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Technical Report SAMOS-MATISSE, CES, UMR CNRS 8174

ADAPTIVE LINEAR MODELS FOR REGRESSION

By Charles Bouveyron and Julien Jacques

University Paris I (Panthéon-Sorbonne) and University Lille I

The general setting of regression analysis is to identify a relation-
ship between a response variable Y and one or several explanatory
variables X by using a learning sample. In a prediction framework, the
main assumption for predicting Y on a new sample of X observations
is that the regression model Y = f(X)+ǫ is still valid. Unfortunately,
this assumption is not always true in practice and the model could
have changed. We therefore propose to adapt the original regression
model to the new sample by estimating a transformation between the
original regression function f(X) and the new one f∗(X). The main
interest of this work is that a model for the new population can be
build with only few observations. This is illustrated by applications
on artificial and real datasets, including the modelling of the hous-
ing market in different U.S. cities in which the regression model of a
reference city is adapted to another city. A package for the R soft-
ware dedicated to adaptive linear models is available on the author’s
webpage.

1. Introduction. The general setting of regression analysis is to iden-
tify a relationship (the regression model) between a response variable and
one or several explanatory variables. Most of the works in regression analy-
sis is focused on the nature of the regression model: linear model (16) and
generalized linear model (13) which can be seen as parametric models, and
non linear models which are mostly non-parametric models (14). See (7) for
a general survey on regression analysis.

1.1. The problem of adapting a knowledge to a new situation. In this
paper an alternative evolution is considered: how to adapt an existing re-
gression model to a new situation, in which the variables are identical (with
a possible different probability density distribution) but where the relation-
ship between response and explanatory variables could have changed. Let
consider the following example: a real-estate agency of the US East coast has
to its disposal, through their long experience in this area, a regression model
of the housing price versus numerous housing descriptive variables. Let as-
sume that this company plans to conquer new markets on the West coast.
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2 C. BOUVEYRON AND J. JACQUES

The link between housing descriptive variables and housing price is probably
not the same for the West and East coasts, but it is also not probably com-
pletely different. In this paper, we propose a way to transfer a knowledge
on a reference population to a new population through its regression model.
Therefore, it will be possible regarding the previous example to use the East
coast experience to define cheaply a new regression model for the West coast
market. The major challenge of this work consists in defining a link between
both populations and in deducing a link between the associated regression
models.

1.2. Related works. To our knowledge, only few scientists have dealt with
this original problem altough it could be very interesting in practical applica-
tion. In the machine learning community, a related problem is investigated
under the keyword Covariate Shift. The covariate shift problem considers
that the probability density for the new data is different from the one of the
learning data and the regression model is assumed to be conserved. Thus,
if the regression model is exactly known, a change in the probability dis-
tribution of the explanatory variables is not a problem. Unfortunately, this
is rarely the case in practice and the regression model estimated with the
learning data could be very disappointing applied to data with a different
probability distribution. A lot of recent works have contributed to analyze
this context (17–21), but most of them need to know (at least an estima-
tion of) the probability distribution of the new data, which is in practice
a very difficult problem. The focus of the present work wants to be more
general by not assuming that the relationship between explanatory and re-
sponse variables is conserved from the learning data to the new data. In
addition, the situation under review in this paper considers that there are
only few available data for the new situation, which is not enough to cor-
rectly estimate their probability distribution. In supervised classification, a
very similar problem was studied in (5) on quantitative variables and in (11)
in the case of binary variables. The authors introduce a model-based dis-
criminant rule for classifying individuals from a population which differs
from the learning one. For this, they introduce a family of linear models
modelling the transformation between the reference population and the new
one. An extension of this work to logistic regression was recently proposed
in (3). Finally, some works cover the problematic of knowledge transfer in
specific industrial contexts. In the field of Chemometrics, (8) gives a good
overview of solutions for model transfer specially developed for this applica-
tion. Among the proposed transfer models, the most used are the piecewise
direct standardization (24) and the neural network based nonlinear trans-
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ADAPTIVE LINEAR MODELS FOR REGRESSION 3

formation (9). Several works (4; 22) have also considered this problem in the
field of semiconductor industry.

The present paper is organized as follows. Section 2 formulates the prob-
lem of adapting an existing regression model to a new population and Sec-
tion 3 introduces a family of transformation models to solve this problem.
Estimation and model selection procedures are proposed in Section 4. Fi-
nally, Section 5 provides a simulation study in a spline regression context
and two real applications in biological and economical fields.

2. Problem formulation. In this section, after having reminded the
general framework of regression analysis, the problem of adapting an existing
regression model to another population is formulated.

2.1. Linear models for regression. In regression analysis, the data S =
{(x1, y1), ..., (xn, yn)}, arising from a population P , are assumed to be inde-
pendent and identically distributed samples of a couple of variables (X, Y )
with an unknown distribution. The observations xi are values of the de-
terministic explanatory variable X = (X(1), . . . ,X(p))t ∈ R

p and the cor-
responding yi are realizations of the stochastic variable Y ∈ R. A general
data modelling problem consists in identifying the relationship between the
explanatory variable X (or covariate) and the response variable Y (or de-
pendent variable). Both standard parametric and non-parametric regression
approaches consider with the following model:

(2.1) Y = f(X,β) + ǫ,

with ǫ ∼ N (0, σ2) and where β is the vector of regression parameters. This
model is equivalent to the distributional assumption that:

Y |X ∼ N (f(X,β), σ2),

where the regression function f(x,β) is defined as the conditional expecta-
tion E[Y |X = x]. Therefore, the only way to link the response variable Y
and the covariate X is through the assumption on f(x,β). In particular,
parametric regression achieves this connection by assuming a specific form
for f(x,β). The most common model is the linear form (6):

(2.2) f(x,β) =
d
∑

i=0

βiψi(x),
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4 C. BOUVEYRON AND J. JACQUES

with β = (β0, β1, . . . , βd)
t ∈ R

d+1 are the regression parameters, ψ0(x) = 1
and (ψi)1≤i≤d is a basis of regression functions:

ψi : R
p → R,

which can be for instance identity, polynomial, splines functions (10) or
wavelets (12). We refer to (6) for a general survey. Let notice that the usual
linear regression occurs when d = p and ψi(x) = x(i) for i = 1, . . . , d. The
regression function (2.2) can be written in its matricial form as follows:

(2.3) f(x,β) = βtΨ(x),

where Ψ(x) = (1, ψ1(x), . . . , ψd(x))t.

2.2. How to adapt a regression model to another population. Let assume
that the regression function f has been estimated in a preliminary study
by using the sample S, and that a new regression model has to be adjusted
on a new sample S∗ = {(x∗

1, y
∗
1), ..., (x

∗
n∗ , y∗n∗)}, measured on the same ex-

planatory variables but arising from another population P ∗ (n∗ is usually
assumed to be small). The difference between P and P ∗ can be geograph-
ical (as in the introduction example), temporal or other but the nature of
both populations have to be similar. The new regression model on P ∗ can
be written:

Y |X∗ ∼ N (f(X∗,β∗), σ2),(2.4)

with

f(x∗,β∗) =
d
∑

i=0

β∗i ψi(x
∗).

For modelling the link between P and P ∗, the following transformation
model between both regression functions is assumed:

f(x∗,β∗) = φ(f(x,β)),(2.5)

where φ is a transformation function.

3. Adaptive linear models for regression. In this section, a family
of transformations is introduced to solve the problem of adapting an existing
regression model on a reference population P to a new population P ∗.
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3.1. Assumptions on the transformation model. Since the transforma-
tion model (2.5) is very general, it is necessary to make additional assump-
tions on the model to be able to characterize it. Therefore, we propose to
assume that the transformation function φ has the following form:

φ(f(x,β)) = f(x,Λβ)(3.1)

where Λ is a (d + 1) × (d + 1) transformation matrix. By postulating that
the regression functions ψi are the same for both regression models, which is
natural since the variables are identical in both populations, this transforma-
tion is equivalent to the stochastic transformation between the expectations
of Y conditionally to X and X∗:

E[Y |X∗] ∼ ΛE[Y |X].

Given that the number of free parameters to estimate in the transformation
matrix Λ being (d+1)×(d+1) and that the one for learning a new regression
model directly from the sample S∗ is (d + 1), the transformation model
(3.1) is consequently highly over-parameterized. It is therefore necessary to
introduce some constraints on the transformation model so that the number
of free parameters to estimate is lower or equal to d.

3.2. A family of transformation models. A large class of model could be
considered since the number of free parameters in the matrix Λ is lower or
equal to d. First of all, it is assumed that the relation between the response
variable and one given covariate in the new population P ∗ only depends on
the relation between the response variable and the same covariate in the
population P . Consequently, the regression parameter β∗i only depends on
the regression parameter βi and the matrix Λ is diagonal. The transforma-
tion can be written in term of the regression parameters of both models as
follows:

(3.2) β∗i = λiβi ∀i = 1, . . . , d,

where λi ∈ R is the i-th diagonal element of Λ.

3.2.1. Main transformation models. We propose in this paper a family
of 7 transformation models, named further adaptive linear models, ranging
from the most complex model (hereafter M0) to the simplest one (hereafter
M6):

• Model M0: β∗0 = λ0β0 and β∗i = λiβi, for i = 1, ..., d. This model is
the most complex model of transformation between both populations
P and P ∗ and is equivalent to learning a new regression model from
the sample S∗.
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6 C. BOUVEYRON AND J. JACQUES

Model M0 M1 M2 M3 M4 M5 M6

β∗

0 is assumed to be λ0β0 β0 λ0β0 λβ0 β0 λ0β0 β0

β∗

i is assumed to be λiβi λiβi λβi λβi λβi βi βi

Nb. of parameters d+1 d 2 1 1 1 0

Table 1
Complexity (number of parameters) of the transformation models.

• Model M1: β∗0 = β0 and β∗i = λiβi for i = 1, ..., d. This model assumes
that both regression models have the same intercept β0.

• Model M2: β∗0 = λ0β0 and β∗i = λβi for i = 1, ..., d. This model
assumes that the intercept of both regression models differ by the
scalar λ0 and all the other regression parameters differ by the same
scalar λ.

• Model M3: β∗0 = λβ0 and β∗i = λβi for i = 1, ..., d. This model assumes
that all the regression parameters of both regression models differ by
the same scalar λ.

• Model M4: β∗0 = β0 and β∗i = λβi for i = 1, ..., d. This model assumes
that both regression models have the same intercept β0 and all the
other regression parameters differ by the same scalar λ.

• Model M5: β∗0 = λ0β0 and β∗i = βi for i = 1, ..., d. This model as-
sumes that both regression models have the same parameters except
the intercept.

• Model M6: β∗0 = β0 and β∗i = βi for i = 1, ..., d. This model assumes
that both populations P and P ∗ have the same behaviour.

The numbers of parameters to estimate for these transformation models are
presented in Table 1.

3.2.2. Specific transformation models. In some specific cases, the prac-
tician could have to use more specific transformation models suggested by
some prior informations on the covariates. It is possible in such a context
to consider intermediate transformation models by imposing specific con-
straints on parameters λi for given i ∈ {1, . . . , d}. Thus, according to its
experimental knowledge, the practician could assume that such explana-
tory variables have the same effect in the two regression models, and such
other have not. For instance, it possible to consider the specific transfor-
mation matrix Λ = diag(λ0, λ1, λ, . . . , λ) where diag(λ0, λ1, λ, . . . , λ) is the
(d + 1) × (d + 1) diagonal matrix having {λ0, λ1, λ, . . . , λ} on its diagonal.
This model assumes that the regression parameters βi, i = 2, . . . , d are
transformed in the same manner whereas the intercept and β1 are not.
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4. Estimation procedure and model selection. The estimation pro-
cedure associated with the adaptive linear models is made of two main steps
corresponding to the estimation of the regression parameters on the popula-
tion P and to the estimation of the transformation parameters using samples
of the population P ∗. Then, the regression parameters of P ∗ are obtained
by plug-in. The maximum likelihood estimation method is retained.

4.1. Estimation of the regression parameters. Consider a data set of in-
puts x = {x1, . . . ,xn} with corresponding response values grouping in a
column vector y = (y1, . . . , yn)t. Under the assumptions of the model (2.2)
the log-likelihood of y given the data x and the parameters β and σ2 is:

ln l(y;x,β, σ2) = −n ln(σ
√

2π) − 1

2σ2

n
∑

i=1

(

yi − βtΨ(x∗
i )
)2
.(4.1)

Maximizing this log-likelihood according to β is equivalent to maximizing
∑n

i=1

(

yi − βtΨ(x∗
i )
)2

and thus the maximum likelihood estimator is equiva-
lent to the least square estimator. The gradient of the log-likelihood function
takes the following form:

∇ ln l(y;x,β, σ2) =
n
∑

i=1

(

yi − βtΨ(x∗
i )
)

Ψ(x∗
i )

t,

and setting this gradient to zero gives:

n
∑

i=1

yiΨ(x∗
i )

t = βt

(

n
∑

i=1

Ψ(x∗
i )Ψ(x∗

i )
t

)

.

Solving this equation according to β leads to the well known ordinary least
square (OLS) estimator (6) for β:

β̂ = (ΨtΨ)−1Ψty,

where Ψ is a (n)×(d+1) matrix formed by the row vector Ψ(xi)
t (1 ≤ i ≤ n).

4.2. Estimation of the transformation parameters. As previously noticed,
the full model M0 corresponds to a completely new regression model ad-
justed on the sample S∗ and does not need the estimation of transformation
parameters. Similarly, the model M6, which considers no transformation
between P and P ∗, does not require the estimation of transformation pa-
rameters. Consider now a sample x∗ = {x∗

1, . . . ,x
∗
n∗} drawn from P ∗ with
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8 C. BOUVEYRON AND J. JACQUES

corresponding response values y∗ = (y∗1 , . . . , y
∗
n∗)t. By replacing β∗ = Λβ in

(4.1), the log-likelihood is:

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗

∑

i=1

(

y∗i − βtΛtΨ(x∗
i )
)2
.(4.2)

This log-likelihood must be maximized according to the transformation ma-
trix Λ = diag(λ0, λ1, . . . , λd).

Model M1. As the transformation matrix is Λ = diag(1, λ1, . . . , λd), the
log-likelihood (4.2) can be written

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗

∑

i=1

(

y∗i − β0 − βt
∼1Λ

t
∼1Ψ∼1(x

∗
i )
)2

where Λ∼k and β∼k correspond respectively to Λ and β without the k-th
row. This maximization is therefore similar to the maximization of (4.1) and
leads to the following estimator of Λ∼1 = diag(λ1, . . . , λd):

Λ̂∼1 = (Ψ∗t

∼1β∼1β
t
∼1Ψ

∗
∼1)

−1βt
∼1Ψ

∗
∼1(y

∗ − β0)

where Ψ∗ is a (n∗) × (d+ 1) matrix formed by the row vector Ψ(x∗
i )

t (1 ≤
i ≤ n∗).

Model M2. The transformation matrix has in this case the form Λ =
diag(λ0, λ, . . . , λ). The maximization according to Λ of the following log-
likelihood:

ln l(y∗;x∗,Λ, σ2) = −n∗ ln(σ
√

2π) − 1

2σ2

n∗

∑

i=1

(

y∗i − β0λ0 − βt
∼1Λ

t
∼1Ψ∼1(x

∗
i )
)2

leads to the estimator of ΛM2
= (λ0, λ)t:

Λ̂M2
= (QtQ)−1Qty∗,

where

Q =









β0
∑d

i=1 βiψi(x
∗
1)

...

β0
∑d

i=1 βiψi(x
∗
n)









.

Model M3. For this model, the transformation matrix is formed by only
one real parameter and Λ = diag(λ, λ, . . . , λ). The maximization of the
loglikelihood according to λ leads to the following estimator:

λ̂ = (Ψ∗t

ββtΨ∗)−1βtΨ∗y∗.
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Model M4. In this case, the transformation matrix is formed by a constant
and a unique transformation parameter λ. The transformation matrix has
therefore the form Λ = diag(1, λ, . . . , λ) and the corresponding estimator of
λ is:

λ̂ = (Ψ∗t

∼1β∼1β
t
∼1Ψ

∗
∼1)

−1βt
∼1Ψ

∗
∼1(y

∗ − β0).

Model M5. For this model, the transformation matrix is Λ = diag(λ0, 1, . . . , 1)
and the estimator of λ0 is:

λ̂0 =
1

n∗β0

n∗

∑

i=1

[y∗i −
d
∑

j=1

βjψj(x
∗
i )].

Specific transformation models. As said before, in some specific cases the
practician could have to use more specific transformation models suggested
by some prior informations. A generic transformation model including all
possible specific transformation models and the corresponding estimator is
described below. In the sequel, the indexes γj will be associated to regression
parameters of the new population to estimate using the relation β∗γj

= λγj
βγj

with j = 1, ..., q and γj ∈ {0, ..., d}. In the same manner, the indexes γ̄j

will be associated to regression parameters of the new population which
are similar to the parameters of the original population, i.e. β∗γ̄j

= βγ̄j
with

j = 1, ..., p−q and γ̄j ∈ 0, ..., d. The regression model for the new population
can be written as follows:

Y = QΛq + Q̄ + ǫ,

where:

• Λq =
(

λγ1
, . . . , λγq

)t
,

• Q =







βγ1
ψγ1

(x1) · · · βγq
ψγq

(x1)
...

...
βγ1

ψγ1
(xn) · · · βγq

ψγq
(xn)






,

• Q̄ =







βγ̄1
ψγ̄1

(x1) · · · βγ̄q
ψγ̄q

(x1)
...

...
βγ̄1

ψγ̄1
(xn) · · · βγ̄q

ψγ̄q
(xn)






.

Consequently the maximum likelihood estimator of Λq is

Λ̂q =
(

QtQ
)−1

Qt
(

y− Q̄
)

.
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10 C. BOUVEYRON AND J. JACQUES

4.3. Joint estimation. In this work, a reference regression model on the
population P is assumed to be well known and is transformed in a new
regression model adapted to a new population P ∗ by estimating a transfor-
mation between both reference and new populations. However the regression
parameters of the reference model are in practice never known but only es-
timated from a given sample S. Therefore, starting from this estimation to
estimate the new regression model could be disappointing in some cases,
particularly when the size n of S is not very large. As both populations P
and P ∗ are assumed to be linked, it could be interesting to use both samples
S and S∗ for improving the estimation of the regression parameter β as
well. An alternative algorithm is proposed here to jointly estimate the re-
gression parameter β and the transformation matrix Λ. The joint estimation
procedure alternates the two following steps:

1. Estimate Λ given a current value of β (this step was the purpose of
the previous section),

2. Estimate β given the estimation of Λ obtained in the previous step.

For a given estimation Λ̂ of Λ = diag(λ0, λ1, . . . , λd), the estimation of
β consists in maximizing the log-likelihood of the considered regression
model (2.2) for the sample S and the log-likelihood of the same model in
which the regression function ψi are multiplied by λi for the sample S∗. By
introducing ỹ = (y1, . . . , yn, y

∗
1 , . . . , y

∗
n∗)t and Ψ̃ the (n+n∗)×(d+1) matrix

defined as follows:

Ψ̃ =























ψ0(x1) · · · ψd(x1)
...

...
ψ0(xn) · · · ψd(xn)

λ̂0ψ0(x
∗
1) · · · λ̂dψd(x

∗
1)

...
...

λ̂0ψ0(x
∗
n) · · · λ̂dψd(x

∗
n)























,

the estimator of β given Λ̂ is:

β̂ = (Ψ̃
t
Ψ̃)−1Ψ̃

t
ỹ.

4.4. Model selection. In order to select the most appropriate model of
transformation between the populations P and P ∗, we propose to use three
well known criterions. The reader interested in a comparison of the respective
performances of these three criterions could refer for instance to (10). The
first criterion is the PRESS criterion (2), which represents the sum of squared
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ADAPTIVE LINEAR MODELS FOR REGRESSION 11

prediction errors computed on a cross-validation scheme, and is defined by:

PRESS =
n
∑

j=1

||y∗(j) − ŷ∗(j)||2

where y∗(j) is the vector y∗ without the j-th individual and ŷ∗(j) is the pre-
diction of y∗(j) obtained by the regression model in which the parameters are
estimated without using the j-th individual of the sample S∗. This criterion
is one of the most often used for model selection in regression analysis. The
two following criterions are penalized likelihood criterions. They both con-
sist in selecting the models leading to the highest likelihood but penalizing
those which have a large number of parameters. The Bayesian Information
Criterion (BIC) (15) is defined by:

BIC = −2 ln ℓ+ ν lnn∗

where ℓ is the maximum likelihood value and ν is the number of estimated
parameters (see Table 1). With the same notations, the Akaike Information
Criterion (AIC) (1) is defined by:

AIC = −2 ln ℓ+ 2ν.

For these three criterions, the most adapted model is the one with the small-
est criterion value.

5. Experimental results. In this section, experimental results on arti-
ficial and real data illustrate the main features of the adaptive linear models.

5.1. Simulation study. This first experiment aims to evaluate the ability
of the adaptive linear models, introduced in Section 3, to find the transfor-
mation between populations P and P ∗ as well as the ability of the model
selection criterions to select the most appropriate transformation model.

Experimental setup. Firstly, a one-dimensional regression model was gen-
erated for the reference population P on a basis of natural cubic Splines
with 5 degrees of freedom. Then, a regression model was built for the new
population P ∗ from the model of P by multiplying the regression parameters
of P by a given transformation matrix Λ. Since it is impossible to report
here numerical experiments for all existing transformation models, results
are presented for only one transformation model: the model M2. The specific
transformation matrix Λ = diag(1.5, 2, 2, 2, 2) was chosen for generating the
regression model of P ∗. In order to compare the performance of the different
transformation models, some observations for population P ∗ were simulated
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0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

X

Y

Model of P
Model of P*
Obs. of P*

Fig 1. Regression models of the populations P and P ∗ and simulated observations of
population P ∗: the model of P was generated on a basis of cubic Spline functions with 5
degrees of freedom and the model of P ∗ was obtained from the model of P by multiplying
its parameters by (1.5,2,2,2,2).

from its regression model. These observations were simulated with an ad-
ditive Gaussian noise ǫ ∼ N (0, 0.3). Figure 1 shows the regression models
for both populations P and P ∗ as well as 100 observations simulated from
the regression model of P ∗. The simulated observations of population P ∗

were used in the experiment by the different linear transformation models
for estimating the transformation between P and P ∗. Thus, it has been pos-
sible afterward to compare the estimated parameters of P ∗ (obtained by
multiplying the regression parameters of P by the estimated transformation
matrix Λ̂) with the actual regression parameters of P ∗. This comparison
was measured by the sum of squared differences between estimated and ac-
tual regression parameters of P ∗. In addition, the values of the three model
selection criterions, presented in Section 4.4, were computed for each model
in order to empirically verify their ability for finding the most appropriate
transformation model. Finally, the protocol described above was applied for
different dataset sizes ranging from 25 to 1000 observations for studying the
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ADAPTIVE LINEAR MODELS FOR REGRESSION 13

effect of the learning dataset size on the prediction ability of the different
models.

Experimental results. Table 2 presents the numerical evaluation of the abil-
ity of the adaptive linear models M0, M1, M2, M3, M4 and M5 to estimate
the transformation parameters and of the ability of the model selection cri-
terions to find the most appropriate transformation model. The first and
the second columns of Table 2 respectively indicate the size of the learning
dataset and the name of the used transformation model. The third, fourth
and fifth columns respectively give the values of the model selection criteri-
ons PRESS, BIC and AIC associated to each model. Finally, the sixth and
the last columns respectively provide the Residual Sum of Squares (RSS),
computed on a test dataset different from the learning set, and the sum of
squared differences between estimated and actual parameters for population
P ∗. The bold numbers of the table correspond to the “best value” of each
column for a given dataset size (let remind that for the three model selec-
tion criterions, the most appropriate model is the one associated with the
smallest value). On the one hand, it appears clearly that both PRESS, BIC
and AIC select the transformation model M2 as the most appropriate for
modelling the transformation between P and P ∗ and that corresponds to
the truth. The first conclusion is that these three criterions are well suited to
select the transformation model in such a case. On the other hand, it can be
noticed that the model M0, which corresponds to the usual OLS model on
P ∗, is very sensitive to the size of the dataset used for learning whereas the
adaptive linear models M1 to M5 are less sensitive. Furthermore, the model
M0 gives disappointing estimations for all dataset sizes whereas the other
models, which are more parsimonious and which benefit from the knowledge
on P , give satisfying results for a large range of dataset sizes. In particu-
lar the model M2 provides on average a very good estimation of the actual
regression parameters, even with only 25 observations. Figure 2 shows the
estimated regression model of the population P ∗ for the six studied models.
These estimations were obtained with a learning dataset of 100 observations.
As it could be expected, the M0 estimation is very far away from the actual
model and the models M1, M2 and M3 give very good estimations of the
regression model. The effect of the constraints on the models can also be
observed on this figure. For instance, the model M5 is not flexible enough
to correctly estimate the transformation and this is due to the fact that it
assumes that only the intercept is modified.

To summarize, this experiment has shown that the adaptive linear mod-
els, proposed in this paper, are able to estimate correctly a transformation
between two populations with non-linear regression models and that even in

imsart-RR ver. 2007/12/10 file: AdaptiveReg_AOAS.tex date: July 25, 2008



14 C. BOUVEYRON AND J. JACQUES

n∗ Model PRESS BIC AIC RSS Prm. diff.

2
5

M0 24283.92 16.326 16.033 199.827 1312.998
M1 0.131 0.902 0.658 0.109 2.142
M2 0.109 0.669 0.571 0.094 0.118

M3 0.128 0.796 0.748 0.119 0.528
M4 0.192 1.241 1.192 0.162 1.255
M5 0.597 2.340 2.291 0.584 10.348

5
0

M0 19196.07 16.209 15.979 51.884 674.779
M1 0.098 0.669 0.478 0.103 1.770
M2 0.091 0.498 0.421 0.096 0.056

M3 0.111 0.661 0.623 0.119 0.548
M4 0.157 1.042 1.004 0.163 1.211
M5 0.525 2.220 2.182 0.545 10.639

1
0
0

M0 1754.953 8.800 8.644 41.239 734.003
M1 0.096 0.614 0.484 0.091 1.510
M2 0.093 0.509 0.456 0.089 0.014

M3 0.115 0.699 0.673 0.109 0.425
M4 0.172 1.128 1.102 0.157 1.002
M5 0.455 2.072 2.046 0.511 7.141

2
5
0

M0 522.120 5.512 5.427 24.329 466.621
M1 0.090 0.504 0.434 0.090 1.404
M2 0.089 0.450 0.422 0.089 0.005

M3 0.116 0.704 0.690 0.111 0.474
M4 0.172 1.135 1.121 0.161 0.993
M5 0.467 2.089 2.075 0.534 7.33

5
0
0

M0 270.574 5.034 5.004 6.633 272.080
M1 0.092 0.495 0.453 0.091 1.347
M2 0.091 0.463 0.446 0.090 0.004

M3 0.116 0.698 0.689 0.113 0.427
M4 0.167 1.090 1.082 0.155 0.926
M5 0.463 2.075 2.067 0.501 7.122

1
0
0
0

M0 184.00 4.669 4.618 3.519 121.248
M1 0.089 0.450 0.425 0.091 1.368
M2 0.089 0.432 0.422 0.090 0.001

M3 0.113 0.669 0.665 0.112 0.430
M4 0.168 1.093 1.088 0.156 0.947
M5 0.453 2.051 2.046 0.501 7.083

Table 2
Evaluation of the model selection and of the parameter estimation on data simulated

according to the model M2 on a basis of cubic Spline functions for different dataset sizes:
PRESS, BIC and AIC values are per point, the RSS value was computed on a test

dataset and “Prm. diff” is the sum of squared differences between estimated and actual
parameters for population P ∗.
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Fig 2. Parameter estimation with the different linear transformation models on data simu-
lated according to the transformation model M2 on a basis of cubic Spline functions. These
estimations were computed with a dataset of 100 observations. The difference between es-
timated and actual regression parameters is measured by the sum of squared differences.
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16 C. BOUVEYRON AND J. JACQUES

situations where the number of observations of P ∗ is limited. This study has
also demonstrated that either the cross-validated PRESS criterion and infor-
mation criterions BIC and AIC are adapted to select the most appropriate
model among the 7 adaptive linear models.

5.2. Real data study: growth of Tetrahymena cells. A biological dataset
is considered here in order to highlight the ability of our approach to deal
with real data.

The data. The hellung dataset 1, collected by P. Hellung-Larsen, reports
the growth conditions of Tetrahymena cells. The data arise from two groups
of cell cultures: cells with and without glucose added to the growth medium.
For each group, the average cell diameter (in µm) and the cell concentration
(count per ml) were recorded. The cell concentrations of both groups were
set to the same value at the beginning of the experiment and it is expected
that the presence of glucose in the medium affects the growth of the cell
diameter. In the sequel, cells with glucose will be considered as coming from
population P whereas cells without glucose will be considered as coming
from population P ∗.

Experimental setup. In order to fit a regression model on the cell group
with glucose, the PRESS criterion was used to select the most appropriate
basis function. It results that a 3rd degree polynomial function is the most
adapted model for these data and this specific basis function will be used for
all methods in this experiment. The Figure 3 shows the ordinary least square
(OLS) estimates of the 3rd degree polynomial regression model respectively
for the cell population P (with glucose) and the cell population P ∗ (without
glucose). The first remark suggested by this figure is that the right extremity
of the OLS regression curve of population P ∗ (bottom red line) is very
influenced by the last observation. This highlights the non-robustness of
this regression model learned on only 19 points. The goal of this experiment
is to compare the stability and the effectiveness of the usual OLS regression
method with our adaptive linear regression models according to the size of
the P ∗ learning dataset. For this, 4 different learning datasets are used: all
P ∗ observations (19 obs.), all P ∗ observations for which the concentration is
smaller than 4×105 (17 obs.), smaller than 2×105 (14 obs.) and smaller than
1 × 105 (11 obs.). In order to evaluate the prediction ability of the different
methods, the PRESS criterion as well as the RSS value on the whole P ∗

dataset are computed for these 4 different sizes of learning dataset.

1The hellung dataset is available in the ISwR package for R.
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Fig 3. The hellung dataset: diameter vs. concentration for Tetrahymena cells.

Experimental results. Figure 4 illustrates the effect of the learning set size
on the prediction ability of the studied regression methods. The panels of
Figure 4 displays the curve of the usual OLS regression method (M0) in
addition to the curves of the 5 adaptive linear models (models M1 to M5)
for different sizes of the learning set (the blue zones indicate the ranges of
the observations of P ∗ used for learning the models). The model M6 which
is equivalent to the usual OLS regression method on the population P is
also displayed. The first remark suggested by these results is that the most
complex models, OLS (M0) and M1, appear to be very instable in such
a situation where the number of learning observations is small. Secondly,
the model M4 is more stable but its main assumption (same intercept as
the regression model of P ) seems to be an overly strong constraint and
stops it from fitting correctly the data. Finally, the models M2, M3 and M5
turn out to be very stable and flexible enough to correctly model the new
population P ∗ even with very few observations. This visual interpretation of
the experiment is confirmed by the numerical results presented in Tables 3
and 4. These tables respectively report the value of the PRESS criterion and
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Fig 4. Effect of the learning set size on the prediction ability of the studied regression
methods for the hellung dataset. The blue zones correspond to the parts of the observations
of P ∗ used for learning the models.
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Method whole dataset X ≤ 4 × 105 X ≤ 2 × 105 X ≤ 1 × 105

OLS on P ∗ (M0) 0.897 0.364 0.432 0.303
Model M1 3.332 0.283 2.245 0.344
Model M2 0.269 0.294 0.261 0.130
Model M3 0.287 0.271 0.289 0.133
Model M4 0.859 1.003 0.756 0.517
Model M5 0.256 0.259 0.255 0.124

Table 3
Effect of the learning set size on the PRESS criterion of the studied regression methods

for the hellung dataset. The best values of each column are in bold.

Method whole dataset X ≤ 4 × 105 X ≤ 2 × 105 X ≤ 1 × 105

OLS on P ∗ (M0) 0.195 47.718 4.5×103 145.846
Model M1 0.524 164.301 2.3×103 5.9×105

Model M2 0.218 0.226 0.304 0.245

Model M3 0.258 0.262 0.259 0.290
Model M4 0.791 0.796 1.472 3.046
Model M5 *0.230 *0.233 *0.230 *0.246

OLS on P (M6) 2.388 2.388 2.388 2.388

Table 4
Effect of the learning set size on the PRESS criterion of the studied regression methods
for the hellung dataset. Best values of each column are in bold and the stars indicate the

selected models by the PRESS criterion.

the RSS associated to the studied regression methods for the different sizes of
learning dataset. Table 3 confirms clearly that the most stable, and therefore
appropriate, model for estimating the transformation between populations P
and P ∗ is the model M5. Another interesting conclusion is that both models
M2 and M3 obtained very low PRESS values as well. These predictions of the
model stability appear to be satisfying since the comparison of Tables 3 and 4
shows that the model selected by the PRESS criterion is always an efficient
model for prediction. Indeed, the Table 4 show that the most efficient models
in practice are the models M2 and M5 which are the “preferred” models by
PRESS.

To conclude, this study demonstrates that the adaptive linear models can
be successfully applied to real data in order to transfer a knowledge on a ref-
erence population (here the cells without glucose) to a new population (here
the cells with glucose). As it could be expected, the advantage of adaptive
linear models makes particularly sense when the number of observations of
the new population is limited and this happens frequently in real situations
due to censorship or to technical constraints (experimental cost, scarcity, ...).
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Fig 5. RSS results for the Birmingham-San Jose data.

5.3. Real data study: modelling of housing market in different U.S. cities.
In this section, the interest of the adaptive linear models is illustrated by an
application to the modelling of housing market in different U.S. cities. This
application aims to demonstrate that it is possible to adapt a regression
model learned on a reference city to another one via the adaptive linear
models by using only few samples from the new city and thus to save up an
expensive collect of new data.

The data. For this experiment, the 1984 American Housing Survey of the
U.S. Department of Commerce is used. The data collection (23) contains
information from samples of housing units in 11 Metropolitan Statistical
Areas, among which the cities of Birmingham, Alabama (East coast) and
of San Jose, California (West coast). Fourteen relevant features have been
selected among more than 500 available features for modelling the housing
market of Birmingham. The selected features include the number of rooms,
the area, the monthly cost of the housing as well as other informations about
the unit and the tenants. Finally, based on these 14 features, the response
variable to predict is the value of the housing.
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Fig 6. PRESS criterion for the Birmingham-San Jose data.

Experimental setup. A semi-log regression model for the housing market
of Birmingham was learned using all the 1541 available samples and, then,
the 7 adaptive linear models were used to transfer the regression model of
Birmingham to the housing market of San Jose. In order to evaluate the
ability of the adaptive linear models to transfer the Birmingham knowledge
to San Jose in different situations, the experiment protocol was applied for
different sizes of San Jose samples ranging from 5 to 921 observations. For
each dataset size, the San Jose samples were randomly selected among all
available samples and the experiment was repeated 50 times in order to
average the results. For each adaptive linear model, the PRESS criterion
and the residual sum of squares (RSS) were computed, by using the selected
sample for PRESS and the whole San Jose dataset for RSS.

Experimental results. Figure 5 shows the logarithm of the RSS for the dif-
ferent adaptive linear models regarding to the size of the used San Jose sam-
ples. Similarly, Figure 6 shows the logarithm of the PRESS criterion. Firstly,
Figure 5 indicates that the model M6, which corresponds to the Birming-
ham’s model, is actually not adapted for modelling the housing market of
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San Jose since it obtains a not satisfying RSS value. Let notice that the curve
corresponding to the RSS of the model M6 is constant since the regression
model has been learned on the Birmingham’s data and consequently does
not depend on the size of the San Jose’s dataset selected for learning. Sec-
ondly, the model M0, which is equivalent to OLS on the San Jose samples,
is particularly disappointing (large values of RSS) if it is learned with a
very small number of observations and becomes more efficient for learning
datasets larger than 50 observations. The model M1 has a similar behaviour
for small learning datasets but turns out to be less interesting than M0 when
the size of the learning dataset is larger. These behaviours are not surprising
since both models M0 and M1 are very complex models and then need large
datasets to be correctly learned. Conversely, the models M2 to M5 appear
not to be sensitive to the size of the dataset used for adapting the Birm-
ingham model. Particularly, the model M2 obtains very low RSS values for
a learning dataset size as low as 20 observations. This indicates that the
model M2 is able to adapt the Birmingham model to San Jose with only 20
observations. Moreover Table 5 indicates that the model M2 provides better
prevision results than the model M0 for the housing market of San Jose for
learning dataset sizes less than 100 observations. Naturally, since the model
M0 is more complex, it becomes more efficient than the model M2 for larger
datasets even if the difference is not so big for large learning datasets. Fig-
ure 6 demonstrates that the PRESS criterion, which will be used in practice
since it is computed without a validation dataset, allows the practician to
successfully select the most appropriated transfer model. Indeed, it appears
clearly that the PRESS curves are very similar to the RSS curves computed
on the whole dataset. Finally, in such a context, the transformation param-
eters obtained by the different adaptive linear models can be interpreted in
an economic way and this could be interesting for economists. In particular,
the estimated transformation parameters by the model M2 with the whole
San Jose dataset are λ0 = 1.439 and λ = 0.447. The fact that the San Jose’s
intercept is almost 50% larger than the one of Birmingham suggests that
the minimal basis price of an housing is more expensive in San Jose than in
Birmingham. However, the fact that the regression coefficients associated to
the explanatory variables of San Jose are on average 50% smaller than the
one of Birmingham could mean that the growing of the price according to
the housing features is more moderated.

This experiment has shown that the adaptive linear models are able to
transfer the knowledge on the housing market of a reference city to the
market of a different city with a small number of observations. Furthermore,
the interpretation of the estimated transformation parameters could help the
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Model 10 obs. 25 obs. 50 obs. 100 obs. 250 obs. all obs.

Model M0 3.5×107 576.9 386.1 336.8 310.7 297.5

Model M2 414.8 356.7 342.1 336.0 332.5 330.1
Model M6 1528.9 1528.9 1528.9 1528.9 1528.9 1528.9

Table 5
RSS results for the Birmingham-San Jose data.

practician to analyse in an economic way the differences between the studied
populations.

6. Conclusion. Before each statistical analysis, the indispensable col-
lect of data is often an expensive step. Even if the same analysis has been
achieved in a relatively similar situation, a new collect of data is needed
since the situation is usually not exactly similar. In a regression framework,
this paper provides a way to adapt a regression model from a given situ-
ation to another new one, and thus to save up a new expensive collect of
data. In this perspective, a family of adaptive linear models has been defined
and, since they are more parsimonious than a complete regression model,
they need only few samples for providing a satisfying estimation of the new
regression model. The conducted experiments have demonstrated that the
adaptive linear models are able to successfully transfer a knowledge on a
well known reference population to another population even with a very few
observation. In particular, the efficiency of the proposed models has been
illustrated on a economic application by adapting the regression of the hous-
ing price versus housing features from the city of Birmingham to the city
of San Jose. While a sample size of at least 100 observations is needed to
estimate directly the San Jose’s regression model, only 20 data are needed
to obtain a similar estimation quality with the adaptive linear models. In
addition, the estimated transformation parameters could help practicians to
analyse the differences between both populations.
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