
HAL Id: hal-00306163
https://hal.science/hal-00306163v1

Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Redesigning with Traits: the Nile Stream trait-based
Library

Damien Cassou, Roel Wuyts, Stéphane Ducasse

To cite this version:
Damien Cassou, Roel Wuyts, Stéphane Ducasse. Redesigning with Traits: the Nile Stream trait-based
Library. Proceedings of the 2007 International Conference on Dynamic Languages (ICDL 2007), Aug
2007, Lugano, Switzerland. pp.50-79, �10.1145/1352678.1352682�. �hal-00306163�

https://hal.science/hal-00306163v1
https://hal.archives-ouvertes.fr

Redesigning with Traits:

the Nile Stream trait-based Library
Presented at International Conference on Dynamic Languages 2007

Damien Cassou1, Stéphane Ducasse1, and Roel Wuyts2

1 LISTIC, University of Savoie, France
2 IMEC, Leuven and Université Libre de Bruxelles

Abstract. Recently, traits have been proposed as a single inheritance
backward compatible solution in which the composing entity has the
control over the trait composition. Traits are fine-grained units used
to compose classes, while avoiding many of the problems of multiple
inheritance and mixin-based approaches.
To evaluate the expressiveness of traits, some hierarchies were refactored,
showing code reuse. However, such large refactorings, while valuable,
may not be facing all the problems, since the hierarchies were previously
expressed within single inheritance and following certain patterns. We
wanted to evaluate how traits enable reuse, and what problems could be
encountered when building a library using traits from scratch, taking into
account that traits are units of reuse. This paper presents our work on
designing a new stream library named Nile. We present the reuse that
we attained using traits, and the problems we encountered.
Keywords. Object-Oriented Programming, Inheritance, Refactoring,
Traits, Code Reuse, Smalltalk

1 Introduction

Multiple inheritance has been the focus of a large amount of work and research
efforts. Recently, traits proposed a solution in which the composite entity has
the control and which can be flattened away, i.e., traits do not affect the run-
time semantics [1, 2]. Traits are fine-grained units that can be used to compose
classes. Like any solution to multiple inheritance, the design of traits is the
result of a set of trade-offs. Traits favor simplicity and fine-grained composition.
Traits are meant for single inheritance languages. Trait composition conflicts are
automatically detected but the composer has the control to resolve these conflicts
explicitly. Traits claim to avoid many of the problems of multiple inheritance
and mixin-based approaches that mainly favor linearization where conflicts never
arise explicitly and are solved implicitly by ordering.

Note that there exist different trait models. In the original trait model,
Stateless traits [1, 2], traits only define methods, but not instance variables.
Stateful traits [3] extends this model and lets traits also define state. Freezable

traits [4] extend stateless traits with a visibility mechanism. In the context of
this paper when we use trait we mean Stateless trait.

Previous research evaluated the usefulness of traits by refactoring the Smalltalk
collection and stream libraries, which showed up to 12% gain in terms of code
reuse [5]. Other research tried to semi-automatically identify traits in existing
libraries [6]. While these are valuable results, they are all refactoring scenarios
that investigated the applicability of traits using existing systems as input.
Usability and reuse of traits when developing a new system has not been assessed.
Implementing a stream library from scratch is an important experience to test the
expressiveness of traits. By doing so we may face problems that may have been
hidden in previous experiences and also face a large scheme of trait composition
problems.

The goal of this paper is to experimentally verify the original claims of
simplicity and reuse of traits in the context of a forward engineering scenario.
More specifically, our experiments want to get answers to the following questions
that quickly arise when using traits in practice:

– Trait granularity. We want to assess the granularity of traits that maximize
their reusability and composition.

– Trait reusability. We want to understand how much code can be reused.
– Can we define traits as composable building units?
– Can we identify guideline to assess when trait composition should be preferred

over inheritance?
– To what extent can we fix the problems identified in the current stream

hierarchy?
– What trait limits and problems do we encounter?
– Does the use of trait imply an execution cost?

Our approach is based on designing and implementing a non-trivial library
from scratch using traits. We decided to build a stream collection library (called
Nile) that follows the ANSI Smalltalk standard [7] yet remains compatible with
the current Smalltalk implementations. The choice for a stream library was
motivated by a number of reasons:

– streams exhibit problems linked to the fact that they are naturally modeled
using multiple inheritance. In presence of single inheritance the implementors
are reduced to duplicated code and other tricks such as canceling methods;

– N. Schärli [5] and A. Lienhard [6] already refactored the Stream library using
traits so we can compare with their results;

– streams are an important abstraction of computer language libraries;
– several constraints are imposed by the ANSI Smalltalk standard and the

need to remain usable in existing Smalltalk dialects.

Nile is structured around three core traits and a set of libraries. During the
definition of the libraries, the core traits proved to have a good granularity: it
was easy to obtain each desired functionality composition using the adequate
part of the core. Nile has 18% less methods and 15% less bytecodes than the
corresponding Squeak collection-based stream library. Moreover, Nile has neither
canceled method nor method implemented too high in the hierarchy. There are
only three overrides compared to the fourteen of Squeak.

2

The contributions of the paper are: (1) the design of Nile, a new stream
library made of composable units, (2) the assessment that traits are good building
units for defining libraries and that they enable clean design and reuse through
composibility, and (3) the identification of problems when using the traits.

We start by presenting the existing Squeak Stream hierarchy limits and the
ANSI Smalltalk standard protocols (Section 2). Section 3 presents an overview of
Nile and the core of the library around its three most important traits. Section 4
and Section 5 detail the implementation of the collection-based and file-based
stream libraries, respectively. Two other libraries will be presented in Section 6.
Section 7 compares our approach with the one of N. Schärli [5]. It analyses the
reuse offered by traits as well as performance issues and optimization solutions.
Finally, Section 8 presents the problems we identify due to the use of traits.

2 Analyses

In this section, we analyze the existing stream hierarchy of Squeak the open-source
Smalltalk [8]. We highlight the key problems and present the ANSI Smalltalk
standard.

2.1 Analysis of the Squeak stream hierarchy

Squeak [8], like all Smalltalk environments, has its own implementation of a stream
hierarchy. Figure 1 presents the core of this implementation, which is solely based
on single inheritance and does not use traits. Note that most Smalltalk dialects
reimplemented streams and therefore have similar yet different implementation.
For example, even though Squeak and VisualWorks are both direct descendants
from the original Smalltalk-80, their stream hierarchies are different since the
one in VisualWorks was completely reimplemented.

atEnd
close
contents
do:
flush
next
next:
next:put:
nextPut:
nextPutAll:
upToEnd

Stream

atEnd
contents
isEmpty
next:
peek
position
position:
reset
setToEnd
skip:
skipTo:
upTo:
upToEnd

collection
position
readLimit

Positionable

Stream

next
next:
nextPut:
size
upTo:
upToEnd

ReadStream

contents
flush
next
nextPut:
nextPutAll:
position:
reset
setToEnd
size
space
cr

writeLimit
WriteStream

close
contents
next
next:

ReadWriteStream

atEnd
close
flush
fullName
next
next:
nextPut:
nextPutAll:
peek
position
position:
reset
setToEnd
size
skip:
upTo:
upToEnd

rwmode
name
fileID
buffer1

FileStream

Fig. 1. The Squeak core Stream hierarchy. Only the most important methods are shown.

3

The existing single-inheritance implementation has different problems that
we detail.

Methods implemented too high in the hierarchy. A common technique to avoid
duplicating code consists in implementing a method in the topmost common
superclass of all classes which need this method. Even if efficient, this technique
pollutes the interface of classes which do not want this method. For example,
Stream defines nextPutAll: which calls nextPut:

Stream>>nextPutAll: aCollection
"Append the elements of aCollection to the sequence of objects
accessible by the receiver. Answer aCollection."

aCollection do: [:v | self nextPut: v].
^ aCollection.

The method nextPutAll: writes all elements of the parameter aCollection to
the stream by iterating over the collection and calling nextPut: for each element.
The method nextPut: is abstract and must be implemented in subclasses, and
even if Stream defines methods to write to the stream, some subclasses are
used for read-only purposes, like ReadStream. Those classes must then cancel
explicitly the methods they don’t want.3 This approach, even if it was probably
the best available solution at the time of the first implementation, has some
drawbacks. First of all the class Stream and its subclasses are polluted with a
number of methods that are not available in the end. This complicates the task
of understanding the hierarchy and extending it. It also makes it more difficult
to add new subclasses. To add a new subclass, a developer must analyze all of
the methods implemented in the superclasses and cancel all unwanted ones.

Unused superclass state. The class FileStream is a subclass of ReadWriteStream

and an indirect subclass of PositionableStream which is explicitly made to stream
over collections (see Figure 1). Then, the instance variables collection, position

and readLimit inherited from the PositionableStream and writeLimit inherited from
WriteStream are not used for FileStream and all its subclasses.

Simulating multiple inheritance by copying. ReadWriteStream is conceptually both
a ReadStream and a WriteStream. However, Smalltalk is a single inheritance-based
language, so ReadWriteStream can only subclass one of these. The behaviour from
the other one has to be copied, leading to code duplication and all of its related
maintenance problems.

The designers of the Squeak stream hierarchy decided to subclass WriteStream

to implement ReadWriteStream, and then copy the methods related to reading
from ReadStream.

One of the copied methods is next, which reads and returns the next element
in the stream. This leads to a strange situation where next is being canceled

3 In Smalltalk, canceling a method is done by reimplementing the method in the
subclass and calling shouldNotImplement from it.

4

out in WriteStream (because it should not be doing any reading), only to be
reintroduced by ReadWriteStream. The reason for this particular situation is
due to the combination of next defined too high in the hierarchy and single
inheritance.

Reimplementation. In Figure 1, one can see that next: is implemented five times.
Not a single implementation uses super which means that each class completely
reimplements the method logic instead of specializing it. But this statement
should be tempered because often in the Squeak stream hierarchy, methods
override other methods to improve speed execution: this is because in subclasses,
the methods have more knowledge and, thus, can do a faster job. However,
a method reimplemented in nearly all of the classes in a hierarchy suggests
inheritance hierarchy anomalies.

2.2 The ANSI Smalltalk standard

SequencedStream

GettableStream CollectionStream

ReadStream WriteStream

PuttableStream

ReadWriteStream

Fig. 2. The ANSI Smalltalk standard stream protocol hierarchy.

Figure 2 shows that even if Smalltalk is a single inheritance language, the ANSI
Smalltalk standard [7] defines the different protocols using multiple inheritance.
In the standard, streams are based on the notion of sequence values. Each stream
has past and future sequence values. The ANSI Smalltalk standard defines a
decomposition of stream behavior around three main protocols: GettableStream,
SequencedStream and PuttableStream. Table 1 and Table 2 summarize the protocol
contents.

The ANSI Smalltalk standard provides a useful starting point for an imple-
mentation even if a lot of useful methods are not described. We therefore chose
to adopt it for Nile.

About GettableStream>>peekFor:. The standard proposes a definition of peekFor:

that most Smalltalk implementations do not follow. The ANSI Smalltalk standard
is equivalent to an equality test between the peeked object and the parameter:

GettableStream>>peekFor: anObject
^ self peek = anObject

5

SequencedStream

close Disassociate a stream from its backing store.
contents Returns a collection containing the receiver’s past and future sequence values in order.
isEmpty Returns a boolean indicating whether there are any sequence values in the receiver.
position Returns the number of sequence values in the receiver’s past sequence values.
position: Sets the number of sequence values in the receiver’s past sequence values to be the

parameter.
reset Resets the position of the receiver to be at the beginning of the stream of values.
setToEnd Set the position of the stream to its end.

PuttableStream

flush Upon return, if the receiver is a write-back stream, the state of the stream backing store
must be consistent with the current state of the receiver.

nextPut: Writes the argument to the stream.
nextPutAll: Enumerate the argument, adding each element to the receiver.

Table 1. The SequencedStream and PuttableStream protocols defined by the ANSI
Smalltalk standard.

GettableStream

atEnd Returns true if and only if the receiver has no future sequence values available for
reading.

do: Evaluates the argument with each receiver future sequence value.
next The first object is removed from the receiver’s future sequence values and appended

to the end of the receiver’s past sequence values. The object is returned.
next: Does next a certain amount of time and returns a collection of the objects returned

by next.
nextMatchFor: Reads the next object from the stream and returns true if and only if the object is

equivalent to the argument.
peek Returns the next object in the receiver’s future sequence values without advancing

the receiver’s position.
peekFor: Peek at the next object in the stream and returns true if and only if it matches the

argument.
skip: Skip a given amount of object in he receiver’s future sequence values.
skipTo: Sets the stream just after the next occurrence of the argument and returns true if it’s

found before the end of the stream.
upTo: Returns a collection of all the objects in the receiver up to, but not including the next

occurrence of the argument.

Table 2. GettableStream protocol defined by the ANSI Smalltalk standard.

Most Smalltalk implementations (including Dolphin, GemStone, Squeak,
VisualAge, VisualSmalltalk, VisualWorks, Smalltalk-X and GNU Smalltalk) do
not only test the equality but also increment the position in case of equality as
shown by the following implementation.

peekFor: anObject
"Answer false and do not move over the next element if it is not equal
to the argument, anObject, or if the receiver is at the end. Answer
true and increment the position, if the next element is equal to
anObject."

^ (self atEnd not and: [self peek = anObject])
ifTrue: [self next. true]
ifFalse: [false]

This definition lets the following code parse ’145’, ’ 145’ and ’-145’ without
problem:

6

stream := ReadStream on: ’- 145’.
negative := stream peekFor: $-.
stream peekFor: Character space.
number := stream upToEnd.

Regarding the name of SequencedStream. The name SequencedStream is not well
chosen, since this protocol provides absolute positioning in the stream. A name
evoking this would have been better.

3 Nile overview and core

Nile is designed around a core of traits offering base functionality reflecting
the ANSI Smalltalk standard. The core consists of only three traits and it is
then used in several libraries that we discuss in detail throughout the paper.
File-based streams and collection-based streams are among the most prominent
libraries. Other libraries we discuss are support for writing character constants
and decoders (streams that can be chained). Figure 3 presents an overview of
Nile.

Core

Collection-based Streams

File-based Streams

Character writing

Decoders

Fig. 3. Overview of Nile: the core and its different libraries.

We designed Nile around three independent traits, reflecting the ANSI
Smalltalk standard: TPositionableStream, TGettableStream and TPuttableStream.
They are shown in Figure 4.

TGettableStream. The trait TGettableStream is meant for all streams used to
read elements of any kind. The trait requires 4 methods: atEnd, next, peek and
outputCollectionClass. The method peek returns the following element without
moving the stream whereas next reads and returns the following element and
moves the stream. The method TGettableStream>>outputCollectionClass is used
to determine the type of collection which is used when returning collection of
elements as with next: and upTo:.

7

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream

nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Fig. 4. The Nile core traits.

TPositionableStream. The trait TPositionableStream allows for the creation of
streams that are positioned in absolute manner. It corresponds to the ANSI
Smalltalk standardSequencedStream protocol; we thought the name TPosition-

ableStream made more sense. The only required methods are size and two accessors
for a position variable. We decided to implement the bound verification of the
method position: in the trait itself: the parameter must be between zero and
the stream size. This means that two methods have to be implemented: a pure
accessor, named setPosition: here, and the real public accessor named position:

which verifies its parameter value.

TPuttableStream. This trait is the simplest of the Nile library. It provides
nextPutAll:, next:put:, print: and flush and requires nextPut:. By default, flush does
nothing. It is used for ensuring that everything has been written. Buffer-based
streams should have their own implementations.

4 Collection-based streams

To support streaming over collections we implemented a set of dedicated traits
and what we call trait factories that define their creation protocols. Note that,
in contrast to the default Squeak implementation and like in VisualWorks, our
implementation actually works with any sequenceable collection, not just Arrays
and Strings.

4.1 The traits

The traits TCollectionStream, TReadableCollectionStream and TWriteableCollec-

tionStream implement the collection-based functionalities (as shown in Figure 5 —
Note that in the figures traits have their name in bold whereas classes not). They
provide all necessary methods required by the core traits, while only requiring 4
new accessors.

8

collection
setCollection:
position
setPosition:

collection
position

ReadableCollectionStream

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

Writeable
CollectionStream

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

ReadWriteCollectionStream

contents
size

collection
setCollection:

TCollectionStream
nextPut:
nextPutAll:
size

writeLimit
writeLimit:

TWriteableCollectionStream

-{#size}
on:

TReadableCollection
StreamFactory

on:
with:

TWriteableCollection
StreamFactory

next
peek
skip:
outputCollectionClass

TReadableCollectionStream

composed from

inherits from

Legend:

TGettableStream TPositionableStream TPuttableStream

Core

Fig. 5. The collection-based stream library. We use a UML-based notation to represent
traits: methods on the right are required and methods on the left are provided.

TReadableCollectionStream. The trait TReadableCollectionStream helps creating
classes which streams over readable collections. It implements the required meth-
ods of TGettableStream: next, outputCollectionClass, and peek. It also redefines
skip: for efficiency reasons. The required method TGettableStream>>atEnd is
provided by TPositionableStream and thus, does not require further work.

TCollectionStream. This trait is inspired by the ANSI Smalltalk standard. It is
used for every stream that needs to read from or write to a collection. This trait
defines contents and size in terms of two new methods: collection and setCollection:.
The former must return the internal collection and the latter provides a setter
for this collection. The method size returns the size of the collection.

TWriteableCollectionStream. The trait TWriteableCollectionStream depends on a
new instance variable accessible through two accessors writeLimit and writeLimit:.
This variable allows the internal collection to be bigger than the number of
characters in the stream. This is a common technique used to avoid creation
of a new collection each time an object is written to the stream. The TWrite-

ableCollectionStream>>size returns the value of writeLimit and nextPut: writes
its parameter at the right position in the collection. The trait also reimplements
nextPutAll: for efficiency reasons.

9

4.2 Trait factories

The ANSI Smalltalk standard defines ReadStreamFactory>>on: and WriteStream-

Factory>> with: to create new streams. Basically there are three places where
the stream instance creation methods can be defined. The most two natural ones
are on the traits TReadableCollectionStream and TWriteableCollectionStream or
directly in the classes. Each solution has advantages and disadvantages. Adding
the instance creation methods in the two traits helps their reuse. However, this
forces all classes interested in these traits to have those same methods, even if
they don’t need them. If the instance creation methods are implemented in the
classes, there will be duplication amongst the different classes.

We chose a third solution and implement the instance creation methods in
separate traits. We named those traits “factories” because they support new
stream creation.

We developed two factories: TReadableCollectionStreamFactory and TWrite-

ableCollectionStreamFactory. The former implements on: and the latter implements
on: and with:. Even if the ANSI Smalltalk standard does not define on: for write-
able streams, we decided to implement it following the Squeak and VisualWorks
implementations.

4.3 Classes

Traits alone are not enough to create a library. Classes are required to compose
and create new instances. The original Squeak hierarchy provides three classes
for collection-based streams: ReadStream, WriteStream and ReadWriteStream. Our
implementation has equivalent classes with more explicit names: ReadableCollec-

tionStream, WriteableCollectionStream and ReadWriteCollectionStream.

Those classes have nothing more to do than declaring the use of already
defined traits, declaring some instance variables and implementing the required
accessors.

The only difficulty arises with ReadWriteCollectionStream which has a conflict
with the method size. The method size is implemented in both TReadableCollec-

tionStream, obtained from TCollectionStream, and TWriteableCollectionStream.
The first implementation reflects the size of the collection whereas the other takes
care of the variable writeLimit and the efficient implementation in TWriteableCollec-

tionStream. That’s why ReadWriteCollectionStream has to use the implementation
of TWriteableCollectionStream. To do this, the class removes the implementation
of size coming from TReadableCollectionStream. This can be seen in Figure 5 on
the arrow going from ReadWriteCollectionStream to TReadableCollectionStream4.

10

atEnd
close
finalize
isClosed
open:forWrite:
position
register
setPosition:
size

fileName
setFileName:
getFileID
setFileID:
bufferType
fileNamed:

TFileStream

next
next:
peek
outputCollectionClass
fileNamed:

TReadFileStream

ReadFileText
Stream

nextLine
nextSentence

upToElementSatisfying:
TCharacterReading

TGettableStream TPositionableStream

nextPut:
nextPutAll:
flush
fileNamed:

TWriteFileStream

fileName
setFileName:
getFileID
setFileID:

fileID
name

AbstractFileStream

ReadFileBinary
Stream

WriteFileText
Stream

WriteFileBinary
Stream

space
cr

nextPut:
TCharacterWriting

TPuttableStream

Core

bufferType

AbstractBinaryStream

bufferType

AbstractTextStream

ReadWriteFileText
Stream

ReadWriteFile
BinaryStream

Fig. 6. FileStream implementation.

5 File-based streams

Nile includes a file-based stream library, shown in Figure 6. As with other file-
based streams, it allows one to work with both binary and text files, supporting
three access modes for each (read, write, and readwrite).

Each kind of file access is represented by a different class: the developer must
explicitly choose the class based on what she wants to do with the file: reading,
writing or both, in a binary or a text file. That way, the user has only the methods
she can send in the interface of the stream. Note that this is a library design
choice and it does not impact the way we decompose the behavior into traits.

Each file-based stream should be positionable, that’s why the trait TPosi-

tionableStream is used by TFileStream. TFileStream is the common trait for all
file-based streams. It implements base functionalities for file access and requires
four accessors, a bufferType method and an instance creation method fileNamed.
The private method bufferType is used to differentiate binary from text files.

The traits TReadFileStream and TWriteFileStream use the reusable traits
TGettableStream and TPuttableStream from the core, respectively. They implement
the required methods of these traits. Having implemented the reading and writing
methods in separate traits instead of classes really helps here. This way, our

4 The trait model gives the composer the possibility to remove methods through the
minus (-) operator.

11

file-based streams only get the desired methods, not all methods like in the
Squeak hierarchy.

At the very bottom of Figure 6, we defined the abstract classes Abstract-

FileStream, AbstractBinaryStream and AbstractTextStream to factorize instance
variables definition and accessors. These abstract classes allow the definition of
the six concrete classes with no more work.

Text-based streams use the traits TCharacterReading and TCharacterWriting

depending on the type of file access. Even if simple, these two traits help defining
methods only where they are needed and in all places where they are needed.

6 Other libraries

In this section we show how traits support reuse by presenting two libraries. We
first present how character-related writing methods can be factored out in a trait.
And then we describe the trait TDecoder that implements stream composition.
Note that Nile offers several other libraries which are summarized later in Table 3.

6.1 Writing characters

space
space:
cr
cr:
tab
tab:

nextPut:

TCharacterWriting
collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

Writeable
CollectionStream

StringWriter

Fig. 7. Writing characters to a string.

In the Squeak hierarchy, the class WriteStream contains methods like space,
cr and tab to write specific characters. These methods are only useful in case
the user wants to write characters in her stream. If she wants to write binary
data then those methods are useless and even pollute the interface of the stream.
That’s why we chose to implement the character-writing methods in a specific
trait TCharacterWriting. Another advantage of using a specific trait is that Nile
is then able to give those methods to any class which can write characters such
as StringWriter in Figure 7 (a collection-based write stream which is writing
characters) or WriteFileTextStream and ReadWriteFileTextStream in Figure 6.

12

6.2 Decoders

Developers often want to chain several streams. They want to use them like pipes
that are connected together. For example, a developer may want a stream to
read from a file and another stream which decompresses the first one on-the-fly.
We generalized a mechanism which was already available in Squeak for classes
like ZipWriteStream and have implemented a trait to support the composition of
such decoders. We first present a scenario for such decoders and then describe
our implementation.

A decoder is a GettableStream which reads its data from another Getta-

bleStream called its input stream. This way decoders can be chained. The decoder
can do whatever it wants with the contents of its input stream: for example, it
can ignore some elements, it can convert characters to numbers, it can compress
or decompress. . .

Selective number reading. Imagine you have a string, or a file, containing space
separated numbers. We can get all even numbers as presented in the code below.
Here the developer composes three elementary streams which are subclasses of
Decoder which uses the trait TDecoder.

| stream |
stream := ReadableCollectionStream on: ’123 12 142 25’.
stream := NumberReader inputStream: stream.
stream := SelectStream selectBlock: [:each | each even] inputStream: stream.

stream peek. ==> 12
stream next. ==> 12
stream atEnd. ==> false
stream next. ==> 142
stream atEnd. ==> true

system selectStream numberReader readableCollection

next
next

upTo: Character space

'123'
123

next

12

upTo: Character space

'12'

12

Fig. 8. Chaining streams

13

Figure 8 illustrates the stream connection. NumberReader transforms a char-
acter based stream in a number-based stream. SelectStream ignores all elements
in the input stream for which the select block does not answer true.

TGettableStream

initializeDecoder
next
peek
outputCollectionClass

atEnd
atEnd:
nextValue
nextValue:
effectiveNext

TDecoder

atEnd
atEnd:
inputStream
inputStream:
nextValue
nextValue:

atEnd
inputStream
nextValue

Decoder

effectiveNext
inputStream:

NumberReader

selectBlock:
effectiveNext
selectBlock:inputStream:

selectBlock
SelectStream

Fig. 9. The decoder and two possible clients.

The trait TDecoder. Figure 9 shows the decoder hierarchy. A decoder is basically
a GettableStream, that’s why TDecoder uses the trait TGettableStream. We chose
to implement the decoding methods in a trait to let developers incorporate its
functionalities into their own hierarchies.

TDecoder provides implementations for all required methods of TGetta-

bleStream (see Figure 4) but atEnd and it requires four accessors (including
atEnd) and the method effectiveNext. This method effectiveNext is where all the
work happens. It should read its input stream and return a new element. The
method TDecoder>>next calls effectiveNext and catches StreamAtEndErrors for
setting the atEnd variable.

Factoring the Nile core in traits proved again to be useful. If we had im-
plemented it using single inheritance we would have been forced to choose a
superclass between class Stream, which provides writing methods we don’t want,
or class ReadStream which only streams over collections, which is not what we
want to do with decoders.

7 Discussions

This section compares Nile with other stream implementations, analyzes its
performance and discusses where traits did and did not help us.

14

7.1 Comparison with previous work

There is no previous work building a library from scratch using traits. However,
Schärli et al. [5] were the first to refactor the collection and stream hierarchies
using traits.

flush
close
closed
isStream
new
on:

error:
basicNew

TStreamCommon
contents:
contentsOfEntireFile
last
originalContents
atEnd
isEmpty
position:
reset
resetContents
setToEnd
skip:
on:
on:from:to:

error:
position
privatePosition:
collection
collection:
readLimit
readLimit:
basicNew

TStreamPositionable

on:from:to: position:
collection
collection:
readLimit:

TStreamReadWriteCommon

nextMatchFor:
upToEnd
do:
next:

atEnd
next

TStreamReadable

next
next:
peek
peekFor:
size
upTo:
upToEnd

position
collection
position:
readLimit:
skip:

TStreamReadablePositionable

nextPutAll: nextPut:
error:

TStreamWriteable

resetToStart
nextPut:
size
with:
with:from:to:

position
position:
skip:
collection
collection:
readLimit
readLimit:
writeLimit
writeLimit:
basicNew

TStreamWriteablePositionable

StreamTop

collection
collection:
readLimit
readLimit:
position
privatePosition:

collection
position
readLimit

StreamPositionableStream

StreamReadStream

writeLimit
writeLimit:
close
closed
contents

writeLimit
StreamReadWriteStream

-{#size}

writeLimit
writeLimit:
basicOn:from:to:
on:from:to:

writeLimit

StreamWriteStream

@{#basicOn:from:to: -> #on:from:to:}

Fig. 10. Schärli’s refactored stream hierarchy.

Figure 10 shows Schärli’s stream hierarchy. Their work is a refactoring,
where they took the original Squeak stream hierarchy and extracted the existing
behavior into traits. This was a valuable experience that showed how a non-
trivial implementation could be replaced with a cleaner implementation that was
backwards compatible. While valuable, the backward compatibility constraint
forces the result to be linked to the original implementation. Therefore it exhibits
a number of problems:

– The positioning methods for a stream have to be based on collections be-
cause the methods position:, atEnd and setToEnd are all defined in the trait
TStreamPositionable which depends on collection and collection:. Therefore it
can not be used with files for example.

– The method TStreamReadablePositionable>>peek is dependent of the exis-
tence of methods collection and position but it shouldn’t be.

– The granularity of the traits is big which hampers their reuse. For example, if
we would like to have a skip: method, which is provided by TStreamPositionable,

15

we would get many more methods and, worse, we have to provide many
collection-related methods.

7.2 Nile Analysis

The factories. Having implemented the factories in two separate traits complicates
the hierarchy. Another solution would have been to define ReadWriteCollection-

Stream as a subclass of WriteableCollectionStream to inherit both instance creation
methods directly. However we believe that having explicit traits is better, since
they are potentially reusable.

Using an abstract superclass. Nile defines three concrete classes to stream over col-
lections: ReadableCollectionStream, WriteableCollectionStream and ReadWriteCol-

lectionStream. They all define the same instance variables and the same instance
creation methods. To simplify the implementation of these classes, we could have
implemented an abstract superclass for all of these classes with two common
instance variables position and collection and their accessors. This is what we
chose for the file-based streams (see Figure 11).

Classes vs. Traits. One of the key questions when building a system with traits
is to decide when to use classes and when to use traits. In certain situations as
illustrated by the Squeak stream hierarchy (see Section 2), defining a class or
inheriting from a class does not make sense since some of its state is not used or
its behavior should be canceled. This is a clear indication for using traits.

Most of the time however the decision is not that easy to take and the designer
has to assess whether potential clients may benefit from the traits, i.e., if the
defined behavior can be reused in another hierarchy. In a lot of situations this
means that traits are favored, since the price to pay to use traits is very low
compared with the benefits one gets.

Reuse at Work. Figure 11 offers an overview of the core and some libraries
of Nile. The fact that we based our implementation on traits rather than on
inheritance and that we completely rethought the stream hierarchy leads to
several advantages.

With Nile comes some really reusable traits which can be plugged in any
other hierarchy. For example, implementing socket-based streams would only
require socket manipulation work whereas utility methods like nextPutAll:, skip:,
upToEnd are offered to the developer. Using the trait TGettableStream, a developer
can easily implement a Random class which is basically a stream over random
numbers. Table 3 presents the current clients we implemented in Nile using traits
as well as the number of implemented methods to get the desired behavior.

Table 4 presents how much our core traits are reused. It presents for each
traits the number of clients, the number of required methods and the number of
methods that the trait provides. We see a good ratio provided/required for most
of the traits. The ratio may still improve if additional behavior based on the core
functionality is introduced.

16

ReadFileTextStream

TGettableStream TPositionableStream

AbstractFileText
Stream

AbstractBinaryStream AbstractTextStream

ReadFileBinaryStream WriteFileTextStreamWriteFileBinaryStream

TPuttableStream
Core

TReadableCollectionStream TCollectionStream TWriteCollectionStream

ReadableCollection
Stream

ReadWriteCollection
Stream

WriteableCollection
Stream

TReadableCollection
StreamFactory

TWriteableCollection
StreamFactory

TReadFileStream TFileStream TWriteFileStream

TCharacterWritingTCharacterReading

TDecoder

ShareQueue

fi
le
-h
a
n
d
lin
g

c
o
lle
c
ti
o
n
-h
a
n
d
lin
g

Fig. 11. An overview of Nile first clients

client name superclass and trait used met. description
Random TGettableStream 4 generate random numbers.
LinkedListStream TGettableStream

TPuttableStream
5 stream over linked elements.

History TReadableCollectionStream
TWriteableCollectionStream

7 manage do and undo of command ob-
jects.

SharedQueue TGettableStream
TPuttableStream

5 concurrent access on a queue.

StringReader ReadableCollectionStream
TCharacterReading

0 add character-based reading methods.

StringWriter WriteableCollectionStream
TCharacterWriting

0 add character-based writing methods.

CompositionStream Decoder 1 multiplexer for input streams.
Tee Decoder 1 fork the input stream (like the Unix tee

command).
Buffer Decoder 1 add a buffer to any kind of input stream.
NumberReader Decoder 1 read numbers from a character based in-

put stream.
SelectStream Decoder 1 select elements from an input stream.
PipeEntry TGettableStream

TPuttableStream
7 allow data to be manually put into a

pipe.

Table 3. Nile clients

Table 5 presents some metrics which compares the same functionalities in the
Squeak implementation and in Nile for the collection-based streams. The first
two metrics show that Nile uses a lot of traits and only a few classes. This is
because Nile is designed to have fine grained and reusable units. The next two
(number of methods and number of bytes) are more interesting and show that
the amount of code is really smaller in Nile than in Squeak. Nile has 18% less
methods and 15% less bytecodes than the corresponding Squeak collection-based
stream library. Finally, we can deduce from the last metrics that the design of

17

Trait client classes required met. provided met. provided
required

TGettableStream 22 4 11 275%
TPositionableStream 20 3 9 300%
TPuttableStream 13 1 4 400%
TReadableCollectionStream 6 4 26 650%
TCollectionStream 12 4 11 275%
TWriteableCollectionStream 6 6 23 383%
TCharacterReading 3 2 1 50%
TCharacterWriting 3 1 8 800%
TByteReading 3 3 6 200%
TByteWriting 3 2 5 250%
TDecoder 7 6 14 233%

Table 4. Nile-trait reusability.

Squeak Nile Squeak−Nile

Squeak

Number of Classes And Traits 5 13 -160%
Number of Classes 5 4 20%
Number of Methods 53 43 18%
Number of Bytes 1725 1459 15%
Number of Cancelled Methods 2 0 100%
Number of Reimplemented Methods 14 3 78%
Number of Methods Implemented Too High 10 0 100%

Table 5. Some metrics for the collection-based streams

Nile is better: there is no cancelled method nor method implemented too high
and there are only four methods reimplemented for speed reason compared to
the fourteen of the Squeak version.

About Trait Composition. During trait composition it is possible that required
methods of a trait are fulfilled by the provided methods of another traits. When
this happens the developer does not have to do any extra work and benefits
from the composition result. We can see this at work for the method atEnd that
is required in TGettableStream and provided by TPositionableStream. The trait
TReadableCollectionStream doesn’t have any work to get the implementation of
atEnd. However, such a situation is rare and based on the decomposition of traits
using a compatible behavior and vocabulary.

However, it is sometimes better or necessary to override a method coming
from a trait. It is because the new implementation have more knowledge than
the overridden one and thus can do a better job. For example, the method
TReadableCollectionStream>>skip: overrides the method TGettableStream>>skip:.
The new method is more efficient because the stream is positioned directly, needing
only a small bound computation:

TReadableCollectionStream>>skip: amount
"Moves relatively in the stream. Go forward amount elements. Go backward if amount is
negative. Overrides TGettableStream>>skip: for efficiency and backward possibility."

18

self position: ((self position + amount) min: self size max: 0)

Moreover, skip: is now able to go backward if amount is negative, which was
not the case in the implementation of TGettableStream.

7.3 Performance optimization

One of the key challenge of Nile in terms of performance is to be able to iterate
over any kind of collection while at the same time be as efficient as the squeak
implementation for Arrays and Strings. We present our solution to this challenge.

Contrary to the Squeak class WriteStream, Nile’s TWriteableCollectionStream

is able to iterate over any kind of SequenceableCollection. In Squeak the method
WriteStream>>nextPutAll: directly manipulates its internal collection using a
primitive call to replaceFrom:to:with:startingAt: implemented in String and Array5,
Nile has more work.

The idea is to propose a dedicated set of classes working specifically on Array

and String. We first reimplemented the method nextPutAll: in TWriteableCollec-

tionStream to take care of any kind of collection. This proved to be slow when
iterating over Arrays and Strings compared to Squeak. Benchmarking shows
that too much time was lost into calling methods. We have then implemented
an optimized version (i.e., using the primitive mentioned above) of nextPutAll:

directly into the classes ReadWriteArrayStream and WriteableArrayStream in which
we are sure that the underlying collection is an Array (as shown on the left side
of Figure 12).

Accessor-use impact. Traits cannot define state, which must be accessed via
accessor methods. As Squeak does not have a JIT compiler, using accessors instead
of direct instance variable access has a cost. Table 6 shows that using accessors
in the context of stream on strings and arrays is 41% times slower than direct
instance variable access. To optimize our library as much as possible we used direct
accesses, i.e., as shown on the left of Figure 12 we redefined nextPutAll:. However
this has as impact that we have to duplicate the optimized implementation of
nextPutAll into WriteableArrayStream and ReadWriteArrayStream.

execution nile

squeak(per second)

Squeak implementation 126
Nile with direct variable access 138 110%
Nile with accessors 81 64%

Table 6. Nile performances. Without accessors, Nile is faster than Squeak. But using
them makes it slower.

5 While replaceFrom:to:with:startingAt: is implemented for all kinds of SequenceableCol-
lections, it does not work for OrderedCollection.

19

The right of Figure 12 presents another solution we implemented using an
extra trait to share the optimized method for the two classes (i.e., calling the
primitive). However we discarded this solution since it is slower because traits
forced us to use accessors.

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

Writeable
CollectionStream

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

ReadWrite
CollectionStream

nextPut:
size

writeLimit
writeLimit:

TWriteableCollectionStream

nextPutAll:

Writeable
ArrayStream

nextPutAll:

ReadWrite
ArrayStream

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

Writeable
CollectionStream

Writeable
ArrayStream

ReadWrite
ArrayStream

nextPutAll:

TWriteable
ArrayStream

collection
setCollection:
position
setPosition:
writeLimit
writeLimit:

collection
position
writeLimit

ReadWrite
CollectionStream

nextPut:
size

writeLimit
writeLimit:

TWriteableCollectionStream

Fig. 12. Two solutions to optimize nextPutAll:.

8 Problems with traits

Since one of the original goal of the work presented in this paper is to identify
potential problems with traits, we now report the problems we faced while
developing Nile. Note that some problems are not trait specific but due to
Smalltalk’s lack of visibility controls. In addition it should be noted that we did
not encounter problem with aliasing in the context of recursive calls which is a
known problem of traits.

8.1 Interface pollution

In this section we present some problems due to class interface extension.

Required accessors. With stateless traits, it is not possible to add state, i.e.,

instance variables, to traits. Instead, the developer must add required accessors to
its trait and the classes will implement those required accessors and the instance
variable. This is a problem because the accessors are then part of the interface
of the classes and this adds a burden to the class developers. However this
would be solved if Smalltalk would have method access control. Stateful traits

20

[3] solve this problem by allowing traits to contain private state. For example, if
we had used stateful traits the methods TPositionableStream>>setPosition: and
TWriteableCollectionStream>>writeLimit would not have been required.

However, developing Nile showed that stateful traits would not have been of
great help. If we examine the trait TCollectionStream in Figure 5, we can see that
implementing an instance variable collection here would have been interesting
because classes would not have needed to define it. But, methods collection and
setCollection: would still need to be in the interface because TReadableCollec-

tionStream>>outputCollectionClass and TReadableCollectionStreamFactory>>on:

need them.

We believe that stateful traits are not as interesting as what a first impression
might tell.

Lazily initialized variable. There are basically three ways of initializing an instance
variable giving it a first value: initializing lazily the variable in the accessor, using
an initialize method, or initializing the variable in the instance creation method
through an accessor.

Lazy initialization is a common programming pattern. Here is an example in
Smalltalk which returns the value of the variable checked if it has been set or
sets it to false and returns false:

checked
^ checked ifNil: [checked := false]

Now, imagine a trait needs a variable and a default value. Since traits can’t
contain state in their standard implementation, accessors must be required
methods. But where do you lazily initialize the variable? Two solutions are
possible: you can force users of the trait to initialize the variable or you can
initialize in the trait and use another method for accessing the variable. Here is
an example of the later possibility:

checked
^ self getChecked ifNil: [self checked: false. false].

checked: aBoolean
self explicitRequirement.

getChecked
self explicitRequirement.

This solution pollutes the trait interface with an unnecessary method get-

Checked. The other solution consists of letting the trait user initialize the variable.
This solution does not pollute the interface but gives more responsibility to other
developers and may produce code duplication or bugs.

The same problem appears when you want to do some checking before
assigning to a variable as shown in TPositionableStream>>position: for example:

21

TPositionableStream>>position: newPosition
"Sets the number of elements before the position to be the parameter
newPosition. 0 for the start of the stream. Throws an error if the
parameter is lesser than 0 or greater than the size."

(self isInBounds: newPosition) ifFalse: [InvalidArgumentError signal].
self setPosition: newPosition.

This setter needs an additional method setPosition: which really modifies the
variable and which is a required method of the trait.

Initializing a trait. In a class, when a developer wants to initialize a newly created
object, he can use an initialize method:

initialize
super initialize.
color := Color transparent.

This can be done in a trait too provided that the developer uses an accessor
instead of a direct reference to the variable. Problems arise when a class or a
trait uses multiple traits, each defining its own initialize method. In this case,
there will be conflicts and those conflict can only be resolved by aliasing. This
brings lots of pollution in the class interface and require a lot of work.

Another solution would be to use a specific name for each method initialize.
For example, it the trait TPositionableStream needs an initialize method, the
developer can name it initializePositionableStream. Each user of the trait now
needs to define its own initialize method which calls initializePositionableStream.
We believe this is still clunky and requires too much work from the developer.

Initializing in the instance creation method. Instance creation methods can be
used to initialize variables. This is what we did for Nile:

TWriteableCollectionStreamFactory>>on: aCollection
^ self basicNew

initialize;
setCollection: aCollection;
writeLimit: 0;
reset;
yourself

Smalltalk is made such that this requires that setters are available in the
interface of the class. It also puts more responsibility on the instance creation
method which now needs more knowledge over the class it instantiates.

8.2 Methods silently ignored

Sometimes, modifying a trait does not modify the users of this trait in the same
way because of name overriding. Note that this problem is not trait specific but
it is a problem of object-oriented programming as shown by Figure 13.

22

Figure 13 shows a part of our test hierarchy for Nile. The test hierarchy
is very similar to the Nile hierarchy: for each model trait or class, there is a
test trait or class. The method nextPutAll: is tested in two different places: in
the methods TPuttableStreamTest>>testNextPutAll1 and TWriteableCollection-

StreamTest>>testNextPutAll2. If a tester adds a new test named testNextPutAll2

in the trait TPuttableStreamTest, then the test is silently ignored and will never
be launched.

testNextPutAll1

TPuttableStreamTest

testNextPutAll2

TWriteableCollection

StreamTest

testNextPutAll1

testNextPutAll2

TPuttableStreamTest

testNextPutAll2

TWriteableCollection

StreamTest

Fig. 13. If the tester implements TPuttableStreamTest>>testNextPutAll2, the test will
never be launched because TWriteableCollectionStreamTest>>testNextPutAll2 hides it.

9 Related work

We already compared our approach with the few work refactoring existing code
using traits [5, 6]. We now present the approaches that automatically transform
existing libraries using Formal Concept Analysis (FCA) or other techniques. FCA
was used in different ways.

Godin [9] developed incremental FCA algorithms to infer implementation
and interface hierarchies guaranteed to have no redundancy. To assess their
solutions from a point of view of complexity and maintainability they propose a
set of structural metrics. They analyze the Smalltalk Collection hierarchy. One
important limitation is that they consider each method declaration as a different
method and thus cannot identify code duplication. Moreover their approach serves
rather as a help for program understanding than reengineering since the resulting
hierarchies cannot be implemented in Smalltalk because of single inheritance.

In C, Snelting and Tip analyze a class hierarchy making the relationship
between class members and variables explicit [10]. By analyzing the usage of the
hierarchy by a set of client programs they are able to detect design anomalies
such as class members that are redundant or that can be moved into a derived
class. Taking into account a set of client programs, Streckenbach infer improved
hierarchies in Java with FCA [11]. Their proposed refactoring can then be used
for further manual refactoring. The tool proposes the reengineer to move methods
up in the hierarchy to work around multiple inheritance situations generated by
the generated lattice. The work of Streckenbach is based on the analysis of the

23

usage of the hierarchy by client programs. The resulting refactoring is behavior
preserving (only) with respect to the analyzed client programs.

Lienhard et al. applied Formal Concept Analysis to semi-automatically identify
traits [6]. We cannot really compare their resulting hierarchy with ours since
the information about the respective traits is no longer available. However we
can conclude that the resulting hierarchy was limited and resulted only from a
refactoring effort and not from a new design.

Interfaces and specifications of the Smalltalk collection hierarchy are also
analyzed by Cook [12]. He also takes method cancellation into account to detect
protocols. By manual analysis and development of specifications of the Smalltalk
collection hierarchy he proposes a better protocol hierarchy. Protocol hierarchies
explicitly represent similarities between classes based on their provided methods.
Thus, compared to our approach, protocol hierarchies present a client view of
the library rather than one of the implementor.

Moore [13] proposes automatic refactoring of Self inheritance hierarchies.
Moore focuses on factoring out common expressions in methods. In the resulting
hierarchies none of the methods and none of the expressions that can be factored
out are duplicated. Moore’s factoring creates methods with meaningless names
which is a problem if the code should be read. The approach is more optimizing
method reuse than creating coherent composable groups of methods. Moore’s
analysis finds some of the same problems with inheritance that we have described
in this paper, and also notes that sometimes it is necessary to manually move a
method higher in the hierarchy to obtain maximal reuse.

Casais uses an automatic structuring algorithm to reorganize Eiffel class hier-
archies using decomposition and factorization [14]. In his approach, he increases
the number of classes in the new refactored class hierarchy. Dicky et al. propose a
new algorithm to insert classes into a hierarchy that takes into account overridden
and overloaded methods [15].

The key difference from our results is that all the work on hierarchy reorga-
nization focuses on transforming hierarchies using inheritance as the only tool.
In contrast, we are interested in exploring other mechanisms, such as explicit
composition mechanisms like traits composition in the context of mixin-like
languages. Another important difference is that we do rely on algorithms. This
is important since we want to be able to use our result to compare it with the
result of future approach extracting traits automatically, so the Nile library may
serve as a reference point.

10 Conclusion

Traits are units of reuse that can be used to compose classes. This paper is an
experience report. Even if other experiences have been made to test traits, they
were always refactoring an existing hierarchy, moving methods from classes to
traits. Our work however presents a brand new implementation. We started from
the textual description from the ANSI Smalltalk standard and from existing
implementations of stream libraries in Squeak and VisualWorks. Our result is a

24

completely new implementation, named Nile, of the stream hierarchy which does
not share any code with previous implementations.

Our experience shows that traits are good building blocks which favor reuse
across different hierarchies. In the present implementation of Nile we get up to
15% less code than the corresponding Squeak code. Core traits are reused by
numerous clients. We also presented the problems we faced during the experience
and believe that Nile can be used in the future as a reference point for comparing
future trait enhancement.

This experience shows that well defined traits can naturally fit into lots
of different clients which can benefit from methods offered by the trait for a
relatively low cost.

Acknowledgment

We gratefully acknowledge the financial support of the Agence Nationale pour la
Recherche (ANR) for the project “Cook: Rearchitecting object-oriented applica-
tions” (2005-2008).

References

1. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: Proceedings of European Conference on Object-Oriented Programming
(ECOOP’03). Volume 2743 of LNCS., Springer Verlag (2003) 248–274

2. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism
for fine-grained reuse. ACM Transactions on Programming Languages and Systems
(TOPLAS) 28 (2006) 331–388

3. Bergel, A., Ducasse, S., Nierstrasz, O., Wuyts, R.: Stateful traits. In: Advances in
Smalltalk — Proceedings of 14th International Smalltalk Conference (ISC 2006).
Volume 4406 of LNCS., Springer (2007) 66–90

4. Ducasse, S., Wuyts, R., Bergel, A., Nierstrasz, O.: User-changeable visibility:
Resolving unanticipated name clashes in traits. In: Proceedings of 22nd Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’07), New York, NY, USA, ACM Press (2007) To appear.

5. Schärli, N., Ducasse, S., Nierstrasz, O., Wuyts, R.: Composable encapsulation
policies. In: Proceedings of European Conference on Object-Oriented Programming
(ECOOP’04). LNCS 3086, Springer Verlag (2004) 26–50

6. Lienhard, A., Ducasse, S., Arévalo, G.: Identifying traits with formal concept
analysis. In: Proceedings of 20th Conference on Automated Software Engineering
(ASE’05), IEEE Computer Society (2005) 66–75

7. ANSI New York: American National Standard for Information Sys-
tems - Programming Languages - Smalltalk, ANSI/INCITS 319-1998. (1998)
http://wiki.squeak.org/squeak/uploads/172/standard_v1_9-indexed.pdf.

8. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA
’97, ACM SIGPLAN Notices, ACM Press (1997) 318–326

9. Godin, R., Mili, H., Mineau, G.W., Missaoui, R., Arfi, A., Chau, T.T.: Design of
Class Hierarchies based on Concept (Galois) Lattices. Theory and Application of
Object Systems 4 (1998) 117–134

25

10. Snelting, G., Tip, F.: Reengineering Class Hierarchies using Concept Analysis. In:
ACM Trans. Programming Languages and Systems. (1998)

11. Streckenbach, M., Snelting, G.: Refactoring class hierarchies with KABA. In:
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN Conference on
Object-oriented programming, systems, languages, and applications, New York,
NY, USA, ACM Press (2004) 315–330

12. Cook, W.R.: Interfaces and Specifications for the Smalltalk-80 Collection Classes.
In: Proceedings of OOPSLA ’92 (7th Conference on Object-Oriented Programming
Systems, Languages and Applications). Volume 27., ACM Press (1992) 1–15

13. Moore, I.: Automatic Inheritance Hierarchy Restructuring and Method Refactoring.
In: Proceedings of OOPSLA ’96 (11th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications), ACM Press (1996) 235–250

14. Casais, E.: Automatic reorganization of object-oriented hierarchies: A case study.
Object-Oriented Systems 1 (1994) 95–115

15. Dicky, H., Dony, C., Huchard, M., Libourel, T.: On Automatic Class Insertion with
Overloading. In: Proceedings of OOPSLA ’96 (11th ACM SIGPLAN conference on
Object-oriented Programming, Systems, Languages, and Applications), ACM Press
(1996) 251–267

26

