March 18th 2008. We recall that e.g. a 25 Delta risk 
reversal contract consists in a long position in a call option with delta= 0.25  and a short position 
in a put option with delta = 0.25 ; the contract is quoted in terms of the difference of the 
implied volatilities of these two options. Note that at no moment the price of the options 
appear in the quotes. In order to set the input implied surface we used 10  and 25  Delta 
strangles which are quoted as the arithmetic mean of the implied volatilities of the two options 
above. Of course, from this data one can next recover the implied volatilities of each option, 
then all other characteristics. We present in Figure 5 the implied and the calibrated local 
volatility from the data in Tables 1,2 and 3. The procedure was also tested (not shown here) on 
other currencies pairs (GBP, CHF, EUR, KRW, THB, ZAR all with respect to USD) and performed 
well. 



 

 

 
Figure  4: Top: implied volatility surface of the USD/DEM rate from [Avellaneda et 

al.(1997)Avellaneda, Friedman, Holmes, and Samperi]; blue marks on the surface represent the 
available prices (to be matched). Bottom: local volatility surface as recovered from quoted 20,25 
and 50-delta risk-reversals [Avellaneda et al.(1997)Avellaneda, Friedman, Holmes, and Samperi]; 

(mid) spot price is 1.48875 ; USD  discount rate 5.91%=r , and DEM  rate 4.27% . The blue 

marks on the surface indicate the option prices that were used to invert i.e. the lK  and lT  

( 30=L ). After 5  iterations the prices are recovered up to 43. e  (below the PDE resolution) 
and the implied volatility up to 0.11%  (below the bid/ask spread).    



 

  
  Delta 0,1 0,25 0,5 0,75 0,9  

 Days to 
Expiry 

      

 7 102,1251 99,3063 96,9952 95,1694 93,6024 

31 107,8654 101,6879 96,9690 93,5651 90,8528 

59 111,7766 103,1709 96,9199 92,5985 89,1782 

92 114,8469 104,2600 96,8815 91,9514 88,0360 

184 121,3632 106,3836 96,7118 90,6389 85,9581 

365 130,2719 108,8945 96,4476 89,1926 83,6142 

  
Table  1: Strikes of the USD/JPY data derived from March 18th 2008 10,25 and 50 Delta 

risk-reversals and stradles corresponding to results in Figure 5.  
 

  
  Delta 0,1 0,25 0,5 0,75 0,9  

 Days to 
Expiry 

      

 7 28,650% 24,888% 21,925% 20,113% 19,850% 

31 27,875% 23,650% 20,150% 17,800% 17,075% 

59 26,875% 22,400% 18,750% 16,350% 15,675% 

92 25,525% 20,950% 17,275% 14,900% 14,325% 

184 23,800% 19,013% 15,275% 12,888% 12,200% 

365 22,000% 16,913% 13,100% 10,788% 10,100% 

  
Table  2: Implied volatilities of the USD/JPY data derived from March 18th 2008 10,25 

and 50 Delta risk-reversals and stradles corresponding to results in Figure 5.  
 

  
  Delta 0,1 0,25 0,5 0,75 0,9  

 Days to 
Expiry 

      

 7 0,18045 0,49350 1,16092 2,19256 3,47666 

31 0,36338 0,97079 2,20858 4,01619 6,18843 

59 0,47829 1,25624 2,80961 5,04651 7,77740 

92 0,56290 1,45728 3,21362 5,71523 8,84255 

184 0,73105 1,84665 3,97784 6,94374 10,64520 

365 0,93469 2,28318 4,76650 8,17769 12,57431 

  
Table  3: Premiums of the USD/JPY data derived from March 18th 2008 10,25 and 50 

Delta risk-reversals and stradles corresponding to results in Figure 5.  
   



 

  

  
Figure  5: Top: implied volatility surface of the USD/JPY rate from Tables 1,2 and 3); 

marks on the surface represent the available prices (to be matched). Bottom: local volatility 
surface as recovered from quoted 10,25 and 50-delta risk-reversals and stradles; (mid) spot 

price is 96.98; JPY  discount rate was set to 89%.0=JPYr , and 53%.2=USDr . The blue marks 

on the surface indicate the option prices that were used to invert i.e. the lK  and lT  ( 30=L ). 

After 10 iterations the prices are recovered up to 45. e  and the implied volatility up to 0.7% .  
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