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Abstract

The general setting of regression analysis is to identify a relationship be-
tween a response variable Y and one or several explanatory variables X by
using a learning sample. In a prediction framework, the main assumption for
predicting Y on a new sample of observations is that the regression model
Y = f(X) + € is still valid. Unfortunately, this assumption is not always
true in practice and the model could have changed. We therefore propose
to adapt the original regression model to the new sample by estimating a
transformation between the original regression function f(X) and the new
one f*(X). The main interest of the proposed adaptive models is to allow
the build of a regression model for the new population with only a small
number of observations using the knowledge on the reference population.
The efficiency of this strategy is illustrated by applications on artificial and
real datasets, including the modeling of the housing market in different U.S.
cities. A package for the R software dedicated to the adaptive linear models
is available on the author’s web page.

Key words:  regression adaptive, estimation, knowledge transfer, linear

transformation models, housing market in different U.S. cities.
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1. Introduction

The general setting of regression analysis is to identify a relationship (the
regression model) between a response variable and one or several explanatory
variables. Most of the works in regression analysis has focused on the nature
of the regression model: linear model [1], generalized linear model [2] and non

linear model [3]. We refer to [4] for a general survey on regression analysis.

1.1. The problem of adapting a knowledge to a new situation

In this paper, we are concerned with the following question: how to
adapt an existing regression model to a new situation, for which the variables
are identical (with a possible different probability density distribution) but
where the relationship between response and explanatory variables could
have changed? As a motivating example, our discussion will be centered on
the following socio-economical application: a real-estate agency of the US
East coast has to its disposal, through their long experience in this area,
a regression model of the housing price versus several housing descriptive
variables estimated using a large learning sample. To conquer new markets,
this company plans to open several agencies in the West coast, and would
use its regression model without having to spend a lot of time and money
in collecting new housing market data for this area. Considering that the
link between housing descriptive variables and housing price for the West
and East coasts is, on the one hand, probably not the same but, on the other
hand, not completely different, this work will consider a set of transformation
models between both West and East coast regression models. This paper will

therefore focus on transferring the knowledge on a reference population to a
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new population by inferring the relationship between both regression models.
Moreover, the exhibition of a link between both populations could be helpful

for the interpretation of the modeled phenomenon.

1.2. Related works

To our knowledge, there have been only few contributions dealing with
this original problem although it is very interesting and very frequent in
practical applications. In the machine learning community, a related prob-
lem is investigated under the keyword Covariate Shift. The covariate shift
problem considers that the probability density of the new data is different
from the learning data and the regression model is assumed to be conserved.
Thus, if the regression model is exactly known, a change in the probability
distribution of the explanatory variables is not a problem. Unfortunately,
this is never the case in practice and the regression model estimated with the
learning data could be very disappointing when applied to data with a dif-
ferent probability distribution. Several recent works [5-9] have contributed
to analyze this context. However, most of these works need to know the
probability distribution of the new data or at least an estimation of this
probability distribution. In practice, this is a difficult problem which re-
quires a sufficiently large sample of observations. The focus of the present
work is more general and does not assume that the relationship between ex-
planatory and response variables is conserved from the learning data to the
new data. In addition, the situation under review in this paper considers
that only few learning data are available for the new situation, which is not
enough to correctly estimate in practice their probability distribution. In su-

pervised classification, a similar problem was studied in [10] on quantitative

3
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variables and in [11] in the case of binary variables. The authors considered
a model-based discriminant rule for classifying individuals from a population
which differs from the learning one. For this, they introduced a family of
linear models modeling the transformation between the reference population
and the new population. An extension of this work to logistic regression was
recently proposed in [12]. Finally, some other works cover the problematic
of knowledge transfer in specific industrial contexts. For instance, [13] gives
a good overview of solutions for model transfer in the field of Chemomet-
rics. Among the proposed transfer models, the most used models are the
piecewise direct standardization [14] and the neural network based nonlinear
transformation [15]. Several works [16, 17] have also considered this problem
in the field of semiconductor industry.

This paper is structured as follows. Section 2 formulates the problem of
adapting an existing regression model to a new population and Section 3 in-
troduces a family of transformation models to solve this problem. Inference
and model selection procedures are discussed in Section 4. Section 5 provides
a simulation study in a spline regression context and two real applications
including the modeling of the housing market in different U.S. cities. Finally,

some concluding remarks and future directions are discussed in Section 6.

2. Problem formulation

In this section, after having reminded the general framework of regression
analysis, the problem of adapting an existing regression model to another

population is formulated.
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2.1. Linear models for regression

In regression analysis, the data S = {(x1,¥1), ..., (Xn, ¥n)}, arising from
a population P, are assumed to be independent and identically distributed
samples of a couple of variables (X,Y) with an unknown distribution. The
observations x;, j = 1,...,n, are the values of the deterministic explanatory
variable X = (XM ... X®))! € RP and the corresponding y; are the real-
izations of the stochastic variable Y € R. A general data modeling problem
consists in identifying the relationship between the explanatory variable X
(known as well as covariate) and the response variable Y (or dependent vari-
able). Both standard parametric and non-parametric approaches consider

the following regression model:

Y = f(X,8) + e (1)

where the residuals ¢ ~ N(0,0?) are independent and where 3 is the vec-
tor of regression parameters. This model is equivalent to the distributional
assumption that:

VX~ N(f(X.8),0%),

where the regression function f(x,3) is defined as the conditional expec-
tation E[Y|X = x]. Therefore, the only way to specify the link between
the response variable Y and the covariate X is through the assumptions on
f(x,8). In particular, parametric regression achieves this connection by as-

suming a specific form for f(x,3). The most common model is the linear

form (cf. [18]): )
Fx.8) = Y i), @)
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where B = (8o, A1, - - ., 34)" € R are the regression parameters, 1p(x) = 1

and (1;)1<i<q is a basis of regression functions:
'QZ)Z‘ :RP — R)

which can be for instance the identity, polynomial functions, splines func-
tions [19] or wavelets [20]. We refer to [4] for a general survey. Let us notice
that the usual linear regression occurs when d = p and ;(x) = @ for
i = 1,...,d. The regression function (2) can be also written in a matrix

form as follows:
f(x,8) = BU(x), (3)
where ¥ (x) = (1,91(x), ..., ¥a(x))".

2.2. How to adapt a regression model to another population?

Let us now assume that the regression function f has been estimated in
a preliminary study by using a sample S of population P, and that a new re-
gression model has to be adjusted on a new sample S* = {(x},v7), ..., (X:-, y:.) },
measured on the same explanatory variables but arising from another pop-

*

ulation P* (n* is assumed to be small). The difference between P and P*
can be for instance geographical (as in the U.S. housing market application)
or temporal. However, the nature of both populations has to be similar to
match the purpose of this paper. The new regression model for P* can be

classically written:
Y*|X* ~ N(f*(X*,,B*), 0_*2)’ (4)
with

d*
P8 = 3 B () = B (x).
=0

6
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The aim of this work is therefore to define a link between the regression

functions f and f*.

3. Adaptive linear models for regression

In this section, a link between the regression function of P and P* is
exhibited, and a family of transformations is then introduced to solve the
problem of adapting an existing regression model of a reference population P

to a new population P*.

3.1. The transformation model

In order to exhibit a link between both regression functions, we make the

following important assumptions.

Assumption (A1). First, we postulate that the number of basis functions
and the basis functions themselves are the same for both regression models
(d* = d and ¥} = 1, Vi = 1,...,d), which is natural since the variables are
identical in both populations. The regression function of the population P*

can be therefore written:
f*(x*,ﬁ*) — /6*t\I[<X*)

Assumption (A2). Second, we assume that the transformation between f
and f* applies only on the regression parameters. We therefore define A,
the transformation matrix between the regression parameters 3 and (3%, as

follows:

B =AB,
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and this yields to the following expression of f*:
f1(x5 AB) = (AB)U(x7). (5)

Given that the number of parameters to estimate in the transformation ma-
trix A is (d+1) x (d+1) and that the number of free parameters for learning
a new regression model directly from the sample S* is (d + 1), the transfor-
mation model (5) is consequently highly over-parametrized. It is therefore
necessary to introduce some constraints on the transformation model such

that the number of free parameters to estimate is lower or equal to d.

Assumption (A3). Third, we assume that the relation between the response
variable and a specific covariate in the new population P* only depends on
the relation between the response variable and the same covariate in the
population P. Thus, for ¢ = 0,...,d, the regression parameter [ only
depends on the regression parameter 3; and the matrix A is consequently
diagonal. The transformation can be finally written in term of the regression

parameters of both models as follows:
where \; € R is the i-th diagonal element of A.

3.2. A family of transformation models

Since the aim of this study is to learn a regression model for P* with only
few observations, we define in this section parsimonious models by imposing
some constraints on the transformation model (6). First, we allow some of the

parameters \; to be equal to 1 (in this case the regression parameters 3 are
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equal to f3;). Second, we allow as well some of the parameters \; to be equal
to a common value, i.e. \; = A for given 0 < i < d. The number of possible

models obtained with such a strategy is consequently very large (formally

ZZ:;IO (d;?) x (1+Y0, (7;))) and it obviously impossible to consider all
these models in practice. These models, named adaptive linear models in the
sequel, are declined below into two families: specific transformation models

and prior-based transformation models.

3.2.1. Specific transformation models
We propose in this paragraph a family of 7 transformation models, se-
lected on parsimony and interpretability criteria, ranging from the most com-

plex model (hereafter M0) to the simplest one (hereafter M6):

e Model MO: 35 = XMoo and BF = \;f3;, for i = 1,...,d. This model is
the most complex model of transformation between the populations P
and P*. It is equivalent to learning a new regression model from the
sample S*, since there is no constraint on the d + 1 parameters 3}
(1 =0,...,d), and the number of free parameters in A is consequently

d+ 1 as well.

e Model M1: 35 = [y and 3 = \;53; for ¢ = 1, ..., d. This model assumes

that both regression models have the same intercept (.

o Model M2: 35 = Ny and 3 = A3, for i = 1, ..., d. This model assumes
that the intercept of both regression models differ by the scalar \y and

all the other regression parameters differ by the same scalar .

o Model M3: 35 = A\Gy and 37 = A\G; for i =1, ..., d. This model assumes
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Table 1: Complexity (number of parameters v) of the transformation models.

Model MO M1 M2 M3 M4 M5 M6

Bj is assumed to be Ao B0 Aofo ABo Lo Aofo Do
Gf is assumed to be  X\;G; NG AGi MG MG 5 Bi

(2

Nb. of parameters v d+1 d 2 1 1 1 0

that all the regression parameters of both regression models differ by

the same scalar \.

e Model M4: 35 = By and 37 = A\G; for i = 1, ...,d. This model assumes
that both regression models have the same intercept (3, and all the

other regression parameters differ by the same scalar .

o Model M5: 35 = Moy and 3 = 3; for i = 1,...,d. This model as-
sumes that both regression models have the same parameters except

the intercept.

e Model M6: 35 = By and 3 = ; for « = 1,...,d. This model assumes

that both populations P and P* have the same regression model.

The numbers of parameters to estimate for these transformation models are
presented in Table 1. The choice of this family is arbitrary and motivated
by the will of the authors to treat similarly all the covariates in this general
discussion. However, in practical applications, we encourage the practician
to consider some additional transformation models specifically designed to
his application and motivated by his prior knowledge on the subject. This is

discussed in the next section.

10
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3.2.2. Prior-based transformation models

Although only seven pragmatic transformation models have been pre-
sented in the previous section, some other transformation models could be
considered as well, for which the complexity (in number of parameters) will
be intermediate between the M1 complexity (d) and the M2 complexity
(2). Indeed, the practician could have in some specific cases to use in-
termediate transformation models suggested by some prior informations on
the covariates, which leads to impose specific constraints on parameters \;
for given ¢ € {1,...,d}. For instance, let us consider the specific transfor-
mation matrix A = diag(Ag, A1, A, ..., \) where diag(Ag, A1, A, ..., A) is the
(d+ 1) x (d + 1) diagonal matrix having {Ag, A1, A, ..., A} on its diagonal.
This model assumes that the regression parameters (3;, @ = 2, ..., d are trans-

formed in the same manner whereas the intercept and (3; are not.

4. Estimation procedure and model selection

The estimation procedure associated with the adaptive linear models,
proposed in the previous section, is made of two main steps corresponding to
the estimation of the regression parameters of the population P and to the
estimation of the transformation parameters using samples of the popula-
tion P*. The regression parameters of P* are then obtained by plug-in. The
ordinary least square (OLS) method is used, but we present in this paper
the equivalent maximum likelihood estimation method in order to compute

penalized likelihood model selection criteria for model selection.

11
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4.1. Estimation of the regression parameters

Let us consider a data set of inputs x = {xy,...,x,} with corresponding
response values grouped in a column vector y = (y1,...,%,)". Under the

assumptions of the model (2), the log-likelihood of y given x, B and o2 is:

n

Ini(y:x,B,0%) = ~nln(ovam) — 13 3" (5~ AU(x)’ . (D

j=1
Maximizing the log-likelihood according to 3 is equivalent to minimizing
Z?Zl (yj - Btllf(xj))2 and thus the maximum likelihood estimator is equiv-
alent to the ordinary least square estimator:

37 = <\Iﬂw>*1\1ﬂy,

& = - Z — B(x;))”.
where W is a (n) x (d+1) matrix formed by the row vector ¥(x;)" (1 < j < n).

4.2. Estimation of the transformation parameters

For this second step, it is assumed that 3 is known (in fact it is estimated
in the previous step). As previously noticed, the full model M0 corresponds
to a completely new regression model adjusted on the sample S*. Similarly,
the model M6, which assumes no transformation between P and P*, does
not require the estimation of any transformation parameters. Let us consider
now a sample x* = {x7},...,x}.} drawn from P* with corresponding response
values y* = (y5,...,y5)". By replacing 8* = AB3 in (7), the log-likelihood
of model (4) is:

Inl(y*;x*, A, 02) = —n*In(ov/2r) — 1y — AT (8)

202
J=1

12
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This log-likelihood must be maximized according to the transformation ma-

trix A, what leads to the OLS estimator:

~

A" = argmin 3 (57 — (AB) (), (9)

AeD ‘T
where D is a set of diagonal matrices depending on the model of transforma-
tion at hand. For instance, with the model M3, this set is D = {Al441, A € R}

where 4,4 is the identity matrix of size d + 1.

4.2.1. Specific transformation models
Least square estimators of the specific models M1 to M5 are derived

below.

Model M. As the transformation matrix is A = diag(1, A1, ..., Ag), the log-
likelihood (8) can be written

n*

1
lnl(y*;x*,A,UQ) = —n"In(oVv2m) — o) Z (?/j* — By — BtNlAtNl\PNl(X;)f

j=1
where A, and 3_, correspond respectively to A and @ without the k-th
row. This maximization is therefore similar to the maximization of (7) and
leads to the following estimator of A; = diag(\, ..., A\g):

~OLS ot N " «
A~1 = (q’~16~16t~1‘1’N1) 1611‘I’~1(y —ﬁo)

where W™ is a (n*) x (d + 1) matrix formed by the row vector ¥(x})" (1 <

243 j S n*)

244

245

Model Ms. The transformation matrix has in this case the form A = diag(Xo, A, . ..

The maximization according to A of the following log-likelihood:

n*

1
lnl<y*;x*,A702) = —n* ln(av 271') ~ 503 Z (y; — Bodo — 511A21\I’N1(X;))2

j=1

13
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leads to the estimator of Ay, = (Mg, A)%:

~OLS N .

Ay, =(Q'Q)'QY,
where

Bo Yo B(x))
Q= :

Bo isi Bia(x;)
Model Ms. For this model, the transformation matrix is formed by only one
real parameter and A = diag(\, A,...,A). The maximization of the log-

likelihood according to A leads to the following estimator:
j\OLS — (\Il*tﬁﬁt\:[l*)_lﬁt\:[l*y*_

Model My. In this case, the transformation matrix is formed by a constant
and a unique transformation parameter A\. The transformation matrix has
therefore the form A = diag(1, )\, ..., \) and the corresponding estimator of
A is:

S‘OLS = (\I’i1ﬁ~15t~1‘1’*~1)715t~1‘1’i1(y* - 50)-

Model M. For this model, the transformation matrix is A = diag(Xg, 1,...,1)

and the estimator of \g is:

N 1 - * . *
M = 7 Bo ;[yj — ; Bibi(x3)].

4.2.2. Prior-based transformation models
As previously discussed, the practician may prefer in some cases to use

some particular transformation models suggested by some prior informations.

14
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A generic transformation model including all possible particular transforma-

tion models and the corresponding estimators is described below.

In the

sequel, the subscripts «y; will be associated with regression parameters of the

new population to estimate using the relation ﬁ;j =\, 0, with j =1,...,q

and v; € {0,...,d}. In the same manner, the subscripts 7, will be associ-

ated with regression parameters of the new population which are similar to

the original population parameters, i.e. ﬁ;j = 0, with j =1,...,p —q and

v; € 0,...,d. The regression model for the new population can be written as

follows:

Y = QA,

where:

o Ay= (NN,

g

e Q=

ﬁ’hw’h<x1) ﬁququﬁ)

Bty () -+ Bra¥rq (zn)

ﬁ%w%(xl) ﬁw’q@by’q(xl)

By 3 (T0) -+ ﬁv’qu’q(xn)

+Q1, , +e

e 1, . is the unity vector of dimension p — q.

Consequently the maximum likelihood estimator of A, is

~OLS

A, =(QQ)

- Qt (y - lefq) .

15
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4.3. Full and profile likelihood estimation

In this work, a reference regression model on the population P is as-
sumed to be known and is transformed in a new regression model adapted to
a new population P* by estimating a transformation between both reference
and new populations. However, the regression parameters of the reference
model are in practice never known but only estimated from a given sam-
ple S. Therefore, starting from this estimation for inferring the new regres-
sion model could be disappointing in some cases, particularly when the size
n of S is not large too. As both populations P and P* are assumed to be
linked, it could be interesting to use both samples S and S* for improving the
estimation of the regression parameter 3 as well. But, as the parameters 3
and A appear as a product in the regression equation (5) for the sample S*,
the full likelihood estimation of (3, A) can not be achieved directly and is
replaced by a profile likelihood estimation procedure. Starting from a ini-
tialization value B8 of B, the following two steps iteratively alternate until
the growth of the model likelihood is lower than a given threshold. At the

iteration ¢:

" ~(g—1
1. Compute the estimation A(q) of A given a current value of B(q : (this
step was the purpose of the previous section),
2. Compute the estimation B(Q) of B given the estimation of A(q) obtained

in the previous step.

For a given estimation AY of A = diag(Xo, A1, ..., Ag), the estimation
of B consists in maximizing the log-likelihood of the considered regression
model (2) for the sample S and the log-likelihood of the same model in
which the regression function ¢; are multiplied by ng) for the sample S*. By

16
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introducing ¥y = (Y1, -+, Yn, Y5, - - -, ¥ )" and U the (n+n*) x (d+1) matrix

defined as follows:

Yo(x1) - tYa(xa)
¥ — Q/JO(Xn) T wd(xn)
AP o(x) o AP ()
@ D2 *
0 w(](Xn) d wd<xn)
the estimator of 3 given AY is:
BOLS _ (\ilt\’]v:l)il\ilty_

4.4. Assumption validation and model selection

In regression analysis, there is two indispensable steps: validation of the

model assumptions and selection of the regression model.

Assumption validation. An important step in regression analysis is the vali-
dation of the linear model assumptions: independence and homoscedasticity
of the residuals, linearity of the regression. In this context, several statistical
tests have been defined, see for instance [4], and the practician would have
to validate the linear model assumptions for the selected regression model as
usually. In this paper the regression model for the population P is known
and the estimation of the regression model for another population P* is in-
vestigated, and it would be natural to test the equality of both regression
models [21]. Unfortunately, this can not be achieved easily since there are

too few available data in S* to efficiently estimate the regression model on

17
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P*. Nevertheless, the case of equality of the populations P and P* is con-
sidered by the model M6, and a model selection procedure, described in the

next section, is carried out in place of the regression equality test.

Model selection. The second important step is the selection of the most ap-
propriate model of transformation between the populations P and P*. We
propose to use three well-known criteria. The reader interested in a com-
parison of the respective performance of these three criteria could refer for
instance to [19]. The first criterion is the PRESS criterion [22], representing
the sum of squared prediction errors computed on a cross-validation scheme,

which is defined by:

PRESS — ni Sl - 50
j=1
where ij’fij is the prediction of y; obtained by the regression model estimated
without using the j-th individual y; of the sample S*. This criterion is
one of the most often used for model selection in regression analysis, and
we encourage its use when its computation is numerically feasible. Both
following penalized likelihood criteria are less computationally heavy. They
consist of selecting the models leading to the highest likelihood but penalizing
those which have a large number of parameters. The Bayesian Information

Criterion (BIC, [23]) is defined by:
BIC =—-2Inl{+vinn®,

where /¢ is the maximum likelihood value and v is the number of estimated

parameters (see Table 1). With the same notations, the Akaike Information

18
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Criterion (AIC, [24]) penalized the log-likelihood by 2v. For all these three

criteria, the most adapted model is the one with the smallest criterion value.

5. Experimental results

In this section, experimental results on artificial and real data illustrate

the main features of the adaptive linear models.

5.1. Sitmulation study

This first experiment aims to evaluate the ability of the adaptive linear
models, introduced in Section 3, to find the transformation between popula-
tions P and P* as well as the ability of the model selection criteria to select

the most appropriate transformation model.

Ezperimental setup. Firstly, a one-dimensional regression model was gener-
ated for the reference population P on a basis of natural cubic Splines with
5 degrees of freedom. Then, a regression model was built for the new popu-
lation P* from the model of P by multiplying the regression parameters of P
by a given transformation matrix A. Since it is difficult to report here numer-
ical experiments for all existing transformation models, results are presented
for only one transformation model: the model M2. Similar results could be
obtained for the other transformation models. The true regression model
for P is y = sin(z) + sin(2z) + log(1 + z), for € [0,x], and the specific
transformation matrix A = diag(1.5,2,2,2,2,2) was chosen for generating
the regression model of P*. The size n of the sample S was fixed to 1000.
In order to compare the performance of the different transformation mod-

els, some observations for population P* were simulated from its regression
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Figure 1: Regression models of the populations P and P* and simulated observations of
population P*: the model of P was estimated on a basis of cubic Spline functions with 5
degrees of freedom and the model of P* was obtained from the model of P by multiplying
its parameters by (1.5,2,2,2,2,2).

model. These observations were simulated with an additive Gaussian noise
e ~ N(0,0.3). Figure 1 shows the regression models for both populations
P and P* as well as 100 observations simulated from the regression model
of P*. The simulated observations of population P* were used in the ex-
periment by the different linear transformation models for estimating the
transformation between P and P*. The values of the three model selection

criteria, presented in Section 4.4, were computed for each model to verify
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their ability to find the most appropriate transformation model. Finally, the
protocol described above was applied for different dataset sizes ranging from
25 to 1000 observations for studying the effect of the learning dataset size on
the prediction ability of the different models. The experiments were repeated

50 times in order to average the results.

Experimental results. Table 2 presents the numerical evaluation of the ability
of the adaptive linear models M0, M1, M2, M3, M4 and M5 to estimate the
transformation parameters and of the ability of the model selection criteria
to find the most appropriate transformation model. The first and the sec-
ond columns of Table 2 respectively indicate the size of the learning dataset
and the name of the used transformation model. The third, fourth and fifth
columns respectively give the values of the model selection criteria PRESS,
BIC and AIC associated to each model. Finally, the sixth column provides
the mean square error (MSE) computed on a test dataset different from the
learning set. The bold numbers of the table correspond to the “best values”
of each column for a given dataset size (let us remind that for the three model
selection criteria, the most appropriate model is the one associated with the
smallest value). On the one hand, it appears clearly that both PRESS, BIC
and AIC select the transformation model M2 as the most appropriate for
modeling the transformation between P and P* and that corresponds to the
truth. The first conclusion is that these three criteria are well suited to select
the transformation model in such a case. On the other hand, it can be no-
ticed that the model MO, which corresponds to the usual OLS model on P*,
is very sensitive to the size of the dataset used for learning whereas the adap-

tive linear models M1 to Mb are less sensitive. Furthermore, the model MO
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Table 2: Evaluation of the model selection and of the parameter estimation on data
simulated according to the model M2 on a basis of cubic Spline functions for different
dataset sizes: PRESS, BIC, AIC and MSE values are per point, and the MSE value was

computed on a test dataset.

n* Model PRESS BIC AlIC MSE
MO 24283.92 16.326 16.033