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Abstract 
 

Pervasive computing applications are tedious to 
develop because they combine a number of problems 
ranging from device heterogeneity, to middleware 
constraints, to lack of programming support. In this 
paper, we present an approach to integrating the 
ontological description of a pervasive computing 
environment into a programming language, namely 
Java. From this ontological description of a 
pervasive computing environment, a framework is 
automatically generated. It provides the developer 
with dedicated programming support to manage, 
discover and invoke services. Besides, it performs a 
number of verifications both at compile and run time, 
ensuring the robustness of applications. 
 
1. Introduction 
 

Pervasive Computing relies on an environment 
filled with devices and communications with which 
users interact. A key enabler to make this interaction 
possible is services that exploit the functionalities of 
the pervasive computing environment. These services 
must cope with a wide variety of entities and support 
a range of interactions while abstracting over entity 
details to prevent hardware dependencies as much as 
possible. Furthermore, services should cope with an 
environment that is highly dynamic. In fact, 
developing applications for a pervasive computing 
environment is a major challenge combining a 
number of issues including (1) describing, organizing 
and using environment entities, (2) designing and 
developing applications (3) ensuring the robustness 
of the resulting pervasive computing system. 

Middleware-based approaches (e.g., [1] [2]) have 
been developed to address a number of key features 
like mobility, service discovery and distributed 
applications. Their key benefit has been to propose a 
unique platform that offers as many generic features 
and mechanisms as possible to cover the needs of 

application developers. The limitation to these 
middleware-based approaches is that they do not 
necessarily match the constant flow of new devices 
and new application requirements that are inherent to 
a rapidly emerging area. Also, because of the generic 
nature of a middleware, it tends to act as some kind 
of interpreter, processing the computations of an 
application at run time. Yet, some processing, 
especially verifications (e.g., for service invocations), 
could be done at either compile or deployment time, 
drastically improving the application reliability. 
Finally, a middleware-approach does not provide the 
developer with a programming model. Consequently, 
the developer is still left producing glue code to 
bridge the gap between the middleware and its 
application domain. A first step toward bridging this 
gap is proposed by Olympus [2]. This approach 
enables ontological descriptions of entities to be 
integrated into the development of an application. A 
middleware based on Gaia resolves these descriptions 
into actual entities depending on various aspects such 
as resource availability and developer-supplied 
constraints. Also, Olympus provides developers with 
a set of high-level functions to perform common 
operations like start and stop a component.  

This paper proposes to push the Olympus approach 
further by integrating the ontological modeling of a 
pervasive computing environment into a 
programming language, namely Java. To do so, we 
introduce two syntactic constructs to Java that permit 
ontological descriptions of entities to be defined. One 
construct defines an abstract service, which abstracts 
over variations of a category of entities. An abstract 
service is defined with respect to an ontological 
hierarchy based on service inheritance. An abstract 
service consists of semantic properties, characterizing 
variations of entities, and interaction modes, defining 
ways in which it can interact with other services. We 
introduce another syntactic construct that enables a 
concrete service to be implemented; it must be in 
conformance with an abstract service. A concrete 



service can compose other services. Because the 
modeling of a pervasive computing environment is 
integrated into Java, we can provide the developer 
with dedicated programming support for managing, 
discovering and invoking services. This programming 
support takes the form of a framework that is 
automatically generated with respect to an 
ontological description of a pervasive computing 
environment. As well, various verifications are 
performed at compile time whenever possible; 
otherwise code is generated in the framework to 
perform verifications that depend on run time values. 

The rest of this paper is organized as follows: 
Section 2 presents the ontological description of a 
pervasive computing environment and associated 
abstract services. Section 3 describes the pervasive 
service development within the automatically 
generated framework. Section 4 details benefits from 
the framework generation in terms of programming 
support. Section 5 reviews some related work and 
Section 6 concludes. 
 
2. Abstracting Pervasive Environments 
 

Application domains of pervasive systems can 
widely vary; it can range from building surveillance 
to elderly health care.  Our approach covers this great 
diversity of domains by giving the tools to describe 
and use heterogeneous entities present in these 
domains. Specifically, entities may be external to our 
framework; they correspond to either devices or 
software components (e.g., databases and Web 
services). Also, entities may be internal to our 
framework; they are user-defined software 
components. They allow developers to coordinate 
other entities. All these kinds of entities, whether 
internal or external, are covered by the notion of a 
service; this notion provides a uniform view of these 
heterogeneous building blocks. 

 
2.1. Abstract services 
 

To abstract over the variations of a type of 
services, we introduce the notion of abstract services. 
The scope of an abstract service is specified by three 
key aspects: its parent abstract service, the semantic 
properties characterizing its variations, and the modes 
of interaction it supports. An abstract service 
declaration is displayed in Figure 1. It defines a class 
of services dedicated to measuring luminosity. Let us 
now examine each aspect of an abstract service 
declaration. 

1. AbstractService LightSensor extends   
                              MeasurementSensor{ 
2.  constrained unit {Lux, Phot, Foot-candle}; 
3.  Command Luminosity getLuminosity(void); 
4.  EventOutput {Luminosity}; 
5.} 

Figure 1. The LightSensor abstract service 
 

2.1.1. Abstract service Inheritance. To capture all 
heterogeneous and domain-specific services in a 
consistent way, our approach allows an abstract 
service to be defined as an enrichment of another 
service. As an example, in Figure 1, the abstract 
service for light sensors is defined as an enrichment 
of a measurement sensor. This relationship is 
expressed using the extends clause of the 
declaration. As such it inherits a semantic property 
defining the measurement unit. As well, it may 
inherit a requirement for providing interaction mode 
operations. Abstract service inheritance is further 
described below as interaction modes and semantic 
properties are introduced. 
 
2.1.2. Interaction modes. Regardless of the 
application domain, developing pervasive systems 
critically relies on interacting with services. Most 
existing approaches [2] consider that this interaction 
is achieved using some form of procedure invocation 
or event mechanism. Procedure invocation typically 
addresses the need to control a service. We call this 
kind of service interaction the command mode. An 
example of a command mode is shown in Line 3 of 
Figure 1. This operation is named getLuminosity; 
it takes no argument and returns the current 
luminosity. Besides the command mode, an abstract 
service may also offer the event mode, either as a 
subscriber or as a publisher, using the 
publish/subscribe mechanism. In our light sensor 
example (Figure 1), the abstract service is defined as 
a publisher of light measurements, as shown in Line 
4. Events are characterized by their direction (input or 
output) and the class defining the data they publish or 
receive. Another important mode of interaction 
consists of interacting with a service by exchanging a 
stream of data. This interaction mode is called the 
session mode because it requires the consumer and 
the producer of the data stream to set up a session to 
communicate. Besides multimedia, stream-oriented 
services may also produce a stream of arbitrary data. 
We illustrate the session mode by extending our light 
sensor abstract service, as shown in Figure 2. This 
extended form of light sensors produces a stream of 
measurements. A service can either be invited or 



invite other services, as indicated by the Input/Output 
keyword. 

1.AbstractService ExtendedLightSensor extends                                           
                                    LightSensor{ 
2.   SessionInput {Luminosity}; 
3.} 

Figure 2. The ExtendedLightSensor abstract service 
 

2.1.3. Semantic properties. Not only is a range of 
concrete services defined by its supported interaction 
modes, but it is also defined by the semantic 
properties that may hold. These properties are 
included in the ontological description of an abstract 
service and further characterize the target range of 
concrete services. Examples of properties include 
measurement unit, priority or location, as displayed 
in Figure 3. Semantic properties can either be 
inherited from a parent abstract service or introduced 
by the abstract service being defined. A property can 
be assigned a value or constrained. In our example, 
Line 2 of Figure 1 defines a constraint on the unit 
property inherited from the MeasurementSensor 
abstract service. The key feature of our approach is to 
provide the developer with a typed interface to 
semantic properties. Specifically, querying the unit 
property of light sensors requires a well-typed value, 
belonging to the enumeration Lux, Phot and Foot-
candle. This strategy enables a range of errors to be 
detected at compile time. 
 
2.2. An ontological hierarchy of abstract 
services 
 

To further explain our approach, we now examine 
fragments of an ontological hierarchy defining 
abstract services developed in the context of building 
manager applications; this hierarchy is displayed in 
Figure 3. The ontological hierarchy uses abstract 
service inheritance to propagate semantic properties 
and interaction modes of one abstract service to all its 
child nodes (i.e., classes). As a result, all abstract 
services define the shutdown command and the type 
property inherited from the root class (i.e., the 
Service abstract service). This inheritance allows an 
abstract service to abstract over the variations of its 
sub-classes. A group of heterogeneous abstract 
services can thus be considered as one homogeneous 
entity. For instance, every abstract service extending 
the Light abstract service (e.g., DimmerLight) can 
be considered as a Light abstract service, hiding 
their extra interaction modes. The abstraction given 
by the service ontology allows developers to use 

services that expose the level of abstraction that is 
appropriate for their needs. This inheritance allows 
abstract services to incrementally reveal new 
interaction modes, as illustrated by our light sensor 
example extended with the session mode (see Figure 
2).  

 
Service

Device

actuatorSensor

LightMeasurementSensor

DimmerLight

Application

Manager

LightManager

P: type

I: command {shutdown}

P: location, autonomy

I: command{DO}

LightSensor

ExtendedLightSensor

P: unit

I: command {get}

I: SessionInput{Luminosity}

P: color, power

I: command{on, off}

I: command{dim}

P: priority

I: EventInput{Luminosity}

P: Semantic properties
I: Interaction modes

I: EventOutput{Luminosity}

 
Figure 3: An example of ontological hierarchy 

 
3. Application-Specific Framework 
 

Once an application domain has been analyzed and 
organized in the form of ontological descriptions of 
abstract services, the application logic can be 
developed. Let us now describe the application-
specific framework generated for the application 
developer, from ontological descriptions.  
 
3.1. Concrete Services 
 

Abstract services can be seen as a specification to 
which concrete services need to conform. In our 
programming model, a concrete service is defined via 
the ConcreteService construct. This construct 
defines a concrete service that must conform to the 
abstract service included in the from clause. Let us 
start by examining external concrete services. To do 
so, a concrete service needs to implement each 
functionality of the abstract service in terms of device 
driver operations, in case of a hardware entity, or in 
terms of object method invocations, in case of a 
software component. To illustrate this kind of 
concrete services, consider the example displayed in 
Figure 4. This Light wrapper service must 
implement all the Light operations (e.g., the on and 
off operations). Besides, the inheritance requires us 
to implement the DO operation from the actuator 
service class and the shutdown operation from the 
service service class. 



ConcreteService MyLight from Light { 
   public MyLight(String uri) { (…) } 
   void on() {(…)} 
   void off(){(…)} 
   void DO(){(…)} 
   void shutdown(){(…)} 
} 

Figure 4: Definition of a concrete service 
 
3.2. Service discovery 
 

The heterogeneity and dynamicity of services in 
pervasive environments must be supported by an 
adapted service discovery mechanism. The goal of 
our approach is to allow the application logic to be 
decoupled from a concrete pervasive computing 
environment. At the basis of service management is 
the ontological hierarchy of services: it is used both 
to register concrete services and select specific 
concrete services. 
 
3.2.1. Service registration. When a concrete service 
declaration is executed, it is automatically registered 
in the service hierarchy at the node corresponding to 
its abstract service. Consequently, any registered 
service behaves like a service of its class as well as a 
service of its parent classes; as such it is also 
registered as a concrete service of its parent classes. 
For example, a concrete Light service is also 
registered as an actuator because, as a child node of 
the actuator, it supports the DO operation. 
 
3.2.2. Browsing in the pervasive computing 
environment. We propose to use the ontological 
descriptions to partition the environment. To choose a 
node in the hierarchy, the developer must identify an 
abstract service. The higher the abstract service node 
in the ontological hierarchy, the more re-targetable 
the application logic will be. This strategy makes it 
possible to maximize the number of services that 
belongs to the target partition of the pervasive 
computing environment. This situation demonstrates 
the key importance of the partitioning of services 
represented by the ontological hierarchy. This notion 
is illustrated by the fragment of code browsing shown 
in Figure 5 that selects the Light partition in Line 1. 
The semantic properties of an abstract service are 
used to further refine a partition of the pervasive 
computing environment. Each property covers a 
specific dimension. For example, once the Light 
partition is chosen, it can be further refined by 
selecting lights with respect to their location. Besides 
exact matching, our framework provides the 
developer with various other matching strategies, 

including value ranges, enumeration of values and 
existence of properties. Once the selection criteria 
have been set, the application can invoke a 
framework operation to collect the corresponding 
concrete services available in the pervasive 
computing environment. This collection of concrete 
services is illustrated in Line 3 of Figure 5. 

1. LightPart part = Light.getPartition(); 
2. part.location.setValue(mylocation); 
3. LinkedList<Light> lights = part.getServices() 

Figure 5: Browsing a Light environment partition 
 
3.3. Service composition 
 

The development of an application for a pervasive 
computing environment critically relies on the 
composition of services. We now examine how this 
aspect is tightly integrated into our proposed 
ontology-based approach.  

 
3.3.1. Composition with respect to the ontology of 
services. Prior to developing the logic of a new 
service, the programmer, or a project architect, needs 
to study how to place it into the ontological hierarchy 
of services. To do so, he needs to determine whether 
this new service falls into an existing category of 
services defined by an abstract service. If so, the 
developer leaves the hierarchy of services unchanged 
and simply implements a new concrete service. The 
key benefit of this strategy is service re-use. 

In other cases the logic to be developed refers to a 
new category of services. Typically, this situation 
occurs for services that are inherent to the application 
domain. For example, managing a building requires 
the definition of various managers operating building 
resources. To address this category of situations, we 
define the LightManager abstract service, as shown 
in Figure 6. Its aim is to turn on/off the lights in the 
building hallways depending on the outside 
luminosity. To do so it extends the Manager abstract 
service and is declared as a receiver of Luminosity 
event. 

AbstractService LightManager extends Manager { 
   EventInput {Luminosity}; 
} 

Figure 6: The LightManager abstract service 
 
3.3.2. Composition with respect to the service 
logic. Service logic typically coordinates a number of 
other services. The example in Figure 7 illustrates 
service composition with the MyLightManager 



concrete service. The constructor is first defined: it 
implements the discovery process of the 
LightSensor service and subscribes to a 
Luminosity event. Conforming to the abstract 
service, MyLightManager defines a receive 
operation to handle Luminosity events. 

ConcreteService MyLightManager from LightManager 
{ 
 LightSensor myLightSensor;  
(…) 
 MyLightManager(Uri uri) { 
   super(uri); 
   priority.setValue(Priority.LOW); 
 
   myLightSensor = sensorPart.getService(); 
   myLightSensor.subscribe(this); 
 } 
 void receive(LuminosityEvent e){ 
   (…) 
 } 
 (…) 
} 

Figure 7: The MyLightManager concrete service 
 
3.4. Service verification 
 

An important contribution of our approach is to 
perform verifications at every stage of a service 
lifecycle. To do so, verifications are performed at 
both compile and run time. 

When an abstract service is created, verifications 
are performed on the consistency of the ontological 
hierarchy of services, the type signature of the 
interaction mode operations, and the constraints on 
semantic properties. When a concrete service is 
created, verifications are similar to the ones on 
abstract services. In addition, the conformance of the 
concrete service with its abstract service is checked. 

Every step of the service discovery performs 
verifications: the selection of the abstract service in 
the service hierarchy and the refined selection using 
the semantic properties. In particular, semantic 
properties are strongly typed unlike other approaches 
based on strings (e.g., Olympus [2]). Importantly, the 
verifications of service discovery are performed at 
compile time.  

The interaction modes of a concrete service are 
strongly typed with respect to the signatures defined 
by its abstract service. This applies to command 
operations, events and sessions. Like service 
discovery, service invocation is verified at prior to 
run time. 
 
4. Framework Generation 
 

Abstract services defined in the ontological 
hierarchy are used to generate programming support 
for managing, discovering and invoking a service. 
Our current prototype uses Java as the 
implementation language. 
 
4.1. Programming support 
 

Abstract service declarations produce abstract 
classes in Java. Each semantic property is mapped 
into a Java field in the abstract class. Each interaction 
mode of an abstract service generates a Java 
interface. These abstract classes implement methods 
to support browsing in the corresponding partition of 
the pervasive computing environment. Specifically, a 
method is generated to select a node in the 
ontological hierarchy of services. When invoked, this 
method produces a partition containing the concrete 
services corresponding to the selected node (see Line 
1 of Figure 5). Furthermore, methods are generated to 
manipulate each semantic property of the abstract 
service, according to its nature (see Line 2 of Figure 
5). These methods are used by the developer to refine 
the set of target concrete services. Two methods are 
also produced to complete the discovery process: one 
to select a unique concrete service and one to get all 
the concrete services. When a concrete service is 
selected, it is not referenced directly. Instead, a 
reference to proxy is returned. This proxy is an 
implementation of the abstract Java class associated 
with the selected abstract service. This strategy has 
two major benefits: actual concrete services may be 
spread over a distributed system; and, concrete 
services can be hot swapped. 
 
4.2. Assessment 
 

Ontology descriptions are specified in OWL [5] 
and created with Protégé [6]. The framework 
generator was developed in Java and is based on the 
JENA API. The prototype implementation uses the 
Java Remote Method Invocation to invoke service 
operations. We are conducting experimental studies 
to measure how much code is generated from 
ontologies in various application domains.  

 
5. Related Work 
 

As introduced earlier, two research projects are 
most related to our work, namely, Gaia and Olympus. 
Gaia is a distributed middleware infrastructure that 
coordinates software entities and heterogeneous 



networked devices contained in a physical space [1]. 
Active Spaces enable user mobility and application 
portability. Olympus enhances Gaia by proposing a 
high-level programming model [2]. Bodhuin et al. 
use an entity description graph to abstract the 
physical world [3]. This graph contains a host of 
hierarchical tuples to define a device and its 
functionalities. Each class of devices inherits 
functionalities from its parent’s interface. These 
functionalities are limited to two interaction modes: 
command and event. Unlike our approach, the 
session mode is not addressed. Also, entity 
descriptions are not integrated in a programming 
model and entity composition is not examined. 
Kalyanpur et al. propose an approach to generating 
Java APIs from OWL ontologies. It attempts to map 
OWL ontology semantics into Java [4]. This 
approach is quite appropriate for distributed 
architectures (e.g., multi-agent environment) in that it 
allows agents to share a common view. However, by 
targeting no particular application domain, this 
approach is too generic to leverage the power of 
mapping ontologies to Java in the framework of 
pervasive computing. 
 
6. Conclusion 
 

We have introduced an approach to integrating the 
ontological description of a pervasive computing 
environment into a programming language. Entities 
in a pervasive computing environment are uniformly 
captured by the notion of a service, whose creation is 
supported by syntactic constructs. Abstract services 
form a hierarchical ontology that represents a design 
framework for developers. An abstract service 
defines semantic properties that characterize 
variations of concrete services. Also, it specifies the 

supported interaction modes. Our proposed 
interaction modes cover a wide range of situations 
and, in particular, enable stream-based services to be 
handled. Verifications on applications are performed 
both at compile and run time. Finally, a framework is 
automatically generated from an ontological 
description of a pervasive computing environment, 
providing the programmer with environment-specific 
operations. 
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