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proxy

Abstract

We document the calibration of the local volatility in a frame-

work similar to Coleman, Li and Verma. The quality of a surface is

assessed through a functional to be optimized; the specificity of the

approach is to separate the optimization (performed with any suitable

optimization algorithm) from the computation of the functional where

we use an adjoint (as in L. Jiang et. al.) to obtain an approximation;

moreover our main calibration variable is the implied volatility (the

procedure can also accommodate the Greeks). The procedure per-

forms well on benchmarks from the literature and on FOREX data.

Keywords: calibration, local volatility, implied volatility, Dupire

formula, adjoint

1 Motivation: the local volatility surface

Let us consider a security St (e.g. a stock, a FOREX rate, etc.) whose price,

under the risk-neutral [Musiela and Rutkowski, 2005, Hull, 2006] measure,

follows the stochastic differential equation

dSt/St = r(t)dt + σdWt (1)



with r(t) being the time dependent risk-free rate and σ the volatility (we will

make explicit its dependence latter) and Wt a Brownian motion.

Les us consider (for now) plain vanilla call options contingent on St and

recall that when the volatility (and the discount rate r) are constant the

Black-Scholes model [Black and Scholes, 1973] gives a closed formula for the

price C(S, t) of such claims. Is is standard to note that the reverse is also

true, i.e., provided r is constant and known, from the observed market prices

denoted Cmarket
Kl,Tl

(with strikes Kl and maturities Tl, l = 1, ..., L) one can find

(i.e. calibrate) the unique implied volatilities σI
Kl,Tl

that, when introduced

in the Black-Scholes formulae, match the observed market prices Cmarket
Kl,Tl

.

However the implied volatilities σI
Kl,Tl

thus obtained are not the same for

all Kl and Tl (the smile effect) which is inconsistent with the initial model.

To address this issue it was independently proposed by Rubinstein [Rubin-

stein, 1994], Dupire [Dupire, 1994] and Derman and Kani [Derman and Kani,

1994] to take the volatility σ as depending on the time and the security

price S : σ = σ(S, t); the model is named local volatility. Historically the

proposals in [Rubinstein, 1994, Derman and Kani, 1994] build on the Cox-

Ross-Rubinstein binomial tree [Cox et al., 1979] and are described as implied

trees.

Let us make clear that we do not discuss here the local volatility model

itself nor its dynamics. We only see the local volatility as a way to express
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the non-arbitrage relationships between the set of derivatives contracts con-

tingent on the same (set of) underlying instruments (much similar to the the

way one uses the risk neutral probability measure as a tool to compute prices

but does not necessarily want to assign it to any real world probabilities).

Matching the observed prices, i.e. calibrating the local volatility σ(S, t)

is not straightforward as no closed formula exists to express the dependence

σ → C. The problem becomes now an inverse problem [Bouchouev and

Isakov, 1997, 1999].

When the number of quoted market prices Cmarket
Kl,Tl

is large enough (i.e.

Kl, Tl cover well the range of S and t) the local volatility can be expressed

using the Dupire formula [Dupire, 1994, Hull, 2006, Achdou and Pironneau,

2005] or different asymptotics [Berestycki et al., 2002]. However, when only a

few prices are known, the Dupire formula is less effective and other methods

have to be used [Avellaneda et al., 1997, Bodurtha and Jermakyan, 1999].

Among those, Coleman, Li & Verma [Coleman et al., 2001] introduced a para-

metric procedure which we refine in this contribution. Further, L. Jiang, and

co-authors established a mathematical grounding for formulating this prob-

lem as a control problem [Jiang et al., 2003]; we will retain in this paper the

adjoint state technique that we adapt to take into account the constraints

(see [Lagnado and Osher, 1997, 1998] for related endeavors). Our procedure

combines the approaches above and is accelerated by the use of an approxi-
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mation of the functional through the use of the adjoint (7). A particularity

of the procedure is to calibrate directly the implied volatility (and can ac-

commodate any Greeks); this choice enhance not only the efficiency of the

numerical procedure but, in some extreme cases, its selection of adequate

local surface as was confirmed in numerical experiments. This approach

(rather natural since option traders often only quote the implied volatility

and not the price) is especially useful in markets that heavily rely on Greeks

(as is the case in the FOREX market that quotes risk reversals which involve

Deltas and the implied volatility. Further, since in general only limited data

is available, the local surface is non-unique: to eliminate improper candidates

we set lower and upper bounds on the volatility. The resulting procedure is

stable with respect to the number of price information used and in particular

no interpolation is required to fill this information when missing.

2 Adjoint formulas and the cost functional

Under the local volatility model, the price C(S, t) of a derivative contract

on St with pay-off h(S) at maturity t = T , will satisfy the (Black-Scholes)

equation [Hull, 2006] for all S ≥ 0 and t ∈ [0, T ]:

∂tC + r∂SC +
σ2S2

2
∂SSC − rC = 0 (2)

C(S, t = T ) = h(S) (3)

6



Remark 1 Similar considerations apply if the security St distributes divi-

dends at a known proportional rate q(t) or if St is a FOREX spot (in this

case r is the domestic discount rate and q(t) is the foreign rate).

The price at t = 0 of the contract is C(St=0, t = 0); recall that the pay-

off of an European call of strike K is h(S) = (S − K)+ (with the notation

x+ = max{x, 0}). Note the retrograde nature of the equation (2)-(3).

We will use the technique of the adjoint state and view the price as a

implicit functional of σ (here δ is the Dirac operator):

C(t = 0; S = S0) =< δt=0,S=S0
, C(S, t) > . (4)

Then the variation δC
δ(σ2)

of C with respect to σ2 (and respectively the varia-

tion with respect to σ) will be

δC

δ(σ2)
=

S2

2
(∂SSC)χ, (5)

δC

δσ
= 2σ

S2

2
(∂SSC)χ. (6)

Here the adjoint state χ is the solution of:

∂tχ + ∂S(rSχ) + ∂SS(
σ2S2

2
χ) + rχ = 0 (7)

χ(S, t = 0) = δt=0,S=S0
(8)

Same technique works for any other quantity dependent on the price. A

very important example of such quantity is the implied volatility, denoted
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here σI . Recall that an explicit formula links the price to the implied volatil-

ity σI = σI(C) and as such ∂σI

∂σ
= ∂σI

∂C
∂C
∂σ

. We recognize in the term ∂σI

∂C
the

inverse of the Black-Scholes vega, that we will denote νI . We obtain

∂σI

∂σ
=

1

νI

∂C

∂σ
. (9)

Remark 2 Both problems (2) and (7) can be solved e.g. through a Crank-

Nicholson finite-difference scheme [Hull, 2006, Andersen and Brotherton-

Ratcliffe, 1998]; is is best to use for (7) the numerical adjoint of (2).

To illustrate the nature of this gradient we display an example in Figure 1

where we note two singularities appearing in (t = 0, S = S0) (from eqn (8))

and (t = 1, S = K) (from ∂SS(S − K)+) (see also [Avellaneda et al., 1997]

for similar conclusions).

Since in general several option prices (or Greeks) are available and have to

be accounted in the calibration, we introduce a cost functional (depending

on σ) which is the sum of relative errors of the prices computed with a

given σ and the market prices. Moreover, depending on the market (e.g.

the FOREX market quotes risk-reversals in terms of implied volatility and

deltas directly) one would also want to fit the implied volatility. Of course,

if a perfect calibration is achieved, both results will give the same implied

volatility; in practice fitting the implied volatility in addition or instead of

the prices give better numerical stability of the procedure. Numerical tests
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(not shown here) display, for the FOREX market, a clear improvement in

the calibration quality when the implied volatilities are used instead of just

prices.

The cost functional so far is

η1

L
∑

l=1

(

Cl(0; S0)

Cmarket
Kl,Tl

− 1

)2

+ η2

L
∑

l=1

(

σI(Kl; Tl)

σI;market
Kl,Tl

− 1

)2

. (10)

Here σI;market
Kl,Tl

is the market implied volatility while σI(Kl; Tl) is the implied

volatility corresponding to the local volatility σ; η1 and η2 are some positive

weights.

Repeated application of the chain rule and the formulas (6) and (9) allow

to compute the variation δJe

δσ
of the Je with respect to σ. Note that for each

index l one needs to solve a PDE for the price Cl and a corresponding PDE

for the adjoint χl and use them as in (6).

Remark 3 Other forms of the cost functional can also be treated, for in-

stance the distances
L
∑

l=1

(Cl(0; S0) − Cmarket
Kl,Tl

)2. (11)

or, when bid/ask quotes are available, i.e. Cl(0; S0) ∈ [Cbid
Kl,Tl

, Cask
Kl,Tl

] one can

use as in [Coleman et al., 2001]

L
∑

l=1

[

(Cl(0; S0) − Cbid
Kl,Tl

)+

]2
+
[

(Cask
Kl,Tl

− Cl(0; S0))+

]2
. (12)
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Remark 4 A naive approach is to use a standard optimization algorithm [Bon-

nans et al., 2006]; for instance, a fixed step (ρ > 0) gradient algorithm would

read:

σn+1 = σn − ρ
∂Je

∂σ
(σn+1). (13)

In this case the singularities of ∂Je

∂σ
will propagate into the solution which will

have a full list of singularities at (0, S0) and (Tl, Kl), l = 1, ..., L. Such prop-

erties are not natural for the local volatility surface σ(t, S) and the inversion

procedure has to address them. Note that obtaining a smoother local sur-

face is possible because of its underdertermination : in the extreme situation

L = 1 only one price Cmarket
Kl,Tl

is available which brings a limited information

on the volatility surface that will not be unique; in this case the most natural

volatility surface will a constant, equal to the Black-Scholes implied volatility.

A traditional choice to avoid singularities and address the non-uniqueness

is to parametrize the surface σ(S, t) [Achdou and Pironneau, 2005, Coleman

et al., 2001]; the result will be the optimal surface in the class.

In order to ensure smoothness we add to the cost functional terms that

avoid large variations of σ by penalizing its gradient with respect to S and t

(η3 and η4 are positive weights):

η3

∥

∥

∥

∥

∂σ(S, t)

∂S

∥

∥

∥

∥

2

L2

S,t

+ η4

∥

∥

∥

∥

∂σ(S, t)

∂t

∥

∥

∥

∥

2

L2

S,t

(14)
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(recall that ‖F (x)‖2
L2

x
=
∫

F 2(x)dx). The final cost functional is

Je(σ) = η1

L
∑

l=1

(

Cl(0; S0)

Cmarket
Kl,Tl

− 1

)2

+ η2

L
∑

l=1

(

σI(Kl; Tl)

σI;market
Kl,Tl

− 1

)2

+η3

∥

∥

∥

∥

∂σ(S, t)

∂S

∥

∥

∥

∥

2

L2

S,t

+ η4

∥

∥

∥

∥

∂σ(S, t)

∂t

∥

∥

∥

∥

2

L2

S,t

. (15)

3 Surface space and the optimisation proce-

dure

Continuing the arguments of the previous section, we give here a possible

choice to describe the space of available surface shapes. We consider con-

tinuous affine functions with degrees of freedom being the values on some

grid (Si = S0 + i∆S, tj = t0 + j∆t, ), i ≤ I, j ≤ J . We denote by fij(S, t)

the unique piecewise linear and continuous function that has value of 1 at

(ti, Sj), and is zero everywhere else. The surfaces are linear combinations

σ(S, t) =
∑

αijfij(S, t). (16)

of the shapes fij(S, t).

The advantage of linear interpolation is that the shape functions have

nice localisation properties: the scalar product of two such functions (or

their gradient) is zero except if they are neighbors i.e. matrices (22)-(23) are

sparse. Also setting constraints e.g. σ(S, t) > σmin for all S, t is equivalent

to asking that all αij are larger than σmin.
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However we also tested cubic splines interpolation and it performed equally

satisfactory.

Remark 5 A possible procedure would be to optimize the cost functional (15)

expressed as a function of the coefficients αij of σ in (16). But this depen-

dence may be highly nonlinear and the resulting optimization will have many

unwanted local extrema.

Chain rule gives the gradient of any derivative contract C(S, t) (among

Cl, l = 1, ..., L) with respect to variations of the local surface σ inside the

admissible surface space. This is in fact just a matter of projecting the

exact gradient (6) onto each shape fij. We obtain an approximation formula

around the current local volatility σ:

C

(

σ +
∑

ij

αijfij(S, t)

)

≃ C(σ) +
∑

ij

<
∂C

∂σ
, fij >L2

S,t
αij. (17)

Same works for the implied volatility

σI

(

σ +
∑

ij

αijfij(S, t)

)

≃ σI(σ) +
∑

ij

<
∂σI

∂σ
, fij >L2

S,t
αij. (18)

In discrete formulation the cost functional will employ the matrices

MC
ij;rs =

∑

l

<
∂Cl

∂σ
, fij >L2

S,t
<

∂Cl

∂σ
, frs >L2

S,t
(19)

for the first part of (10) and

Mσ
ij;rs =

∑

l

<
∂σI

l

∂σ
, fij >L2

S,t
<

∂σI
l

∂σ
, frs >L2

S,t
(20)
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for the second part.

Note that (18) and (17) already provide (some) second order information

for Je; also note that for σ =
∑

ij βijfij(S, t) the smoothness terms (14) can

be written as

η3 < β + α,QS(β + α) > +η4 < β + α,QS(β + α) > (21)

with

(QS)ij;kl =

∫ ∫

∂fij(S, t)

∂S

∂fkl(S, t)

∂S
dSdt (22)

and

(Qt)ij;kl =

∫ ∫

∂fij(S, t)

∂t

∂fkl(S, t)

∂t
dSdt. (23)

A last ingredient involves bounds on the local volatility surface; indeed, it

seems natural that the local volatility cannot be negative. Even when this is

the case, local volatilities with very low values (e.g. 3% !) are obviously not

realistic. Enforcing constraints on the local volatilities is a very important

step towards selecting meaningful candidates. A choice that is consistent

with other observations in the literature [Rubinstein, 1994, Derman and Kani,

1994] is to ask

σmin ≤ σ(t, S) ≤ σmax with

σmin =
1

2
min{σI;market

Kl,Tl
; l = 1, ..., L}, σmax = 2 max{σI;market

Kl,Tl
; l = 1, ..., L}.(24)
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3.1 Optimization procedure

The algorithm operates as follows: first we choose as initial guess σ0 to

be the (projection on the space V ect{fij}) of the implied volatility surface

(eventually corrected to be between bounds σmin and σmax). One can also use

more specific formulas relating implied and local volatility see e.g. [Gatheral,

2006] formula 1.10 page 13.

The iterative procedure operates at each step in the following order:

1/ computes the gradient of the price and implied volatility with respect

to variations of σ in the admissible space i.e. formula (17) and (18);

2/ constructs and solves the (quadratic) optimization problem

min

σmin ≤ α ≤ σmax

1

2
< αT , (η1M

C + η2M
σ + η3QS + η4Qt)α > +wtα (25)

3/ update the local volatility σ; if the replication error Je is too high

return in 1/ otherwise exit.

In practice very few cycles 1/-3/ are necessary. We tested on several

indices and in the FOREX markets and the numbers varied between 5 and

10 cycles.

Remark 6 The quadratic problem (25) can be solved by any suitable algo-

rithm; for instance Matlab uses by default a subspace trust-region method

based on the interior-reflective Newton method described in [Coleman and
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Li, 1996]. We also tested a simple projected gradient which performed very

satisfactory. The advantage of the approach is precisely to separate the opti-

mization itself from the formulation of the problem.

Remark 7 Should a bid/ask functional (e.g. as in (12)) be used then the

problem will not be quadratic any more but (17) is still used; the constraints

arise from the requirement that αk be in [σmin, σmax]; additional constraints,

in a ”trust-region” style, can be put to remain in a region where the approx-

imation (17) holds.

4 Results and conclusions

A specificity of the approach is that instead of a unique optimization in the

parametric space we perform one optimization around each current point;

this reduces the number of computations of the PDE (2). But, equally im-

portantly, the separation between the optimization and the approximation of

the functional provides flexibility in the information that can be fitted, e.g.

we can readily accommodate any derivative contract (as soon as an gradient

formula like (5) exists for it; when it does not one can use Malliavin calculus)

such as options on futures, strategies, structured products etc. This allows

for instance to be very flexible in the information available and to ignore

some prices should them not be available or if one wants to arbitrage against
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them (in contrast with the pioneering approaches [Rubinstein, 1994, Dupire,

1994, Derman and Kani, 1994] that need a uniform set of data to perform the

inversion); in particular no interpolation is required to fill this information

when missing.

The use of the gradient not in an optimization procedure but to obtain

an approximation of the functional around the current point is a acknowl-

edgement of the fact that the main difficulty is not finding a solution but

choosing one among all compatible surfaces (i.e. ill-posedness).

We noted that in practice the implied volatility term in the cost functional

i.e. η2M
σ in (25) is more helpful to orient the optimization procedure than

the price term η1M
C . In fact in all cases we tested putting η2 6= 0 and η1 = 0

gave better results than the reverse.

We used throughout a grid with I = 24 values of S and J = 13 values of

t i.e. 312 shapes fij, cf. eqn. (16).

Let us now iterate through several benchmarks from the literature; we

begin with the European call data on the S& P index from [Andersen and

Brotherton-Ratcliffe, 1998, Coleman et al., 2001]. Similar to [Andersen and

Brotherton-Ratcliffe, 1998, Coleman et al., 2001], we use only the options

with no more than two years maturity in our computation. The initial index,

interest rate and dividend rate are the same. We first checked (not shown)

that for L = 1 the problem recovers the implied volatility; it did so with only
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one cycle. When we took all the L = 70 data the resulting local volatility

surface is given Figure 3.

We next moved to a FOREX example (from [Avellaneda et al., 1997])

where synchronous option prices (based on bid- ask volatilities and risk-

reversals) are provided for the USD/DEM 20,25 and 50 delta risk-reversals

quoted on August 23rd 1995. The results in Figure 4 show a very good fit

quality with only five cycles 1/-3/.

We remain in the FOREX market and take as the next example 10,25

and 50-Delta risk-reversal and strangles for EUR/USD dated March 18th

2008. We recall that e.g. a 25 Delta risk reversal contract consists in a long

position in a call option with delta=0.25 and a short position in a put option

with delta = −0.25; the contract is quoted in terms of the difference of the

implied volatilities of these two options. Note that at no moment the price

of the options appear in the quotes. In order to set the input implied surface

we used 10 and 25 Delta strangles which are quoted as the arithmetic mean

of the implied volatilities of the two options above. Of course, from this data

one can next recover the implied volatilities of each option, then all other

characteristics. We present in Figure 5 the implied and the calibrated local

volatility from the data in Tables 1,2 and 3. The procedure was also tested

(not shown here) on other currencies pairs (GBP, CHF, JPY, KRW, THB,

ZAR all with respect to USD) and performed well.
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Figure 1: Gradient δC
δ(σ2)

(see eqn. (5)) of the price C of a derivative (e.g.

a plain vanilla call) with respect to the volatility surface squared σ2. Note

the two singularities at the initial time (around the spot price) and at the

expiration around the strike. These singularities prevent the direct use of

any gradient method otherwise the resulting surface will be singular.
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Figure 2: The local volatility σ(S, t) is sought after as a linear combination

of basic shapes fij(S, t): σ(S, t) =
∑

ij αijfij. A possible option is to take

fij(S, t) as the (unique) linear interpolation which is zero except in some

point (Si, tj) (part of a grid in S and t). We display here such a shape.
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Figure 3: Local volatility surface of the S&P 500 index as recovered from the

published European call options data [Andersen and Brotherton-Ratcliffe,

1998, Coleman et al., 2001]; spot price is $590; discount rate r = 6%, dividend

rate 2.62%. The blue marks on the surface indicate the option prices that

were used to invert i.e. the Kl and Tl (L = 70). After 10 iterations the prices

are recovered up to 4.e − 4 and the implied volatility up to 0.18%. Setting

regularization parameters η3 and η4 to smaller values give better fit but less

smooth surfaces.
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Figure 4: Top: implied volatility surface of the USD/DEM rate from [Avel-

laneda et al., 1997]; blue marks on the surface represent the available prices

(to be matched). Bottom: local volatility surface as recovered from quoted

20,25 and 50-delta risk-reversals [Avellaneda et al., 1997]; (mid) spot price

is 1.48875; USD discount rate r = 5.91%, and DEM rate 4.27%. The blue

marks on the surface indicate the option prices that were used to invert i.e.

the Kl and Tl (L = 30). After 5 iterations the prices are recovered up to

3.e − 4 (below the PDE resolution) and the implied volatility up to 0.11%

(below the bid/ask spread).



Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 1,6177 1,5965 1,5753 1,5544 1,5341

31 1,6564 1,6150 1,5740 1,5335 1,4935

59 1,6804 1,6253 1,5720 1,5191 1,4653

92 1,7013 1,6333 1,5686 1,5042 1,4368

184 1,7449 1,6474 1,5592 1,4711 1,3728

365 1,8030 1,6611 1,5391 1,4164 1,2665

Table 1: Strikes of the EUR/USD data derived from March 18th 2008 10,25

and 50 Delta risk-reversals and stradles corresponding to results in Figure 5.
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Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 14,8250% 14,1750% 13,9250% 14,1750% 14,8250%

31 13,5250% 12,9500% 12,7750% 13,1000% 13,8250%

59 12,7750% 12,1500% 12,0250% 12,4000% 13,2750%

92 12,4250% 11,7500% 11,6250% 12,1000% 13,1250%

184 12,0875% 11,2125% 11,0500% 11,6375% 12,9625%

365 11,9125% 10,8625% 10,7000% 11,3375% 12,8875%

Table 2: Implied volatilities of the EUR/USD data derived from March 18th

2008 10,25 and 50 Delta risk-reversals and stradles corresponding to results

in Figure 5.
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Delta 0,1 0,25 0,5 0,75 0,9

Days to Expiry

7 0,0015 0,0046 0,0121 0,0253 0,0425

31 0,0029 0,0088 0,0231 0,0486 0,0824

59 0,0038 0,0113 0,0298 0,0632 0,1088

92 0,0046 0,0136 0,0358 0,0767 0,1341

184 0,0063 0,0182 0,0479 0,1039 0,1883

365 0,0086 0,0247 0,0650 0,1430 0,2724

Table 3: Premiums of the EUR/USD data derived from March 18th 2008

10,25 and 50 Delta risk-reversals and stradles corresponding to results in

Figure 5.
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Figure 5: Top: implied volatility surface of the EUR/USD rate from Ta-

bles 1,2 and 3); marks on the surface represent the available prices (to be

matched). Bottom: local volatility surface as recovered from quoted 10,25

and 50-delta risk-reversals and stradles; (mid) spot price is 1.5755; USD dis-

count rate was set to rUSD = 2.485%, and rEUR = 4.550%. The blue marks

on the surface indicate the option prices that were used to invert i.e. the Kl

and Tl (L = 30). After 5 iterations the prices are recovered up to 5.e− 5 and

the implied volatility up to 0.03% (below the bid/ask spread).
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