
HAL Id: hal-00305994
https://hal.science/hal-00305994v1

Submitted on 25 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rationale for defining NCIPs (Neighborhood and
Context Interaction Primitives)

Jérémie Albert, Serge Chaumette

To cite this version:
Jérémie Albert, Serge Chaumette. Rationale for defining NCIPs (Neighborhood and Context Interac-
tion Primitives). 2nd International Conference on Ambient Intelligence Developments (AmI.d 2007),
Sep 2007, Sophia Antipolis, France. pp.156-165. �hal-00305994�

https://hal.science/hal-00305994v1
https://hal.archives-ouvertes.fr


Rationale for defining NCIPs

(Neighborhood and Context
Interaction Primitives)

- position paper - ⋆ ⋆⋆

Jérémie Albert and Serge Chaumette

LaBRI, Université Bordeaux I
351 cours de la Libération

33405 Talence cedex
FRANCE

{jeremie.albert,serge.chaumette}@labri.fr

http://www.labri.fr/

Abstract. With the increasing number of mobile terminals, the devel-
opment of applications that will provide new dedicated services by taking
advantage of the technology is an effective challenge. The combination
of such terminals communicating with each other in a peer-to-peer and
dynamically self organized manner is referred to as a Mobile Ad Hoc
NETwork, MANet for short. MANets can be composed of many differ-
ent kinds of devices. To help the developers to cope with their hetero-
geneity, we believe that it is required to precisely (re)define the basic
functions that communication and context interaction primitives can ef-
fectively provide, and to give the precise associated assumptions if any.
We call these primitives Neighborhood and Context Interaction Primi-
tives, NCIPs for short. The rationale for defining NCIPS is the topic of
this position paper.

Key words: neighborhood and context interaction primitives, commu-
nication, primitives, MANets, middleware, context awareness, adapta-
tion

1 Introduction

Mobile Ad-hoc Networks can be composed of many kinds of devices like personal
computers, PDAs, mobile phones or even sensors. These are very heterogeneous
in terms of computing power, memory capacity, operating system (Windows or

⋆ This work is supported by the French Agence Nationale de la Recherche under
contract ANR-05-SSIA-0002-01.

⋆⋆ Java and all Java-based marks are trademarks or registered trademarks of Sun mi-
crosystems, Inc. in the United States and other countries. The authors are indepen-
dent of Sun microsystems, Inc. All other marks are the property of their respective
owners.



2 Rationale for defining NCIPs

UNIX based systems, SymbianOS, TinyOS, etc.), supported programming lan-
guages (Java, C#, NesC, etc.), autonomy (from a few hours to several days),
and radio technology (Wi-Fi, Bluetooth) which affects their potential communi-
cation range. The presence of additional features such as sensors, cameras, etc.,
also depends on the brand of terminal. The management of this heterogeneity
imposes many constraints and makes it mandatory to decide on a number of
assumptions which make application development extremely context dependent.

For instance, assume cars in a vehicular ad hoc network (also known as
VANet [8]) that communicate using some radio technology. There is almost no
chance, if no assumption is made regarding either their relative speeds or the
radio technology that is used, that two cars moving in opposite directions can
communicate because of parameters such as the latency inherent to the connec-
tion establishment process.

It thus appears that most existing middleware have been developed not to
offer universal APIs that could be supported by any communicating device but
for particular devices supporting particular technologies and targeted to a par-
ticular context. They make strong, even if not always clearly stated, assumptions
about the environment and the mode of operation of the target platforms. An
important side effect is that these middleware, making different assumptions can
be neither inter-operable nor universal and the applications developed on top of
them therefore work in very specific contexts.

2 NCIPS

To help the developers to cope with this heterogeneity, still being able to ac-
cess the low level features of the target platforms, we believe that it is required
to precisely (re)define the basic features that communication and context in-
teraction primitives can effectively provide, and to give the precise associated
assumptions if any. We call these primitives Neighborhood and Context Inter-
action Primitives. The topic of this paper is to explain the rationale for this
approach.

The methodology that we have adopted in our preliminary work is as fol-
lows. To decide what paradigms NCIPs must support, we have studied those
existing environments that we consider significant to our approach, such as
TinyOS [2, 11], TOTA [9], JXTA [6], Mate [7] or Squawk [12]. We then have
classified and analyzed the primitives available in these middleware or software
layers. Based on that state of the art, we have defined and given a precise seman-
tics to a number of low level primitives that support similar concepts without
making any hidden assumption.

In this paper, we show by means of examples that even though these primi-
tives are low level because they try to be universal, they can be really useful in
supporting MANet dedicated applications. This is a substantial reason to pursue
the development of this research.



Rationale for defining NCIPs 3

In the future, we intend to use this approach to define a set of universal
primitives (NCIPs) and to develop a middleware that will make them available
on any device integrated within a Mobile Ad hoc Network.

3 NCIPS can effectively support complex operations.
Example of the one way send NCIP.

The goal of this section is to show that in spite of their simplicity, NCIPs can
still be used to develop complex services or high level operations.

To illustrate this point, we consider the (difficult) problem of synchronizing
a number of nodes. More precisely, we have up to three nodes1 that want to
access a critical resource that must not be accessed by more than one node at a
time.

This is usually achieved by some sort of rendezvous [10] and relies on a
number of assumptions on the environment:

– communication is bidirectional;
– communication channels are stable during the execution of the operation;
– etc.

Our approach is different in that we do not want to impose any unnecessary or
unrealistic constraint. We simply rely on basic communication primitives which
are part of our NCIPs. These are:

1. a one way send method (send), one way meaning that it does not return any
information or status and does not guarantee that the target node effectively
receives the message;

2. a receive method (receive).

We then propose the implementation presented algorithm 1. In order to get
access to the shared resource, each node goes through the following steps:

1. randomly choose a neighbor chosenNeighbor (line 26);
2. send a random number n (randomNumberSent in algorithm 1, lines 27 and

28) to chosenNeighbor;
3. send 0 to the other neighbors if any (line 30 to 37);
4. if the number m (message.value in algorithm 1) that is (possibly) received

(line 8) from node chosenNeighbor (m can be received while any other step
of the algorithm is executed) is such that m 6= 0 and m < n then the resource
is acquired for a predefined period of time t2 (line 13) otherwise the node
waits during t2;

5. loop to step 1.

1 The algorithm that we have designed to illustrate our purpose (presented later in this
section) basically synchronizes pairs of nodes. Having more than three nodes could
lead to several simultaneous synchronizations and the resource could be accessed by
more than one node at a time.



4 Rationale for defining NCIPs

Algorithm 1 Resource sharing
1 [...]
2
3 int randomNumberSent = 0;
4 Node chosenNeighbor = null;

5
6 // this method is invoked when a message is received

7
8 void receivedMessage(Node from, Message message) {
9

10 if (from == chosenNeighbor) {
11
12 if (message.value != 0 && message.value < randomNumberSent)
13 // I have the resource and I keep it for t2
14 [...]

15 else // I do not have the resource, I sleep for t2
16 sleep();

17 }
18 }

19
20 // this method is invoked when the internal timer is fired
21
22 void timerFired() {
23
24 // send a random numner n to a random neighbor
25
26 Node chosenNeighbor = selectRandomNeighbor(); // from the static list of neighbors

27 randomNumberSent = randomNumber();
28 send(chosenNeighbor, randomNumberSent);

29
30 // send 0 to all other nodes

31
32 NodeList knownNodes=getNeighborhood(); // get the static list of neighbors
33 Node node= knownNodes.firstNode();

34 while (node != null) {
35 if (node != chosenNeighbor)

36 send(node, 0);
37 node = knownNodes.nextNode();
38 }

39 }
40
41 [...]

The temporal arrangement of the different steps of the algorithm for a sample
run is shown figure 1.

Despite the fact that this algorithm relies on a very basic one way send
method that does not return any information about what it has effectively done,
it still ensures that the shared resource is used by at most one node at a time.

Even though this is out of the scope of this paper, we discuss the performance
of this primitive to show that this is not simply a toy example and that it works in
the real world. The resource sharing algorithm performance depends on several
parameters:

– the number of nodes (two or three) that execute the algorithm;

– the interval where the random number is selected;

– the time t1 required to decide which node is going to have the resource (it
corresponds to steps 1, 2 and 3 of the algorithm);



Rationale for defining NCIPs 5

Caption The node has the resource

The node does not have the resource

Message

Node A

Node B

Steps
1
2
3

4 4 4 4
1
2
3

4 4 4 4
1
2
3

n1 n2 n1 > n2 n1′ n2′ n2′ > n1′ n1′′ n2′′

Fig. 1. Temporal behavior of the resource sharing algorithm executed by two nodes

– the time t2 while the nodes keep the resource or wait for the following round
(step 4 of the algorithm).

For example, for two nodes, if we consider that the probability for each of these
nodes to choose the same random number is negligible, then the utilization ratio
of the shared resource is t2

t1+t2
.

This algorithm has been implemented on a number of Xbow motes [1, 4] run-
ning the TinyOS [2, 11] system and the experimental results effectively confirm
the above analysis.

4 NCIPS can significantly impact efficiency.
Example of the neighborhood density NCIP.

The goal of this section is to show that properly defining some NCIPs to operate
in a really mobile context sometimes makes it possible to improve the efficiency
of algorithms. We illustrate this point with the computation of the neighborhood
density NCIP and its usage in a flooding algorithm.



6 Rationale for defining NCIPs

In a static framework it is relatively straightforward to compute the number
of neighbors of a node (basically because it is stored in a table). When switching
to a mobile context, either such primitives are dismissed or the problems raised
by the mobility of the environment are simply ignored (see below). In our opinion
these solutions are unacceptable.

Density awareness is used in several algorithms [14, 15]. Here we consider the
Delayed Flooding with Cumulative Neighborhood (DFCN) algorithm presented
in [5]. The basic goal of this last algorithm is to propagate information over the
network by using flooding. Based on a multi-criteria optimization approach, it
tries to find a compromise between the number of messages exchanged in the
network and the speed at which the nodes are informed. Its behavior is directed
based on several parameters, among which the number of neighbors, i.e. the
neighborhood density at each node and the ratio of neighbors that already have
been informed. It is shown that considering a density threshold, below which it
is decided not to broadcast the information to the neighborhood, diminishes the
network load without increasing too much the time necessary to inform all the
nodes.

The density computation in a mobile network is usually implemented as
follows. A node regularly broadcasts a beacon to signal its presence to its neigh-
borhood. Based on the collection of all the beacons it is aware of, a node can
then compute the density of its neighborhood. The thing is that because of the
instability of the network, the resulting value is possibly false as soon as it has
been computed. Instead of ignoring this, we propose an alternative in our NCIPs
framework: the result of the density computation primitive contains a stability
value that says how long the information remains true. This can be used to
further improve the algorithm: if the stability period is too short, using the com-
puted density value does not make sens; if it is long enough, the algorithm can
wait for new nodes to arrive or for nodes to leave (which is useful to control
more precisely the number of messages in the network).

This example shows that there can be significant advantages that come from
having low level universal primitives. In this case, instead of hiding information
and problems from the user, giving him access to low level context information
can help optimize the algorithms.

5 NCIPS can restore hidden features.
Example of anonymity ensured by the one way
broadcast NCIP.

Assume the following problem. A piece of information, say I, is stored at a given
node, say N. The goal of N is to get rid of I, after making sure that it is now
stored by another node of the network.

Using standard primitives this would most likely be implemented as show
algorithm 2.

Let us analyze this algorithm. First, it makes a number of implicit assump-
tions. At line 23, it supposes that it can access the identities of its neighbor



Rationale for defining NCIPs 7

Algorithm 2 Information storage with the standard primitives
1 [...]
2
3 // this method is invoked when a message is received
4
5 void receivedMessage(Node from, Message message) {
6
7 switch (message.getType()) {
8
9 case DATA_TO_STORE : // someone passed me a piece of data (I) to store

10 I = message.getData();
11 send(from, ACK);

12 break;
13
14 case ACK : // some one as got my data I, and I can thus get rid of it

15 I = null;
16 break;

17 }
18 }

19
20 // this method is invoked when the internal timer is fired
21
22 void timerFired(){
23 Node neighbor = selectRandomNeighbor();

24 send(neighbor, I);
25 }
26
27 [...]

nodes. It furthermore assumes that the information that it gets is stable and
that it can use it at line 24. Nevertheless, in a real world mobile network, it
might be the case that between the execution of these two lines of code, the tar-
get node has moved or disappeared and cannot be accessed any longer. So, there
is an implicit assumption about the stability of the network at that point of the
algorithm. The same kind of assumption is made line 11. In the real world, there
is no reason why the target of the ACK message should be in reach of the current
node at that time. Second, from a functional point of view, there is an indirect
side effect of using a high level communication primitive: the initial (respectively
the final) owner of the information knows which node is finally (respectively was
initially) owning the information.

The point is that we have considered an algorithm designed for a reliable
static framework and we have ported it almost directly to a totally distributed
context. This implicitly assumes a number of hypothesis that do not hold in a
MANet.

Therefore we have designed algorithm 3 which is a NCIP based implementa-
tion. We just assume a communication primitive that makes it possible to broad-
cast a message without any knowledge of the neighborhood, without any guaran-
tee regarding the possible reception of the message and without any knowledge
about the identity of any possible receiver. We call this NCIP one way broadcast.

The behavior of the algorithm is as follows. A node that holds the informa-
tion broadcasts it at regular intervals (line 27). It still holds the information till
an acknowledgment gets back to it through the network. Nevertheless, this ac-



8 Rationale for defining NCIPs

knowledgment does not necessarily come from a node that directly received the
message since there is no guarantee that we have bidirectional communication.
Rather, when a node receives the information, it broadcasts an acknowledgment
to its neighborhood (line 9). This neighborhood in turn broadcasts this ACK
(line 17), until a given TTL (the TTL management is not shown on the algo-
rithm to make it easier to read). At some point in time, the initial node might
receive an acknowledgment. It then removes the information (line 14). While
no acknowledgment is received, the node simply holds the information and at
some point possibly restarts the whole process. The behavior of the algorithm is
illustrated figure 2.

Algorithm 3 Information storage with NCIPs
1 [...]
2
3 void receivedMessage(Node from, Message message) {
4
5 switch (message.getType()) {

6
7 case DATA_TO_STORE :

8 I = message.getData();
9 send(*, (ACK, I.number));

10 break;
11
12 case ACK :

13 if (message.number == I.number) { // this is the ACK for our own I
14 I = null;

15 }
16 else {
17 send(*, (ACK, message.number));

18 }
19 break;

20 }
21 }

22
23 void timerFired(){
24
25 if (I!=null) {
26 I.number++;

27 send(*, I);
28 }
29 }

30
31 [...]

This algorithm has been simulated on an adaptation to a mobile context
of the DA-GRS simulator [13] that is developed in our team. This simulation
allowed us to validate this algorithm in an experimental way.

By adapting/developing this algorithm based on NCIPS we have gained two
major benefits: no unrealistic or useless assumption on the network mobility nor
communication capacities have to be made; the privacy problem described above
disappears, i.e. no node knows which other nodes now store the information or
have stored the information in the past.



Rationale for defining NCIPs 9

b

b

b

b

b

b

b

(1)

(1)

(2)
(2)

(3)

(3)

(4)
(4)

(5)

(5)

Caption

(n) : the nth step

n=1 ⇒ message = INFO

n≥2 ⇒ message = ACK

Fig. 2. The different steps of the information storage algorithm on a sample network

Once again this shows that working with too high level functions necessarily
leads to implicit assumptions that are basically false in a MANet. It is further-
more especially interesting to see that we can achieve a better result (here in
terms of anonymity) with less assumptions.

6 Conclusion and future work

In this paper we have introduced the notion of Neighborhood and Context In-
teraction Primitives (NCIPs). These are the most basic features that can be
supported by a mobile network without making unrealistic assumptions. We
have described a number of examples that illustrate some interesting features
of NCIPs: they can be used to define complex operations (example 1); they can
improve the efficiency of algorithms (example 2); they can guarantee properties
that are not supported by more standard primitives (example 3).

Nevertheless, this is preliminary work and a lot remains to be done. We are
currently working on the definition of a number of basic primitives. Based on
these definitions we explore the higher level operations and algorithms that they
make possible to implement. In the short term we will implement these primitives



10 Rationale for defining NCIPs

on several platforms that we are working on in the team, i.e. mobile phones,
PDAs, and sensors. We furthermore work on a formal model based on a graph
rewriting approach[3] that we have extended to deal with dynamic networks.

References

1. Crossbow Technology. http://www.xbow.com/.
2. TinyOS: An open-source OS for the networked sensor regime, 2007. Available at

http://www.tinyos.net/.
3. A. Casteigts and S. Chaumette. Dynamicity-Aware Graph Relabeling Systems

(DA-GRS), a local computation-based model to describe MANet algorithms. In
International Conference on Parallel and Distributed Computing and Systems
(PDCS’05), Dallas, USA, 2005. IASTED Press.

4. Jason L. Hill and David E. Culler. Mica: A Wireless Platform for Deeply Embedded
Networks. IEEE Micro, 22(6):12–24, 2002.

5. Luc Hogie. Mobile Ad Hoc Networks: Modelling, Simulation and Broadcast-based
Application. PhD thesis, University of Le Havre, University of Luxembourg, 2007.

6. Sun Microsystems Incorporation. Jxta v2.0 protocols specification, January 2007.
7. P. Levis and D. Culler. Mate: A tiny virtual machine for sensor networks. In

International Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA, Oct. 2002.

8. Jun Luo and Jean-Pierre Hubaux. A survey of inter-vehicle communication. Avail-
able at citeseer.ist.psu.edu/luo04survey.html.

9. M. Mamei, F. Zambonelli, and L. Leonardi. Tuples On The Air: a middleware
for context-aware computing in dynamic networks. In IEEE, editor, Porceedings
of the 2nd International Workshop on Mobile Computing Middleware at the 23rd
International Conference on Distributed Computing Systems (ICDCS), pages 342–
347, Providence, RI, USA, May 2003.

10. Y. Métivier, Nasser Saheb, and Akka Zemmari. Randomized rendezvous. In Collo-
quium on mathematics and computer science: algorithms, trees, combinatorics and
probabilities, Trends in mathematics, pages 183–194. Birkhäuser, 2000.

11. S. Madden P. Levis, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. Ambient Intelligence, chapter TinyOS:
An Operating System for Sensor Networks, pages 115–148. Springer, 2005.

12. Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels, and Derek White.
JavaTMon the bare metal of wireless sensor devices: the squawk Java virtual ma-
chine. In VEE ’06: Proceedings of the 2nd international conference on Virtual
execution environments, pages 78–88, New York, NY, USA, 2006. ACM Press.

13. The DA-GRS simulator. http://www.labri.fr/perso/casteigt/simulator.html.
14. Ting Wang, Shuang Hao, Ping Wang, and Gang Peng. Efficient and density-aware

routing in wireless sensor networks. In The 15th IEEE International Conference
on Communication and Networks (ICCCN’06), 2006.

15. Sau Yee Wong, Joo Ghee Lim, S.V. Rao, and W.K.G Seah. Density-aware hop-
count localization (DHL) in wireless sensor networks with variable density. In
Wireless Communications and Networking Conference, IEEE, pages 1848 – 1853
Vol. 3, 2005.


