
HAL Id: hal-00305752
https://hal.science/hal-00305752

Submitted on 22 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model Driven Capabilities of the DA-GRS Model
Arnaud Casteigts

To cite this version:
Arnaud Casteigts. Model Driven Capabilities of the DA-GRS Model. Intl. Conf. on Autonomic and
Autonomous Systems (ICAS), 2006, United States. pp.24 - 24. �hal-00305752�

https://hal.science/hal-00305752
https://hal.archives-ouvertes.fr


1

Model Driven capabilities of the DA-GRS
model

Arnaud Casteigts
LaBRI, Université Bordeaux 1,

351 Cours de la Libération, F-33405 Talence, France.
E-mail: arnaud.casteigts@labri.fr
http://www.labri.fr/

Abstract— The development of applications that
target dynamic networks often adresses the same
difficulties. Since the underlying network topology is
unstable, the application has to handle it in a context-
reactive manner, and, when possible, with algorithms
that are localized and decentralized. The present
paper shows how the DA-GRS model, that is a high
level abstract model for localized graph algorithms,
can be used to drastically improve the development
time of self-organized systems. The canonical method
that is proposed makes use of generic pieces of code,
along with some additional code generation. All the
concepts presented here are illustrated by means of a
spanning forest algorithm, that can then be used by
the application at a high abstraction level.

Index Terms— context-awareness, localized algo-
rithms, dynamic graphs, self-adaptability, design
methods for self-organizing systems, mobile comput-
ing.

The work presented in this paper is carried
out at LaBRI (Laboratoire Bordelais de Recherche
en Informatique) and more precisely in the SOD
(Distributed Systems and Objects) team. It is partly
achieved within the framework of the Sarah (Asyn-
chronous services for mobile ad-hoc networks)
project supported by the ANR (Agence Nationale
de la Recherche).

I. I NTRODUCTION

Pervasive services and mobile computing have
raised many new possibilities. The ultimate goal is
the ability to access a given technology anywhere,
anytime, in a seamless manner. While major im-
provements have been done in the area of devices
themselves, with more and more cpu, memory ca-
pabilities, and communication technologies, one of
the main challenges remains the design of software
layers adapted to this new context.

Such environments require various features they
must be provided with. First, a device must be
aware of its context. This includes at least mecha-
nisms that make it possible for a node to react to the
appearance or disappearance of direct neighbors,
whatever the reason. Context-awareness can also

go further, by taking into account a lot of other
parameters, such as the density, the signal strengh,
the kind of neighbor devices, etc.

Second, when the network is not infrastructured
(i.e. ad-hoc), the devices have to self-organize and
set up local group communication systems, from
a simple one-hop connection to optimized overlay
structures such as spanning trees.

Third, in a pervasive environment where com-
munication links can break at anytime, distributed
algorithms have to be localized,i.e. a device should
interact with direct neighbors only. This matches
the reality and makes it possible, among other
things, to react to an event in one single compu-
tation step.

The DA-GRS model (Dynamicity-aware Graph
Relabeling System) is a very high level computa-
tion model abstraction based on graphs. The two
main properties of this model are localization and
dynamicity, i.e. the model supports the design of
algorithms in which a computation step involves
only direct neighbors (or k-hops neighbors), and
where a device (represented by a vertex) can react
to the appearance/disappearance of its neighbors.

The rest of this paper is organized as fol-
lows. Section II presents the DA-GRS model, and
explains why it is well adapted to model self-
organized systems and context-aware computing. In
section III we describe the model driven capabil-
ities that can be plugged in the DA-GRS model
and show how these capabilities, added to generic
pieces of software, can drastically reduce develop-
ment efforts and make it possible for developers to
focus on the application level. All these concepts
and ideas are illustrated in section IV by means of
the development of an application skeleton that sits
on top of a spanning tree topology in a mobile ad-
hoc network. We eventually conclude and discuss
perspectives in section V.



2

II. T HE DA-GRS MODEL

The DA-GRS model has been introduced in [1]
as a high level abstraction model that helps in
designing and simulating distributed algorithms in
a dynamic context. This model is an adaptation of
the Graph Relabeling Systems (described in [2]),
to the paradigm of dynamic and self-organizing
networks. The main characteristics of the DA-GRS
model, that are locality and dynamicity, make it a
suitable tool to represent the core mechanisms that
an application has to deal with in order to handle
an unpredictable changing context.

A. The network

The network is represented by an undirected
loop-less dynamic graphG = (V, E), with V being
the set of vertices representing the mobile units (or
nodes) andE being the set of edges such that:
∀x, y ∈ V, (x, y) ∈ E ⇐⇒ x andy can communi-
cate directly.

The dynamicity of the network is represented by
the fact thatV andE can change anytime with the
following meaning:

• A vertex v is added to (resp. deleted from)
V if the corresponding mobile unit is turned
on (resp. off ). Note that the deletion ofv
is equivalent, from a communication point of
view, to the deletion of all the edges incident
to v in one step.

• Let dist(v1, v2) be any distance
function between two nodes (usually
the euclidean distance) such that
dist(v1, v2) < threshold ⇐⇒ v1
and v1 can communicate. Then an edge
e = (v1, v2) is added toE if and only if
dist(v1, v2) < threshold and e /∈ E.
Symmetrically, an edgee = (v1, v2) is deleted
from E iff dist(v1, v2) > threshold and
e ∈ E.

B. Labeling

The state of nodes and communication links are
coded by means of vertex and edge labels. Each
vertex has a state label for itself and another state
label for each of its incident edges. An edge thus
has a (possibly different) label on each side, which
permits to code a non-symmetrical state (e.g. its
orientation).

When an edge is added to the graph, it has
an initial default label (noted0). When an edge
is deleted, its endpoint nodes add a special label
to code the fact that the communication link has
broken. This special label, notedoff will allow (if
desired) to apply some special operation to handle

the deletion of the edge; thereafter, the edge is
definitely and locally deleted.

The operations of addition and deletion of edges
can thus be represented as in Fig. 1.

• Addition of an edge:
00

• Deletion of an edge:
off off

Fig. 1. Addition and deletion of edges, according to topological
changes

C. Computation

To provide the highest level of abstraction as
possible, still matching the reality of a distributed
system, the DA-GRS model considers a computa-
tion step as a relabeling rule involving two direct
neighbors. According to the states of the two ver-
tices along with the state of their common edge,
the rule computes a new value for all the involved
labels. Let us consider the example of an algorithm
that propagates a piece of information in a network.
The semantics attached to the label is as follows:

• the valueA (resp.N ) for the label of a vertex
means that the corresponding node has (resp.
does not have) the piece of information.

• the value1 (resp.2) for the endpoint label of
an edge, means that the message has been sent
(resp. received) using this edge.

The entire algorithm can then be coded by the
simple relabeling rule shown in Fig. 2.

0 0

NA A A

1 2

Fig. 2. The propagation algorithm example

D. Abstraction

The communication models that are usually con-
sidered in distributed systems are message passing,
mail boxes or shared memory, some of which
can be synchronous or asynchronous. The choice
of a given model is decisive and often implies
different approaches for the same problem. With
the DA-GRS approach, the communication model
is abstracted. A computation step is defined by a
pair (pre-state, post-state), which makes it possible
to focus on a general solution for a given problem.
The way a GRS based algorithm can be adapted
to a specific communication model (and especially
to the asynchronous message passing model) has
been discussed many times, see for instance [3] or
[4] for more information.



3

Concerning the synchronization of nodes, i.e.
the way nodes choose each other to compute one
step, there exist several solutions that have different
advantages and disadvantages. Here are three syn-
chronization layers that can be used by DA-GRS:

• The rendezvous [5] is a synchronization mode
in which, at each step, each node chooses one
of its neighbors at random. If two neighbors
have chosen each other, then there is a ren-
dezvous between them and a computation step
between these nodes can be performed. The
advantage of this synchronization mode is that
it is fair and non-deterministic (it allows to
study the impact of network topologies on the
execution of a given distributed algorithm).
The disadvantage is that it is not efficient. An
analysis of the rendezvous synchronization has
been done in the context of static graphs and
can be found in [6].

• The constraint based synchronization has been
introduced in [7]. This synchronization mode
does not care about fairness, and allows to
specify criterions based on the communication
links, in order to favour interactions between
neighbors that match it. Such criterions are for
instance the latency, the average bitrate, the
signal strength, etc.

• An hybrid synchronization mode is currently
being studied, in which neighbors select each
other at pseudo-random, according to proba-
bilities that match the same kind of criterions
as for the constraint based synchronization.

Since the present paper focuses on model driven
features rather than performance issues, we will
abstract this layer by considering it as a way to
select a pair of neighbors for a computation step,
as shown in Fig. 3.

Fig. 3. Abstraction of the synchronization layer

III. M ODEL DRIVEN DEVELOPMENT

The core mechanisms on which self-organized
systems rest, often correspond to classical organi-
zation schemes such as spanning trees, covering

rings, k-connected spanning structures, etc. These
are precisely the kind of structures that are easily
modeled by DA-GRS. The localized and dynamic
properties of the model make it possible to develop
distributed algorithms that are by nature able to
(self-)organize a network in a context-reactive man-
ner. This section presents a canonical method to
develop an application that uses a DA-GRS based
algorithm to manage its topological organization.
Examples of code and object concepts are inspired
from the Java language.

A. The core algorithm

According to the desired organization scheme,
the developer has to design the appropriate DA-
GRS algorithmA = (I, R) with I standing for the
set of initial labels andR for the set of relabeling
rules.

B. Execution of the algorithm

Thanks to the rule engine embedded on each
node (that synchronize each other using one of the
synchronization mode presented in section II), the
runtime is able to execute a DA-GRS algorithm.
Once again, the execution of such an algorithm is
beyond the scope of this paper that focuses on the
use of these tools by an application developer. An
embedded DA-GRS rule engine has been developed
for a grid of PCs [8] and is currently being ported to
a number of smartphones that use J2ME and Blue-
tooth. A simulator that uses a similar rule engine
has also been developed and is freely available at
[9].

C. Integration

The algorithm being just sets of states and rules,
the goal is to make it possible for the application
to give it a sens at its own level, without having to
consider the rule engine internal working.

1) Which kind of integration: When the rule
engine is in the process of applying a rule with
another node, it should inform the application, that
will then execute the appropriate code to handle
that, according to what it means at its level. The
system we propose is based on an upcall mech-
anism that takes place through an automatically
generated interface.

2) Interface generation: Based on a given al-
gorithm A = (I, R) an interface is generated.
This interface specifies the methods that have to be
implemented (one for each rule). Parameters that
are passed through these calls are a reference to
an object that represents the considered neighbor,
along with a boolean that codes which side of



4

the rule the underlying node it sitting at (from
an operational point of view, the rules are not
symmetrical).

Let us considerR = {r1, r2}. The generated
interface will look as shown in Fig. 4.

public interface MyAlgoListener{
public void onR1(Node, boolean);
public void onR2(Node, boolean);

}

Fig. 4. Example interface

3) Use by an application class: To use the whole
framework, the developer only has to provide a
class that implements the generated interface, and
to write the code that implements the operational
aspect of the algorithm in the appropriate methods.
Fig. 5 shows an implementation for the example
interface of Fig. 4.

public class MyClass
implements MyAlgoListener{

DaGRS re; // rule engine creation
MyClass{

// instanciation of the rule engine
re = new DaGRS (‘‘MyAlgo.dagrs’’);
// registration for upcalls
re.setListener (this);

}
public void onR1(Node n, boolean side){

// code for the semantics of rule 1
}
public void onR2(Node n, boolean side){

// code for the semantics of rule 2
}

}

Fig. 5. Use example

Note that upcalls will take place precisely before
the assignment of the new states in the rule engine,
and that the supplied code will be executed on both
sides at the same time. If the communication link
is broken during the execution of the application
level code, the architecture should provide a way
to propagate and then to handle that at the same
application level. This could be achieved by raising
an exception, that the developer would catch in its
implementation.

IV. I LLUSTRATION

This section illustrates the use of the DA-GRS
model driven capabilities by means of the example
of an application that sits on top of a spanning
tree in a dynamic network. All code examples and
object concepts are inspired from the Java language.

A. The spanning tree algorithm

A spanning tree of a graphG = (V, E) is a
connected cycle-free subgraphG′ = (V ′, E′) of

G such that∀v ∈ V, v ∈ V ′. In the context of a
dynamic network, it would be more precise to talk
about a spanning forest, since the network can be
partitionned. The algorithm that is presented in this
paper,A = (I, R), guarantees to maintain anytime
a spanning forest that strives for a spanning tree,
using only one-hop context information (i.e. it is a
purely localized algorithm).

Initially, each node is labeledJ , i.e. I = {J}.
The algorithm is composed of four rules,i.e. R =
{r1, r2, r3, r4}.

Two representations can be used for DA-GRS
algorithms. The first, and most intuitive, is the
visual representation based on graphs, as shown in
Fig. 6. The second, that is the one used by the DA-
GRS rule engine, and that is equivalent, is shown
Fig. 7. In this representation, each rule is coded by
two statements: the first corresponds to the left side,
i.e. pre-state, of a rule; the second corresponds to
the right side,i.e. the post-state of the rule.

I:
J

r1: 1

off
N J

r2:
off

2

Any Any

r3: 0 0 12

J J J N

r4:

J N N J

2 1 1 2

Fig. 6. Spanning forest algorithm (visual representation)

label,J // initial state
=
// R1
v1.edgestate = off & v1.edgelabel = 1
v1.label = J & v1.edgelabel = 0

// R2
v1.edgestate = off & v1.edgelabel = 2
v1.edgelabel = 0 // allows the edge

// to be locally deleted

// R3
v1.label = J & v2.label = J
v1.edgelabel = 2 & v2.edgelabel = 1 \

& v2.label = N

// R4
v1.label = J & v2.label = N & v1.edgelabel ! 0
v1.label = N & v2.label = J & v1.edgelabel = 1 \

& v2.edgelabel = 2

Fig. 7. Spanning forest algorithm, as used by the rule engine

B. Explanation of the algorithm

The algorithm is based on three operations on
a token: circulation, merging and regeneration. Ini-



5

public interface SpanningForestListener{
public void onR1(Node);
public void onR2(Node);
public void onR3(Node, boolean);
public void onR4(Node, boolean);

}

Fig. 8. The SpanningForestListener interface

tially, each node has a token (and is labeledJ),
meaning that each node is a spanning tree in itself,
containing exactly one element (itself), and being
its own root.

When two nodes labeledJ meet each other,
thanks tor3, the two spanning trees merge. Indeed,
the labels1 and2 on an edge mean that it is part of
the spanning tree. The use of two different labels
allows a node to know the local route to the token.
Whenr3 applies, one of the two tokens is deleted
and one of the nodes is relabeledN , that guarantees
that there is at most one token per tree.

The ruler4 codes the circulation of the token in
a tree of the forest. Note that the edge labels are
switched to ensure that the local route to the token
remains consistent.

When a communication link is broken,i.e. when
an edge is deleted, the node that is on the token side
has nothing to do regarding the token maintainance,
and simply applies ruler2. The node that had the
deleted edge label to1 has lost the route to the
token, and is the only one of its remaining piece of
tree to know that. It then regenerates a new token
thanks to ruler1.

C. Priorities

The DA-GRS model considers light priorities
between rules in the sense where once a neighbor
is chosen, the rules are tried in the algorithm order
until one can be effectively applied. Moreover, the
disappearance rules (e.g.r1 andr2) have a higher
priority than the other rules and do not need a
neighbor selection in order to be applied. Note
that according to these priorities, a node that has
to regenerate a token cannot be used for anything
before having effectively regenerated the token. As
a side effect, this ensures that there is one and only
one token in the tree, at anytime.

D. Interface generation

The generated interface is thus as shown on
Fig. 8. Note that for the disappearance rules, a
boolean side parameter would be useless. TheNode
parameter is here just a reference to the object that
represented the disappeared neighbor.

public class MyClass
implements SpanningForestListener{

private DaGRS re; // rule engine creation

public Vector neighbors;
public Node father;
public Node me;

MyClass{
re = new DaGRS (‘‘spanforest.dagrs’’);
re.setListener (this);

neighbors = new Vector();
}
public void onR1(Node n){

neighbors.remove(n);
father = null;

}
public void onR2(Node n){

neighbors.remove(n);
}
public void onR3(Node n, boolean side){

neighbors.add(n);
if (!side){

father = n;
}

}
public void onR4(Node n, boolean side){

if (side){
father = n;

}else{
father = null;

}
}

}

Fig. 9. Implementation of the spanning forest meaning

E. Use of the spanning forest in an application

The spanning forest can then be used in a
seamless way by an application, provided that the
developer has added the code that gives sens to
the algorithm in the corresponding methods. Fig.
9 proposes a very basic code that will allow the
remaining of the application to use the properties
of a dynamic spanning tree in a seamless manner.

F. Comments about the algorithm

In the code example of Fig. 9, the term offather
has been used to identify the route to the token.
This use is witting, in the purpose of showing that
the token can be considered as a moving tree root,
since it is unique in each tree.

An interesting point is that the DA-GRS algo-
rithm presented here has been used as a spanning
forest structure maintenance tool. With the same
set of rules it could be used with a different high
level code, and thus meaning, for example to elect
a leader (the owner of the token) or to control an
exclusive access to a communication medium.

G. Simulation

All DA-GRS algorithms, provided that they are
expressed in the pseudo-logic formalism of Fig. 7



6

can be simulated and visualized in the DA-GRS
simulator [9]

V. CONCLUSION

The domain of pervasive services and mobile
computing is a research area that is still emerging
and where a lot of work remains to be done.
The present paper has introduced the first step to
generate self-organized and dynamic systems based
on a graph relabeling approach, using the DA-GRS
model. It is important to notethat the DA-GRS
model does not in itself model services or appli-
cations. It rather models the core mechanisms to
handle topology changes and interactions between
devices, and on which applications can rest.

In this document we have provided a canonical
method that covers the whole development process
of such a system, from the modeling of a strategy
to maintain a topological structure, to the code that
adds sense to it.

In our work on the DA-GRS model we consider
both the thoretical and practical aspects. From a
theoretical point of view, we plan to use the model
to characterize mobility classes,i.e. to identify what
kind of basic problems (election, naming, counting,
etc.) can be solved in which class, and under
which assumption on mobility. From a practical
point of view we are working on the design of a
methodological framework for the analysis of DA-
GRS algorithms, in terms of what can be guaranted
with which efficiency.

Regarding the experimentation, a dedicated sim-
ulator has been developed and is freely available
on the web (at [9]). We are furthermore currently
porting the DA-GRS rule engine on smartphones.

REFERENCES

[1] A. Casteigts and S. Chaumette, “Dynamicity Aware Graph
Relabeling Systems - a model to describe MANet algo-
rithms,” in Proceedings of the 17th IASTED International
Conference on Parallel and Distributed Computing and
Systems, 2005.

[2] I. Litovsky, Y. Metivier, and E. Sopena, “Graph relabelling
systems and distributed algorithms,” inHandbook of graph
grammars and computing by graph transformation, W. S.
Publishing, Ed., vol. III, Eds. H. Ehrig, H.J. Kreowski, U.
Montanari and G. Rozenberg, 1999, pp. 1–56.

[3] M. Bauderon, Y. Metivier, M. Mosbah, and
A. Sellami, “From local computations to asynchronous
message passing systems,” 2002. [Online]. Available:
citeseer.ist.psu.edu/bauderon02from.html

[4] J. Chalopin and Y. Métivier, “A bridge between
the asynchronous message passing model and local
computations in graphs,” inMathematical Foundations
of Computer Science (MFCS 2005), ser. Lecture
Notes in Computer Science, vol. 3618. Springer-
Verlag, aug 2005, pp. 212–223. [Online]. Available:
http://www.labri.fr/publications/combalgo/2005/CM05

[5] Y. Métivier, N. Saheb-Djahromi, and A. Zemmari,
“Randomized rendezvous,” inColloquium on mathematics
and computer science: algorithms, trees, combinatorics
and probabilities, ser. Trends in mathematics.
Birkhäuser, 2000, pp. 183–194. [Online]. Available:
http://www.labri.fr/publications/combalgo/2000/MSZ00

[6] Y. Metivier, N. Saheb, and A. Zemmari, “Analysis of a
randomized rendezvous algorithm,”Inf. Comput., vol. 184,
no. 1, pp. 109–128, 2003.

[7] A. Casteigts and S. Chaumette, “DA-GRS and the constraint
based synchronization: a unifying approach to deal with
dynamic networks,” submitted to WASA’06.

[8] D. Delcampo, “Validation du modele DA-GRS sur la
plateforme GRID5000, et sur terminaux mobiles com-
muniquants,” http://www.labri.fr/perso/casteigt/docs/dagrs-
grid5000.ps.

[9] A. Casteigts, “SimuDAGRS, a Dynamic Network simu-
lator for algorithms modeled by DA-GRS,” available at
http://www.labri.fr/perso/casteigt/simulator.html.


