
HAL Id: hal-00305987
https://hal.science/hal-00305987v3

Submitted on 30 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Linear Models for Regression: improving
prediction when population has changed

Charles Bouveyron, Julien Jacques

To cite this version:
Charles Bouveyron, Julien Jacques. Adaptive Linear Models for Regression: improving prediction
when population has changed. Pattern Recognition Letters, 2010, 31 (14), pp.2237-2247. �hal-
00305987v3�

https://hal.science/hal-00305987v3
https://hal.archives-ouvertes.fr


Adaptive linear models for regression: improving

prediction when population has changed

Charles Bouveyrona, Julien Jacquesb
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Abstract

The general setting of regression analysis is to identify a relationship be-

tween a response variable Y and one or several explanatory variables X by

using a learning sample. In a prediction framework, the main assumption for

predicting Y on a new sample of observations is that the regression model

Y = f(X) + ǫ is still valid. Unfortunately, this assumption is not always

true in practice and the model could have changed. We therefore propose

to adapt the original regression model to the new sample by estimating a

transformation between the original regression function f(X) and the new

one f ∗(X). The main interest of the proposed adaptive models is to allow

the build of a regression model for the new population with only a small

number of observations using the knowledge on the reference population.

The efficiency of this strategy is illustrated by applications on artificial and

real datasets, including the modeling of the housing market in different U.S.

cities. A package for the R software dedicated to the adaptive linear models

is available on the author’s web page.

Key words: regression adaptive, estimation, knowledge transfer, linear

transformation models, housing market in different U.S. cities.
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1. Introduction1

The general setting of regression analysis is to identify a relationship (the2

regression model) between a response variable and one or several explanatory3

variables. Most of the works in regression analysis has focused on the nature4

of the regression model: linear model [1], generalized linear model [2] and non5

linear model [3]. We refer to [4] for a general survey on regression analysis.6

1.1. The problem of adapting a knowledge to a new situation7

In this paper, we are concerned with the following question: how to8

adapt an existing regression model to a new situation, for which the variables9

are identical (with a possible different probability density distribution) but10

where the relationship between response and explanatory variables could11

have changed? As a motivating example, our discussion will be centered on12

the following socio-economical application: a real-estate agency of the US13

East coast has to its disposal, through their long experience in this area,14

a regression model of the housing price versus several housing descriptive15

variables estimated using a large learning sample. To conquer new markets,16

this company plans to open several agencies in the West coast, and would17

use its regression model without having to spend a lot of time and money18

in collecting new housing market data for this area. Considering that the19

link between housing descriptive variables and housing price for the West20

and East coasts is, on the one hand, probably not the same but, on the other21

hand, not completely different, this work will consider a set of transformation22

models between both West and East coast regression models. This paper will23

therefore focus on transferring the knowledge on a reference population to a24
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new population by inferring the relationship between both regression models.25

Moreover, the exhibition of a link between both populations could be helpful26

for the interpretation of the modeled phenomenon.27

1.2. Related works28

To our knowledge, there have been only few contributions dealing with29

this original problem although it is very interesting and very frequent in30

practical applications. In the machine learning community, a related prob-31

lem is investigated under the keyword Covariate Shift. The covariate shift32

problem considers that the probability density of the new data is different33

from the learning data and the regression model is assumed to be conserved.34

Thus, if the regression model is exactly known, a change in the probability35

distribution of the explanatory variables is not a problem. Unfortunately,36

this is never the case in practice and the regression model estimated with the37

learning data could be very disappointing when applied to data with a dif-38

ferent probability distribution. Several recent works [5–9] have contributed39

to analyze this context. However, most of these works need to know the40

probability distribution of the new data or at least an estimation of this41

probability distribution. In practice, this is a difficult problem which re-42

quires a sufficiently large sample of observations. The focus of the present43

work is more general and does not assume that the relationship between ex-44

planatory and response variables is conserved from the learning data to the45

new data. In addition, the situation under review in this paper considers46

that only few learning data are available for the new situation, which is not47

enough to correctly estimate in practice their probability distribution. In su-48

pervised classification, a similar problem was studied in [10] on quantitative49
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variables and in [11] in the case of binary variables. The authors considered50

a model-based discriminant rule for classifying individuals from a population51

which differs from the learning one. For this, they introduced a family of52

linear models modeling the transformation between the reference population53

and the new population. An extension of this work to logistic regression was54

recently proposed in [12]. Finally, some other works cover the problematic55

of knowledge transfer in specific industrial contexts. For instance, [13] gives56

a good overview of solutions for model transfer in the field of Chemomet-57

rics. Among the proposed transfer models, the most used models are the58

piecewise direct standardization [14] and the neural network based nonlinear59

transformation [15]. Several works [16, 17] have also considered this problem60

in the field of semiconductor industry.61

This paper is structured as follows. Section 2 formulates the problem of62

adapting an existing regression model to a new population and Section 3 in-63

troduces a family of transformation models to solve this problem. Inference64

and model selection procedures are discussed in Section 4. Section 5 provides65

a simulation study in a spline regression context and two real applications66

including the modeling of the housing market in different U.S. cities. Finally,67

some concluding remarks and future directions are discussed in Section 6.68

2. Problem formulation69

In this section, after having reminded the general framework of regression70

analysis, the problem of adapting an existing regression model to another71

population is formulated.72
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2.1. Linear models for regression73

In regression analysis, the data S = {(x1, y1), ..., (xn, yn)}, arising from74

a population P , are assumed to be independent and identically distributed75

samples of a couple of variables (X, Y ) with an unknown distribution. The76

observations xj , j = 1, ..., n, are the values of the deterministic explanatory77

variable X = (X(1), . . . , X(p))t ∈ R
p and the corresponding yj are the real-78

izations of the stochastic variable Y ∈ R. A general data modeling problem79

consists in identifying the relationship between the explanatory variable X80

(known as well as covariate) and the response variable Y (or dependent vari-81

able). Both standard parametric and non-parametric approaches consider82

the following regression model:83

Y = f(X,β) + ǫ, (1)

where the residuals ǫ ∼ N (0, σ2) are independent and where β is the vec-84

tor of regression parameters. This model is equivalent to the distributional85

assumption that:86

Y |X ∼ N (f(X,β), σ2),

where the regression function f(x,β) is defined as the conditional expec-87

tation E[Y |X = x]. Therefore, the only way to specify the link between88

the response variable Y and the covariate X is through the assumptions on89

f(x,β). In particular, parametric regression achieves this connection by as-90

suming a specific form for f(x,β). The most common model is the linear91

form (cf. [18]):92

f(x,β) =

d∑

i=0

βiψi(x), (2)
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where β = (β0, β1, . . . , βd)
t ∈ R

d+1 are the regression parameters, ψ0(x) = 193

and (ψi)1≤i≤d is a basis of regression functions:94

ψi : R
p → R,

which can be for instance the identity, polynomial functions, splines func-95

tions [19] or wavelets [20]. We refer to [4] for a general survey. Let us notice96

that the usual linear regression occurs when d = p and ψi(x) = x(i) for97

i = 1, . . . , d. The regression function (2) can be also written in a matrix98

form as follows:99

f(x,β) = βtΨ(x), (3)

where Ψ(x) = (1, ψ1(x), . . . , ψd(x))t.100

2.2. How to adapt a regression model to another population?101

Let us now assume that the regression function f has been estimated in102

a preliminary study by using a sample S of population P , and that a new re-103

gression model has to be adjusted on a new sample S∗ = {(x∗
1, y

∗
1), ..., (x

∗
n∗ , y

∗
n∗)},104

measured on the same explanatory variables but arising from another pop-105

ulation P ∗ (n∗ is assumed to be small). The difference between P and P ∗
106

can be for instance geographical (as in the U.S. housing market application)107

or temporal. However, the nature of both populations has to be similar to108

match the purpose of this paper. The new regression model for P ∗ can be109

classically written:110

Y ∗|X∗ ∼ N (f ∗(X∗,β∗), σ∗2), (4)

with

f ∗(x∗,β∗) =

d∗∑

i=0

β∗
i ψ

∗
i (x

∗) = β∗tΨ∗(x∗).
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The aim of this work is therefore to define a link between the regression111

functions f and f ∗.112

3. Adaptive linear models for regression113

In this section, a link between the regression function of P and P ∗ is114

exhibited, and a family of transformations is then introduced to solve the115

problem of adapting an existing regression model of a reference population P116

to a new population P ∗.117

3.1. The transformation model118

In order to exhibit a link between both regression functions, we make the119

following important assumptions.120

Assumption (A1). First, we postulate that the number of basis functions121

and the basis functions themselves are the same for both regression models122

(d∗ = d and ψ∗
i = ψi, ∀i = 1, ..., d), which is natural since the variables are123

identical in both populations. The regression function of the population P ∗
124

can be therefore written:125

f ∗(x∗,β∗) = β∗tΨ(x∗).

Assumption (A2). Second, we assume that the transformation between f126

and f ∗ applies only on the regression parameters. We therefore define Λ,127

the transformation matrix between the regression parameters β and β∗, as128

follows:129

β∗ = Λβ,
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and this yields to the following expression of f ∗:130

f ∗(x∗,Λβ) = (Λβ)tΨ(x∗). (5)

Given that the number of parameters to estimate in the transformation ma-131

trix Λ is (d+1)× (d+1) and that the number of free parameters for learning132

a new regression model directly from the sample S∗ is (d + 1), the transfor-133

mation model (5) is consequently highly over-parametrized. It is therefore134

necessary to introduce some constraints on the transformation model such135

that the number of free parameters to estimate is lower or equal to d.136

Assumption (A3). Third, we assume that the relation between the response137

variable and a specific covariate in the new population P ∗ only depends on138

the relation between the response variable and the same covariate in the139

population P . Thus, for i = 0, . . . , d, the regression parameter β∗
i only140

depends on the regression parameter βi and the matrix Λ is consequently141

diagonal. The transformation can be finally written in term of the regression142

parameters of both models as follows:143

β∗
i = λiβi ∀i = 0, . . . , d, (6)

where λi ∈ R is the i-th diagonal element of Λ.144

3.2. A family of transformation models145

Since the aim of this study is to learn a regression model for P ∗ with only146

few observations, we define in this section parsimonious models by imposing147

some constraints on the transformation model (6). First, we allow some of the148

parameters λi to be equal to 1 (in this case the regression parameters β∗
i are149
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equal to βi). Second, we allow as well some of the parameters λi to be equal150

to a common value, i.e. λi = λ for given 0 ≤ i ≤ d. The number of possible151

models obtained with such a strategy is consequently very large (formally152

∑d+1
m=0

(
d+1
m

)
×

(
1 +

∑m

l=2

(
l

m

))
) and it obviously impossible to consider all153

these models in practice. These models, named adaptive linear models in the154

sequel, are declined below into two families: specific transformation models155

and prior-based transformation models.156

3.2.1. Specific transformation models157

We propose in this paragraph a family of 7 transformation models, se-158

lected on parsimony and interpretability criteria, ranging from the most com-159

plex model (hereafter M0) to the simplest one (hereafter M6):160

• Model M0: β∗
0 = λ0β0 and β∗

i = λiβi, for i = 1, ..., d. This model is161

the most complex model of transformation between the populations P162

and P ∗. It is equivalent to learning a new regression model from the163

sample S∗, since there is no constraint on the d + 1 parameters β∗
i164

(i = 0, ..., d), and the number of free parameters in Λ is consequently165

d+ 1 as well.166

• Model M1: β∗
0 = β0 and β∗

i = λiβi for i = 1, ..., d. This model assumes167

that both regression models have the same intercept β0.168

• ModelM2: β∗
0 = λ0β0 and β∗

i = λβi for i = 1, ..., d. This model assumes169

that the intercept of both regression models differ by the scalar λ0 and170

all the other regression parameters differ by the same scalar λ.171

• Model M3: β∗
0 = λβ0 and β∗

i = λβi for i = 1, ..., d. This model assumes172
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Table 1: Complexity (number of parameters ν) of the transformation models.

Model M0 M1 M2 M3 M4 M5 M6

β∗
0 is assumed to be λ0β0 β0 λ0β0 λβ0 β0 λ0β0 β0

β∗
i is assumed to be λiβi λiβi λβi λβi λβi βi βi

Nb. of parameters ν d+1 d 2 1 1 1 0

that all the regression parameters of both regression models differ by173

the same scalar λ.174

• Model M4: β∗
0 = β0 and β∗

i = λβi for i = 1, ..., d. This model assumes175

that both regression models have the same intercept β0 and all the176

other regression parameters differ by the same scalar λ.177

• Model M5: β∗
0 = λ0β0 and β∗

i = βi for i = 1, ..., d. This model as-178

sumes that both regression models have the same parameters except179

the intercept.180

• Model M6: β∗
0 = β0 and β∗

i = βi for i = 1, ..., d. This model assumes181

that both populations P and P ∗ have the same regression model.182

The numbers of parameters to estimate for these transformation models are183

presented in Table 1. The choice of this family is arbitrary and motivated184

by the will of the authors to treat similarly all the covariates in this general185

discussion. However, in practical applications, we encourage the practician186

to consider some additional transformation models specifically designed to187

his application and motivated by his prior knowledge on the subject. This is188

discussed in the next section.189
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3.2.2. Prior-based transformation models190

Although only seven pragmatic transformation models have been pre-191

sented in the previous section, some other transformation models could be192

considered as well, for which the complexity (in number of parameters) will193

be intermediate between the M1 complexity (d) and the M2 complexity194

(2). Indeed, the practician could have in some specific cases to use in-195

termediate transformation models suggested by some prior informations on196

the covariates, which leads to impose specific constraints on parameters λi197

for given i ∈ {1, . . . , d}. For instance, let us consider the specific transfor-198

mation matrix Λ = diag(λ0, λ1, λ, . . . , λ) where diag(λ0, λ1, λ, . . . , λ) is the199

(d + 1) × (d + 1) diagonal matrix having {λ0, λ1, λ, . . . , λ} on its diagonal.200

This model assumes that the regression parameters βi, i = 2, . . . , d are trans-201

formed in the same manner whereas the intercept and β1 are not.202

4. Estimation procedure and model selection203

The estimation procedure associated with the adaptive linear models,204

proposed in the previous section, is made of two main steps corresponding to205

the estimation of the regression parameters of the population P and to the206

estimation of the transformation parameters using samples of the popula-207

tion P ∗. The regression parameters of P ∗ are then obtained by plug-in. The208

ordinary least square (OLS) method is used, but we present in this paper209

the equivalent maximum likelihood estimation method in order to compute210

penalized likelihood model selection criteria for model selection.211
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4.1. Estimation of the regression parameters212

Let us consider a data set of inputs x = {x1, . . . ,xn} with corresponding213

response values grouped in a column vector y = (y1, . . . , yn)
t. Under the214

assumptions of the model (2), the log-likelihood of y given x, β and σ2 is:215

ln l(y;x,β, σ2) = −n ln(σ
√

2π) − 1

2σ2

n∑

j=1

(
yj − βtΨ(xj)

)2
. (7)

Maximizing the log-likelihood according to β is equivalent to minimizing216

∑n

j=1

(
yj − βtΨ(xj)

)2
and thus the maximum likelihood estimator is equiv-217

alent to the ordinary least square estimator:218

β̂
OLS

= (ΨtΨ)−1Ψty,

σ̂2 =
1

n

n∑

j=1

(
yj − βtΨ(xj)

)2
.

where Ψ is a (n)×(d+1) matrix formed by the row vector Ψ(xj)
t (1 ≤ j ≤ n).219

4.2. Estimation of the transformation parameters220

For this second step, it is assumed that β is known (in fact it is estimated221

in the previous step). As previously noticed, the full model M0 corresponds222

to a completely new regression model adjusted on the sample S∗. Similarly,223

the model M6, which assumes no transformation between P and P ∗, does224

not require the estimation of any transformation parameters. Let us consider225

now a sample x∗ = {x∗
1, . . . ,x

∗
n∗} drawn from P ∗ with corresponding response226

values y∗ = (y∗1, . . . , y
∗
n∗)

t. By replacing β∗ = Λβ in (7), the log-likelihood227

of model (4) is:228

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗∑

j=1

(
y∗j − βtΛtΨ(x∗

j)
)2
. (8)
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This log-likelihood must be maximized according to the transformation ma-229

trix Λ, what leads to the OLS estimator:230

Λ̂
OLS

= argmin
Λ∈D

n∗∑

j=1

(y∗j − (Λβ)tΨ(x∗
j ))

2, (9)

where D is a set of diagonal matrices depending on the model of transforma-231

tion at hand. For instance, with the modelM3, this set is D = {λId+1, λ ∈ R}232

where Id+1 is the identity matrix of size d+ 1.233

4.2.1. Specific transformation models234

Least square estimators of the specific models M1 to M5 are derived235

below.236

Model M1. As the transformation matrix is Λ = diag(1, λ1, . . . , λd), the log-237

likelihood (8) can be written238

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗∑

j=1

(
y∗j − β0 − βt

∼1Λ
t
∼1Ψ∼1(x

∗
j)

)2

where Λ∼k and β∼k correspond respectively to Λ and β without the k-th239

row. This maximization is therefore similar to the maximization of (7) and240

leads to the following estimator of Λ∼1 = diag(λ1, . . . , λd):241

Λ̂
OLS

∼1 = (Ψ∗t

∼1β∼1β
t
∼1Ψ

∗
∼1)

−1βt
∼1Ψ

∗
∼1(y

∗ − β0)

where Ψ∗ is a (n∗) × (d + 1) matrix formed by the row vector Ψ(x∗
j )

t (1 ≤242

j ≤ n∗).243

ModelM2. The transformation matrix has in this case the form Λ = diag(λ0, λ, . . . , λ).244

The maximization according to Λ of the following log-likelihood:245

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗∑

j=1

(
y∗j − β0λ0 − βt

∼1Λ
t
∼1Ψ∼1(x

∗
j)

)2
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leads to the estimator of ΛM2
= (λ0, λ)t:246

Λ̂
OLS

M2
= (QtQ)−1Qty∗,

where247

Q =





β0

∑d

i=1 βiψi(x
∗
1)

...

β0

∑d

i=1 βiψi(x
∗
n)




.

Model M3. For this model, the transformation matrix is formed by only one248

real parameter and Λ = diag(λ, λ, . . . , λ). The maximization of the log-249

likelihood according to λ leads to the following estimator:250

λ̂OLS = (Ψ∗t

ββtΨ∗)−1βtΨ∗y∗.

Model M4. In this case, the transformation matrix is formed by a constant251

and a unique transformation parameter λ. The transformation matrix has252

therefore the form Λ = diag(1, λ, . . . , λ) and the corresponding estimator of253

λ is:254

λ̂OLS = (Ψ∗t

∼1β∼1β
t
∼1Ψ

∗
∼1)

−1βt
∼1Ψ

∗
∼1(y

∗ − β0).

ModelM5. For this model, the transformation matrix is Λ = diag(λ0, 1, . . . , 1)255

and the estimator of λ0 is:256

λ̂OLS
0 =

1

n∗β0

n∗∑

j=1

[y∗j −
d∑

i=1

βiψi(x
∗
j )].

4.2.2. Prior-based transformation models257

As previously discussed, the practician may prefer in some cases to use

some particular transformation models suggested by some prior informations.
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A generic transformation model including all possible particular transforma-

tion models and the corresponding estimators is described below. In the

sequel, the subscripts γj will be associated with regression parameters of the

new population to estimate using the relation β∗
γj

= λγj
βγj

with j = 1, ..., q

and γj ∈ {0, ..., d}. In the same manner, the subscripts γ̄j will be associ-

ated with regression parameters of the new population which are similar to

the original population parameters, i.e. β∗
γ̄j

= βγ̄j
with j = 1, ..., p − q and

γ̄j ∈ 0, ..., d. The regression model for the new population can be written as

follows:

Y = QΛq + Q̄1p−q + ǫ,

where:258

• Λq =
(
λγ1

, . . . , λγq

)t
,259

• Q =





βγ1
ψγ1

(x1) · · · βγq
ψγq

(x1)
...

...

βγ1
ψγ1

(xn) · · · βγq
ψγq

(xn)




,260

• Q̄ =





βγ̄1
ψγ̄1

(x1) · · · βγ̄q
ψγ̄q

(x1)
...

...

βγ̄1
ψγ̄1

(xn) · · · βγ̄q
ψγ̄q

(xn)




,261

• 1p−q is the unity vector of dimension p− q.262

Consequently the maximum likelihood estimator of Λq is

Λ̂
OLS

q =
(
QtQ

)−1
Qt

(
y − Q̄1p−q

)
.

15



4.3. Full and profile likelihood estimation263

In this work, a reference regression model on the population P is as-264

sumed to be known and is transformed in a new regression model adapted to265

a new population P ∗ by estimating a transformation between both reference266

and new populations. However, the regression parameters of the reference267

model are in practice never known but only estimated from a given sam-268

ple S. Therefore, starting from this estimation for inferring the new regres-269

sion model could be disappointing in some cases, particularly when the size270

n of S is not large too. As both populations P and P ∗ are assumed to be271

linked, it could be interesting to use both samples S and S∗ for improving the272

estimation of the regression parameter β as well. But, as the parameters β273

and Λ appear as a product in the regression equation (5) for the sample S∗,274

the full likelihood estimation of (β,Λ) can not be achieved directly and is275

replaced by a profile likelihood estimation procedure. Starting from a ini-276

tialization value β(0) of β, the following two steps iteratively alternate until277

the growth of the model likelihood is lower than a given threshold. At the278

iteration q:279

1. Compute the estimation Λ̂
(q)

of Λ given a current value of β̂
(q−1)

(this280

step was the purpose of the previous section),281

2. Compute the estimation β̂
(q)

of β given the estimation of Λ̂
(q)

obtained282

in the previous step.283

For a given estimation Λ̂
(q)

of Λ = diag(λ0, λ1, . . . , λd), the estimation284

of β consists in maximizing the log-likelihood of the considered regression285

model (2) for the sample S and the log-likelihood of the same model in286

which the regression function ψi are multiplied by λ̂
(q)
i for the sample S∗. By287
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introducing ỹ = (y1, . . . , yn, y
∗
1, . . . , y

∗
n∗)

t and Ψ̃ the (n+n∗)× (d+1) matrix288

defined as follows:289

Ψ̃ =





ψ0(x1) · · · ψd(x1)
...

...

ψ0(xn) · · · ψd(xn)

λ̂
(q)
0 ψ0(x

∗
1) · · · λ̂

(q)
d ψd(x

∗
1)

...
...

λ̂
(q)
0 ψ0(x

∗
n) · · · λ̂

(q)
d ψd(x

∗
n)





,

the estimator of β given Λ̂
(q)

is:290

β̂
OLS

= (Ψ̃
t
Ψ̃)−1Ψ̃

t
ỹ.

4.4. Assumption validation and model selection291

In regression analysis, there is two indispensable steps: validation of the292

model assumptions and selection of the regression model.293

Assumption validation. An important step in regression analysis is the vali-294

dation of the linear model assumptions: independence and homoscedasticity295

of the residuals, linearity of the regression. In this context, several statistical296

tests have been defined, see for instance [4], and the practician would have297

to validate the linear model assumptions for the selected regression model as298

usually. In this paper the regression model for the population P is known299

and the estimation of the regression model for another population P ∗ is in-300

vestigated, and it would be natural to test the equality of both regression301

models [21]. Unfortunately, this can not be achieved easily since there are302

too few available data in S∗ to efficiently estimate the regression model on303
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P ∗. Nevertheless, the case of equality of the populations P and P ∗ is con-304

sidered by the model M6, and a model selection procedure, described in the305

next section, is carried out in place of the regression equality test.306

Model selection. The second important step is the selection of the most ap-307

propriate model of transformation between the populations P and P ∗. We308

propose to use three well-known criteria. The reader interested in a com-309

parison of the respective performance of these three criteria could refer for310

instance to [19]. The first criterion is the PRESS criterion [22], representing311

the sum of squared prediction errors computed on a cross-validation scheme,312

which is defined by:313

PRESS =
1

n∗

n∗∑

j=1

||y∗j − ŷ∗j
−j ||

2

where ŷ∗j
−j

is the prediction of y∗j obtained by the regression model estimated314

without using the j-th individual y∗j of the sample S∗. This criterion is315

one of the most often used for model selection in regression analysis, and316

we encourage its use when its computation is numerically feasible. Both317

following penalized likelihood criteria are less computationally heavy. They318

consist of selecting the models leading to the highest likelihood but penalizing319

those which have a large number of parameters. The Bayesian Information320

Criterion (BIC, [23]) is defined by:321

BIC = −2 ln ℓ+ ν lnn∗,

where ℓ is the maximum likelihood value and ν is the number of estimated322

parameters (see Table 1). With the same notations, the Akaike Information323
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Criterion (AIC, [24]) penalized the log-likelihood by 2ν. For all these three324

criteria, the most adapted model is the one with the smallest criterion value.325

5. Experimental results326

In this section, experimental results on artificial and real data illustrate327

the main features of the adaptive linear models.328

5.1. Simulation study329

This first experiment aims to evaluate the ability of the adaptive linear330

models, introduced in Section 3, to find the transformation between popula-331

tions P and P ∗ as well as the ability of the model selection criteria to select332

the most appropriate transformation model.333

Experimental setup. Firstly, a one-dimensional regression model was gener-334

ated for the reference population P on a basis of natural cubic Splines with335

5 degrees of freedom. Then, a regression model was built for the new popu-336

lation P ∗ from the model of P by multiplying the regression parameters of P337

by a given transformation matrix Λ. Since it is difficult to report here numer-338

ical experiments for all existing transformation models, results are presented339

for only one transformation model: the model M2. Similar results could be340

obtained for the other transformation models. The true regression model341

for P is y = sin(x) + sin(2x) + log(1 + x), for x ∈ [0, π], and the specific342

transformation matrix Λ = diag(1.5, 2, 2, 2, 2, 2) was chosen for generating343

the regression model of P ∗. The size n of the sample S was fixed to 1000.344

In order to compare the performance of the different transformation mod-345

els, some observations for population P ∗ were simulated from its regression346
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Figure 1: Regression models of the populations P and P
∗ and simulated observations of

population P
∗: the model of P was estimated on a basis of cubic Spline functions with 5

degrees of freedom and the model of P
∗ was obtained from the model of P by multiplying

its parameters by (1.5,2,2,2,2,2).

model. These observations were simulated with an additive Gaussian noise347

ǫ ∼ N (0, 0.3). Figure 1 shows the regression models for both populations348

P and P ∗ as well as 100 observations simulated from the regression model349

of P ∗. The simulated observations of population P ∗ were used in the ex-350

periment by the different linear transformation models for estimating the351

transformation between P and P ∗. The values of the three model selection352

criteria, presented in Section 4.4, were computed for each model to verify353
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their ability to find the most appropriate transformation model. Finally, the354

protocol described above was applied for different dataset sizes ranging from355

25 to 1000 observations for studying the effect of the learning dataset size on356

the prediction ability of the different models. The experiments were repeated357

50 times in order to average the results.358

Experimental results. Table 2 presents the numerical evaluation of the ability359

of the adaptive linear models M0, M1, M2, M3, M4 and M5 to estimate the360

transformation parameters and of the ability of the model selection criteria361

to find the most appropriate transformation model. The first and the sec-362

ond columns of Table 2 respectively indicate the size of the learning dataset363

and the name of the used transformation model. The third, fourth and fifth364

columns respectively give the values of the model selection criteria PRESS,365

BIC and AIC associated to each model. Finally, the sixth column provides366

the mean square error (MSE) computed on a test dataset different from the367

learning set. The bold numbers of the table correspond to the “best values”368

of each column for a given dataset size (let us remind that for the three model369

selection criteria, the most appropriate model is the one associated with the370

smallest value). On the one hand, it appears clearly that both PRESS, BIC371

and AIC select the transformation model M2 as the most appropriate for372

modeling the transformation between P and P ∗ and that corresponds to the373

truth. The first conclusion is that these three criteria are well suited to select374

the transformation model in such a case. On the other hand, it can be no-375

ticed that the model M0, which corresponds to the usual OLS model on P ∗,376

is very sensitive to the size of the dataset used for learning whereas the adap-377

tive linear models M1 to M5 are less sensitive. Furthermore, the model M0378
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Table 2: Evaluation of the model selection and of the parameter estimation on data

simulated according to the model M2 on a basis of cubic Spline functions for different

dataset sizes: PRESS, BIC, AIC and MSE values are per point, and the MSE value was

computed on a test dataset.

n
∗ Model PRESS BIC AIC MSE

2
5

M0 24283.92 16.326 16.033 199.827
M1 0.131 0.902 0.658 0.109
M2 0.109 0.669 0.571 0.094

M3 0.128 0.796 0.748 0.119
M4 0.192 1.241 1.192 0.162
M5 0.597 2.340 2.291 0.584

5
0

M0 19196.07 16.209 15.979 51.884
M1 0.098 0.669 0.478 0.103
M2 0.091 0.498 0.421 0.096

M3 0.111 0.661 0.623 0.119
M4 0.157 1.042 1.004 0.163
M5 0.525 2.220 2.182 0.545

1
0
0

M0 1754.953 8.800 8.644 41.239
M1 0.096 0.614 0.484 0.091
M2 0.093 0.509 0.456 0.089

M3 0.115 0.699 0.673 0.109
M4 0.172 1.128 1.102 0.157
M5 0.455 2.072 2.046 0.511

2
5
0

M0 522.120 5.512 5.427 24.329
M1 0.090 0.504 0.434 0.090
M2 0.089 0.450 0.422 0.089

M3 0.116 0.704 0.690 0.111
M4 0.172 1.135 1.121 0.161
M5 0.467 2.089 2.075 0.534

5
0
0

M0 270.574 5.034 5.004 6.633
M1 0.092 0.495 0.453 0.091
M2 0.091 0.463 0.446 0.090

M3 0.116 0.698 0.689 0.113
M4 0.167 1.090 1.082 0.155
M5 0.463 2.075 2.067 0.501

1
0
0
0

M0 184.00 4.669 4.618 3.519
M1 0.089 0.450 0.425 0.091
M2 0.089 0.432 0.422 0.090

M3 0.113 0.669 0.665 0.112
M4 0.168 1.093 1.088 0.156
M5 0.453 2.051 2.046 0.501
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gives disappointing estimations for all dataset sizes whereas the other mod-379

els, which are more parsimonious and which benefit from the knowledge on380

P , give satisfying results for a large range of dataset sizes. Figure 2 shows the381

estimated regression model of the population P ∗ for the six studied models.382

These estimations were obtained with a learning dataset of 100 observations.383

As it could be expected, the M0 estimation is very far away from the actual384

model and the models M1, M2 and M3 give very good estimations of the385

regression model. The effect of the constraints on the models can also be386

observed on this figure. For instance, the model M5 is not flexible enough387

to correctly estimate the transformation and this is due to the fact that it388

assumes that only the intercept is modified. To summarize, this experiment389

has shown that the adaptive linear models, proposed in the present paper,390

are able to correctly estimate a transformation between two populations with391

non-linear regression models and that even in situations where the number of392

observations of P ∗ is limited. This study has also highlighted that either the393

cross-validated PRESS criterion and information criteria BIC and AIC are394

adapted to select the most appropriate model among the 7 adaptive linear395

models.396

5.2. Real data study: Growth of Tetrahymena cells397

A biological dataset is considered here to highlight the ability of our398

approach to deal with real data.399

The data. The hellung dataset 1, collected by P. Hellung-Larsen, reports the400

growth conditions of Tetrahymena cells. The data arise from two groups of401

1The hellung dataset is available in the ISwR package for R.
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Figure 2: Parameter estimation with the different linear transformation models on data

simulated according to the transformation model M2 on a basis of cubic Spline functions.

These estimations were computed with a dataset of 100 observations.
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Figure 3: The hellung dataset: diameter vs. concentration for Tetrahymena cells.

cell cultures: cells with and without glucose added to the growth medium.402

For each group, the average cell diameter (in µm) and the cell concentration403

(count per ml) were recorded. The cell concentrations of both groups were404

set to the same value at the beginning of the experiment and it is expected405

that the presence of glucose in the medium affects the growth of the cell406

diameter. In the sequel, cells with glucose will be considered as coming407

from population P (32 observations) whereas cells without glucose will be408

considered as coming from population P ∗ (between 11 to 19 observations).409
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Experimental setup. In order to fit a regression model on the cell group with410

glucose, the PRESS criterion was used to select the most appropriate basis411

function. It results that a 3rd degree polynomial function is the most adapted412

model for these data and this specific basis function will be used for all413

methods in this experiment. Figure 3 shows the ordinary least square (OLS)414

estimates of the 3rd degree polynomial regression model respectively for the415

cell population P (with glucose) and the cell population P ∗ (without glucose).416

The first remark suggested by this figure is that the right extremity of the417

OLS regression curve of population P ∗ (bottom red line) is very influenced418

by the last observation. This highlights the non-robustness of this regression419

model learned on only 19 points. The goal of this experiment is to compare420

the stability and the effectiveness of the usual OLS regression method with421

our adaptive linear regression models according to the size of the P ∗ learning422

dataset. For this, 4 different learning datasets are used: all P ∗ observations423

(19 obs.), all P ∗ observations for which the concentration is smaller than424

4×105 (17 obs.), smaller than 2×105 (14 obs.) and smaller than 1×105 (11425

obs.). In order to evaluate the prediction ability of the different methods,426

the PRESS criterion as well as the MSE value on the whole P ∗ dataset are427

computed for these 4 different sizes of learning dataset.428

Experimental results. Figure 4 illustrates the effect of the learning set size on429

the prediction ability of the studied regression methods. The panels of Fig-430

ure 4 displays the curve of the usual OLS regression method (M0) in addition431

to the curves of the 5 adaptive linear models (models M1 to M5) for different432

sizes of the learning set (the blue zones indicate the ranges of the observa-433

tions of P ∗ used for learning the models). The model M6 which is equivalent434
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Figure 4: Effect of the learning set size on the prediction ability of the studied regression

methods for the hellung dataset. The blue zones correspond to the parts of the observations

of P
∗ used for learning the models.
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to the usual OLS regression method on the population P is also displayed.435

The first remark suggested by these results is that the most complex models,436

OLS (M0) and M1, appear to be very unstable in such a situation where the437

number of learning observations is small. Secondly, the model M4 is more438

stable but its main assumption (same intercept as the regression model of439

P ) seems to be an overly strong constraint and stops it from fitting correctly440

the data. Finally, the models M2, M3 and M5 turn out to be very stable441

and flexible enough to correctly model the new population P ∗ even with very442

few observations. This visual interpretation of the experiment is confirmed443

by the numerical results presented in Tables 3 and 4. These tables respec-444

tively report the value of the PRESS criterion and the MSE associated to the445

studied regression methods for the different sizes of learning dataset. Table 3446

confirms clearly that the most stable, and therefore appropriate, model for es-447

timating the transformation between populations P and P ∗ is the model M5.448

Another interesting conclusion is that both models M2 and M3 obtained very449

low PRESS values as well. These predictions of the model stability appear450

to be satisfying since the comparison of Tables 3 and 4 shows that the model451

selected by the PRESS criterion is always an efficient model for prediction.452

Indeed, the Table 4 show that the most efficient models in practice are the453

models M2 and M5 which are the “preferred” models by PRESS. These two454

models consider a shift of the intercept, which confirms the guess that we can455

have by examining graphically the dataset, and moreover by quantifying this456

shift. To conclude, this study has shown that the adaptive linear models457

can be successfully applied to real data for transferring a knowledge on a ref-458

erence population (here the cells with glucose) to a new population (here the459
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Table 3: Effect of the learning set size on the PRESS criterion of the studied regression

methods for the hellung dataset. The best values of each column are in bold.

Method whole dataset X ≤ 4 × 105
X ≤ 2 × 105

X ≤ 1 × 105

OLS on P ∗ (M0) 0.897 0.364 0.432 0.303

Model M1 3.332 0.283 2.245 0.344

Model M2 0.269 0.294 0.261 0.130

Model M3 0.287 0.271 0.289 0.133

Model M4 0.859 1.003 0.756 0.517

Model M5 0.256 0.259 0.255 0.124

Table 4: Effect of the learning set size on the MSE value of the studied regression methods

for the hellung dataset. Best values of each column are in bold and the stars indicate the

selected models by the PRESS criterion.

Method whole dataset X ≤ 4 × 105
X ≤ 2 × 105

X ≤ 1 × 105

OLS on P ∗ (M0) 0.195 47.718 4.5×103 145.846

Model M1 0.524 164.301 2.3×103 5.9×105

Model M2 0.218 0.226 0.304 0.245

Model M3 0.258 0.262 0.259 0.290

Model M4 0.791 0.796 1.472 3.046

Model M5 *0.230 *0.233 *0.230 *0.246

OLS on P (M6) 2.388 2.388 2.388 2.388
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cells without glucose). As it could be expected, the advantage of adaptive460

linear models makes particularly sense when the number of observations of461

the new population is limited and this happens frequently in real situations462

due to censorship or to technical constraints (experimental cost, scarcity,...).463

5.3. Real data study: Modelling of housing market in different U.S. cities464

In this section, the interest of the adaptive linear models is illustrated465

by an application to the modeling of housing market in different U.S. cities.466

This application aims to demonstrate that it is possible to adapt a regression467

model learned on a reference city to another one via the adaptive linear468

models by using only few samples from the new city and, thus, to save an469

expensive collect of new data.470

The data. For this experiment, the 1984 American Housing Survey of the471

U.S. Department of Commerce is used. The data collection [25] contains472

information from samples of housing units in 11 Metropolitan Statistical473

Areas, among which the cities of Birmingham, Alabama (East coast) and474

of San Jose, California (West coast). Fourteen relevant features have been475

selected among more than 500 available features for modeling the housing476

market of Birmingham. The selected features include the number of rooms,477

the area, the monthly cost of the housing as well as other informations about478

the unit and the tenants. Finally, based on these 14 features, the response479

variable to predict is the value of the housing.480

Experimental setup. A semi-log regression model for the housing market of481

Birmingham was learned using all the 1541 available samples and, then,482

the 7 adaptive linear models were used to transfer the regression model of483
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Figure 5: MSE results for the Birmingham-San Jose data.

Birmingham to the housing market of San Jose. In order to evaluate the484

ability of the adaptive linear models to transfer the Birmingham knowledge485

to San Jose in different situations, the experiment protocol was applied for486

different sizes of San Jose samples ranging from 5 to 921 observations. For487

each dataset size, the San Jose samples were randomly selected among all488

available samples and the experiment was repeated 50 times for averaging489

the results. For each adaptive linear model, the PRESS criterion and the490

MSE were computed, by using the selected sample for PRESS and the whole491

San Jose dataset for MSE.492
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Figure 6: PRESS criterion for the Birmingham-San Jose data.

Experimental results. Figure 5 shows the logarithm of the MSE for the differ-493

ent adaptive linear models regarding to the size of the used San Jose samples.494

Similarly, Figure 6 shows the logarithm of the PRESS criterion. Firstly, Fig-495

ure 5 indicates that the model M6, which corresponds to the Birmingham’s496

model, is actually not adapted for modeling the housing market of San Jose497

since it obtains a not satisfying MSE value. Let us notice that the curve498

corresponding to the MSE of the model M6 is constant since the regression499

model has been learned on the Birmingham’s data and consequently does500

not depend on the size of the San Jose’s dataset selected for learning. Sec-501

ondly, the model M0, which is equivalent to OLS on the San Jose samples,502
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is particularly disappointing (large values of MSE) if it is learned with a503

very small number of observations and becomes more efficient for learning504

datasets larger than 50 observations. The model M1 has a similar behaviour505

for small learning datasets but turns out to be less interesting than M0 when506

the size of the learning dataset is larger. These behaviours are not surprising507

since both models M0 and M1 are very complex models and then need large508

datasets to be correctly learned. Conversely, the models M2 to M5 appear509

not to be sensitive to the size of the dataset used for adapting the Birm-510

ingham model. Particularly, the model M2 obtains very low MSE values for511

a learning dataset size as low as 20 observations. This indicates that the512

model M2 is able to adapt the Birmingham model to San Jose with only 20513

observations. Moreover Table 5 indicates that the model M2 provides better514

prediction results than the model M0 for the housing market of San Jose for515

learning dataset sizes less than 100 observations. Naturally, since the model516

M0 is more complex, it becomes more efficient than the model M2 for larger517

datasets even though the difference is not so big for large learning datasets.518

Figure 6 shows that the PRESS criterion, which will be used in practice519

since it is computed without a validation dataset, allows the practician to520

successfully select the most appropriated transfer model. Indeed, it appears521

clearly that the PRESS curves are very similar to the MSE curves computed522

on the whole dataset. Finally, in such a context, the transformation param-523

eters obtained by the different adaptive linear models can be interpreted in524

an economic way and this could be interesting for economists. In particular,525

the estimated transformation parameters by the model M2 with the whole526

San Jose dataset are λ0 = 1.439 and λ = 0.447. The fact that the San Jose’s527
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Table 5: MSE results for the Birmingham-San Jose data.

Model 10 obs. 25 obs. 50 obs. 100 obs. 250 obs. all obs.

Model M0 3.5×107 576.9 386.1 336.8 310.7 297.5

Model M2 414.8 356.7 342.1 336.0 332.5 330.1

Model M6 1528.9 1528.9 1528.9 1528.9 1528.9 1528.9

intercept is almost 50% larger than the one of Birmingham suggests that528

the minimal basis price of an housing is more expensive in San Jose than in529

Birmingham. However, the fact that the regression coefficients associated to530

the explanatory variables of San Jose are on average 50% smaller than the531

one of Birmingham could mean that the growing of the price according to532

the housing features is more moderated. To summarize, this experiment has533

shown that the adaptive linear models are able to transfer the knowledge534

on the housing market of a reference city to the market of a different city535

with a small number of observations. Furthermore, the interpretation of the536

estimated transformation parameters could help the practician to analyse in537

an economic way the differences between the studied populations.538

6. Discussion539

Before each statistical analysis, the indispensable collect of data is often540

an expensive step. Even though the same analysis has been achieved in a541

relatively similar situation, a new collect of data is needed since the situ-542

ation is usually not exactly similar. In a regression framework, this paper543

shows how it is possible to adapt a regression model from a given situa-544

tion to another new one, and thus to save an expensive new collect of data.545
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In this perspective, a family of adaptive linear models has been introduced546

and, since they are more parsimonious than a complete regression model,547

they need only few samples for providing satisfying estimation of the new548

regression model. To summarize, the main interest of this work arises when549

the sample size for the new population is too small to efficiently estimate550

a regression model by the usual OLS procedure without using information551

known for the reference population. The conducted experiments have shown552

that the proposed adaptive linear models are able to successfully transfer a553

knowledge on a reference population to another population even with very554

few observations. In particular, the efficiency of the proposed models has555

been illustrated on a economic application by adapting the regression of the556

housing price versus housing features from the city of Birmingham to the city557

of San Jose. While a sample size of at least 100 observations is needed to558

estimate directly the San Jose’s regression model, only 20 data are necessary559

to obtain a similar estimation quality with the adaptive linear models. In560

addition, the estimated transformation parameters could help practicians to561

analyse the differences between both populations. This could be the subject562

of a further study and of a collaboration with the economists who provided563

these data. Another interesting perspective of this work concerns the pres-564

ence of correlation between the covariates. Indeed, if the correlation between565

variables is different from one population to the other, it will be necessary566

to consider different transformation parameters for these variables.567
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