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Abstract

A probabilistic assessment of climate change and related impacts should consider a large range of potential future climate scenarios. State-of-
the-art climate models, especially coupled atmosphere-ocean general circulation models and Regional Climate Models (RCMs) cannot,
however, be used to simulate such a large number of scenarios. This paper presents a methodology for obtaining future climate scenarios
through a simple scaling methodology. The projections of several key meteorological variables obtained from a few regional climate model
runs are scaled, based on different global-mean warming projections drawn in a probability distribution of future global-mean warming. The
resulting climate change scenarios are used to drive a hydrological and a water management model to analyse the potential climate change
impacts on a water resources system. This methodology enables a joint quantification of the climate change impact uncertainty induced by
the global-mean warming scenarios and the regional climate response. It is applied to a case study in Switzerland, a water resources system
formed by three interconnected lakes located in the Jura Mountains. The system behaviour is simulated for a control period (1961-1990) and
a future period (2070-2099). The potential climate change impacts are assessed through a set of impact indices related to different fields of
interest (hydrology, agriculture and ecology). The results obtained show that future climate conditions will have a significant influence on
the performance of the system and that the uncertainty induced by the inter-RCM variability will contribute to much of the uncertainty of the
prediction of the total impact. This research has been conducted within the 2001-2004 EU funded project SWURVE.

Keywords: climate change impact, regional response pattern scaling, Monte Carlo simulation, hydrological modelling, uncertainty analysis,

impact analysis, Switzerland.

Introduction

The assessment of climate change impacts on water
resources is currently subject to intense research (see, e.g.
Jasper et al., 2004; Kim, 2005; Lettenmaier et al., 1999;
Loukas et al., 2002). The quantification of these impacts is
conditional on the availability of regional climate change
predictions of different key meteorological variables such
as precipitation and surface air temperature. Currently
available regional climate changes projections are generally
based on the results of coupled Atmosphere-Ocean General
Circulation Models (AOGCMs) or on the results of Regional
Climate Models (RCMs) that are driven by the outputs of
the former and that are supposed to describe regional
climatic variables better than AOGCMs because of their
higher spatial resolution (0.5°latitude x 0.5°longitude or
higher).

Regional climate change projections based on climate
model outputs are highly uncertain, mainly due to the
unknown future greenhouse gas emissions but also due to
the highly simplified representation of reality encoded in
these models. As a consequence, different state-of-the-art
AOGCMs generally simulate different climate evolutions
for the same emission scenario (see, ¢.g. Arnell and Hulme,
2000; Réisdnen, 2001, 2002). For a given AOGCM
experiment, the corresponding RCM experiment is also
subject to these modelling uncertainties. The results of
several RCM experiments based on the same AOGCM
outputs can therefore also differ significantly (see, e.g. Frei
et al., 2003; Raisdnen et al., 2004). Nevertheless, the
uncertainty introduced by the RCM is generally considered
to be substantially smaller than the one inherited by the
driving AOGCM (Jenkins and Lowe, 2003). As part of the
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2001-2004 EU project SWURVE (Sustainable Water,
Uncertainty, Risk and Vulnerability in Europe, see Kilsby
et al., 2007), an analysis of the data of the EU project
PRUDENCE (Prediction of Regional scenarios and
Uncertainties for Defining EuropeaN Climate change risks
and Effects (Christensen et al., 2002) suggests, however,
that the inter-RCM variability cannot be neglected (Ekstrom
et al., 2007; Hingray et al., 2007).

An evaluation of the full range of potential climate change
impacts on a given water resources system would require
taking into account the uncertainties due to different
emission scenarios and due to the climate model structure
and the corresponding parameterization (for both AOGCMs
and RCMs). This would need a large number of AOGCM-
RCM experiments with different emission scenarios.
However, climate model simulations being highly time-
consuming, only a few model experiments are currently
available. Consequently, most impact studies are reduced
to a scenario analysis: meteorological variables are obtained
for a limited number of climate models and of probable
greenhouse gas emission scenarios. Such approaches can
neither simulate all possible system outcomes nor assign
them a probability of occurrence.

Recent work addresses the assignment of such
probabilities of occurrence through Monte Carlo simulation
frameworks (New and Hulme, 2000; Jones, 2000;
Prudhomme et al., 2003), combining some of the major
sources of uncertainty such as the emission scenarios, the
global climate sensitivity and the inter-climate model
variability. However, most of the studies currently available
take no account of all sources of modelling uncertainty.
Prudhomme ef al. (2003), for example, include different
Global Circulation Model (GCM) patterns and climate
sensitivities but their analysis is based on only four emission
scenarios defined by the Intergovernmental Panel on Climate
Change (IPCC) in its Special Report on Emission Scenarios
(SRES) (Nakienovi and Swart, 2000).

The scaling approach introduced by Santer et al. (1990)
enables the generation of multiple climate change scenarios
for a number of global-mean warming projections. The
technique is currently widely used in climate scenario studies
(New and Hulme, 2000; Jones, 2000; Hulme et al., 2002)
and is based on the assumption of a linear relationship
between the annual global-mean warming (the so-called
scaler) and the response pattern of regional climate changes
obtained from any global or regional climate model. In the
work of Jones (2000) and of New and Hulme (2000), the
response pattern is expressed for each variable as a simple
scaling ratio, i.e. a constant regional temperature or
precipitation change per degree of global-mean warming.
The response pattern used by Mitchell (2003) is the spatial
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climate change pattern of a GCM. The advantage of this
scaling technique is that the scaler can be obtained from so-
called Simple Climate Models (SCMs) demanding fewer
computing resources than GCMs (Wigley et al., 2000).
Based on such SCMs, thousands of Monte Carlo simulations
can be produced (New and Hulme, 2000; Huntingford and
Cox, 2000). Wigley and Raper (2001) present such an
approach to determine the Probability Distribution Function
(PDF) of global-mean warming between 1990 and different
periods in the 215 century. A simple upwelling-diffusion
energy balance model is calibrated against the results of
seven state-of-the-art AOGCMs. The emission uncertainties
as well as the uncertainties due to the climate sensitivity,
the carbon cycle, the ocean vertical diffusivity and the
aerosol forcing are characterised by appropriate PDFs,
which are then used to drive the SCM resulting in PDFs of
the global-mean warming. SCMs are, however, not
sufficiently complex to represent with accuracy spatial or
seasonal patterns of climate changes, especially if regional
features are needed for small space and time resolutions.
This problem can be overcome by a technique of pattern
scaling that combines SCM and RCM (or GCM) outputs to
produce a number of climate change scenarios (Mitchell,
2003).

The methodology presented in this paper is based on such
a scaling approach. It was developed during the 2001-2004
EU project SWURVE. Future climate scenarios — in terms
of seasonal changes of the mean value and of the variability
of temperature and precipitation — are obtained for the
period 2070-2099 by scaling the meteorological response
pattern from a RCM by a global-mean warming projection
randomly drawn from a PDF obtained from Wigley and
Raper (2001). The uncertainty inherent in the regional
climate response is taken into account through the use of
different meteorological response patterns derived from a
set of RCM experiments available through the PRUDENCE
project (Christensen ef al., 2002).

The corresponding local scale time series of surface air
temperature and precipitation are obtained through a
classical perturbation procedure (Shabalova et al., 2003).
These series are used as an input to simulate the behaviour
of a water resources system for future climate change
conditions. The performance of the resulting system is
compared with a control period based on an appropriate set
of performance indices. This methodology is applied to a
managed lake system located in the north-west of
Switzerland. The control period analysed is 1961-1990 and
the future period 2070-2099. These 30-year periods are
assumed to cover a large part of the natural variability of
the system and to be long enough for a climate change impact
to be assessed.
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In this paper, after introducing the models developed to
simulate the behaviour of the system and indices of the
impact of climate change, the climatic datasets and the
climate scenarios are presented, followed by a discussion
of the probabilistic framework for stochastic climate
scenario generation. Finally, the main results and the relative
importance of the different sources of uncertainty in climate
modelling are discussed.

Case study: a regulated lake system

SYSTEM DESCRIPTION

The water resources system studied in the north-west of
Switzerland (Fig. 1) comprises three interconnected lakes,
formed 15 000 years ago during the retreat of the Rhone
glacier. The system was modified significantly in the periods
1833-1884 and 1963-1972 by the construction of connection
channels (Jaton, 1989). Different regulation waterworks
have been built to reduce the flood risk and to transform the
formerly unproductive areas into fertile arable land. The
interconnection of the three lakes equilibrates their water
levels and the mean daily level of all of them is roughly the

same. The catchment surface area of the three lakes is around
8300 km? (Fig. 1) and its elevation ranges from 420 m a.s.I.
(at the outlet of lake Bienne) to around 4270 m a.s.l. with a
mean elevation of 1150 m a.s.l. The three main inflows into
the lakes are the rivers Aare, Broye and Orbe (Fig. 1, and
see Table 1 for catchment characteristics).

HYDROLOGICAL REGIME

The hydrological regimes of the Aare and Broye rivers
located in the Swiss Alps and Prealps are influenced
significantly by snowmelt; less than 3% of the Aare
catchment is covered by glaciers. The Orbe River and several
other tributaries to Lakes Bienne and Neuchatel are in the
Swiss Jura Mountains; consequently, their hydrological
regimes are influenced by snowmelt and karst effects. The
hydrological regime of all these rivers has a marked
seasonality, with low flows in winter and high flows from
spring to autumn due to snowmelt and rainfall. Artificial
lakes (mainly used for hydropower production) and
regulated natural lakes perturb the river regimes, especially
that of the Aare River (Spreafico ef al., 1992).

Fig. 1. Location of the lake system studied in the Swiss Alps (SwissTopo, 1997)
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Table 1. Characteristics of the main rivers feeding the studied lakes system

Aare River Broye River Orbe River
Catchment area 5128 km? 392 km? 333 km?
Gauge Hageneck Payerne Orbe
Outlet Lake of Bienne Lake of Morat Lake of Neuchatel

Elevation range 4504250 m a.s.l.

Hydrological regime Snowmelt
influenced by Lake regulation
Hydropower

450-2000 m a.s.1. 450-1500 m a.s.l.

Snowmelt Karsts
Snowmelt

Hydropower

LAKE REGULATION

The only discharge of the lake system, at Nidau-Port (Lake
Bienne), is regulated by a weir and water is released
according to ‘reglement 80/82” approved by the Swiss
Federal Government (VAW, 1996). Daily target releases are
fixed as a function of the water level in the lakes and of the
calendar day. These rules have been elaborated to take
account of the sometimes conflicting interests of the different
stakeholders involved in farming, fishery, hydropower
production, flood protection and ecosystem conservation
(including wetland protection). The resulting water level is
low in winter and high in summer. The maximum annual
water level fluctuation is, however, less than 1 m.

POTENTIAL FAILURES AND CLIMATE CHANGE
IMPACTS

For most stakeholders, potential system failures are related
directly to the water level of the lakes. The main failures
occur when the lake level is above a critical level because
of an unexpected or long-lasting high water inflow. Such
situations can lead to water-logging and flooding of
agricultural areas (particularly damaging during the sowing
season) and riparian urban areas (Jaton, 1989). Other failure
events are induced by persistent droughts. Such situations
can lead to economic losses for agriculture (water restriction
and irrigation targets unachievable) or for the hydropower
plants located downstream of the lake. In addition, the
welfare of many animal and vegetal species depends on the
temporal progression of the water level throughout the year.
Pikes, for example, need a sudden spring flood to access
their spawning area and their alevins need a slow flood
decrease to return to the deeper water (Zaugg et al., 1994).
Highly specialised birds build their nests in the reeds just
above the maximum water level experienced during the days
preceding the brooding. A significant water level increase
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after nest construction floods some of them (Aebischer,
1994).

A potential climate change is expected to modify the
hydrological regime of the different rivers feeding the lakes.
The resulting modified temporal evolution of the lake levels
potentially influences the frequency, duration and intensity
of failures occurring.

System modelling

DATA COLLECTION

An integrated simulation tool, developed to simulate the
performance of the system under different climates, includes
hydrological models to simulate river discharges feeding
the lakes with a management model for the simulation of
the lake level evolution. The development and calibration
of these models is based on observations. The observed
precipitation and surface air temperature time series for the
hydrological models are obtained from the Swiss
Meteorological Institute at a daily time step. Potential
evapotranspiration is estimated based on the Pennman-
Monteith model (Monteith and Unsworth, 1990) and direct
evaporation from the lake surface is estimated by the Turc
formula (Mermoud, 1995). Observations of river discharge
and lake level are obtained from the Swiss Federal Office
of Water and Geology. Based on these data, the hydrological
and management models were calibrated for the years 1984—
1992 and validated for the years 1993-2000.

HYDROLOGICAL MODELLING

The catchment feeding the lake system is split into its three
main sub-catchments named Aare, Broye and Jura (the last
includes several small rivers as well as the River Orbe). For
each of these sub-catchments, a specific hydrological model
has been developed. The present modelling context —
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namely the simulation of a high number of scenarios and
the limited available meteorological data for future scenarios
— imposed the development of highly parsimonious
discharge models.

All catchments are strongly influenced by snow
accumulation and snowmelt processes. In the present
simulation framework, these processes are taken into
account by computing a rainfall equivalent to the sum of
rainfall and simulated snowmelt. For a catchment glacier-
covered in parts, this equivalent rainfall should include ice
melt but the computation of the equivalent rainfall for the
Aare catchment accounts only for snowmelt. This is because,
for the control period, the area of the catchment on which
ice melt processes occur is insignificant: only 3% of the
catchment area is glacierised and the corresponding mean
ablation area (the area where ice melt occurs) can be assumed
to cover only around one-third of the total glacier area (see,
e.g. Maisch et al., 2000).

Hereafter, the snowmelt computation is presented,
followed by a short description of the equivalent rainfall-
discharge transformation that is specific to each of the three
catchments. The daily snow accumulation and snowmelt
depend strongly on the mean daily precipitation and
temperature, both of which are spatially very variable and
altitude-dependent. Given the large elevation ranges of the
catchments studied, they were divided into several elevation
bands to simulate the snow pack evolution.

For each elevation band, the daily precipitation is divided
into rain- and snowfall according to a fuzzy-threshold
established by Steel (1999) for the whole of Europe. The
daily snowmelt is computed according to the modified
degree-day method of Schreider et al. (1997). Instead of
the constant degree-day factor as in the classical degree-
day formulation (Martinec et al., 1983), an albedo-related
factor was calculated for each month of the year as a function
of the mean monthly temperature. This function was
established empirically by Whetton et al. (1996) and has
been adapted to European conditions by Steel (1999).

The equivalent rainfall is transformed into discharge
through an appropriate runoff model for each subcatchment.
As the Broye catchment has a rather natural hydrological
behaviour, a classical conceptual modelling approach is
applied (a lumped rainfall-runoff model), combining a non-
linear loss module based on the moisture deficit in the
catchment with the routing module of the rainfall-runoff
model IHACRES (Jakeman and Hornberger, 1993). The
accounting scheme for the non-linear loss module converts
equivalent rainfall into rainfall excess, while the routing
module relates rainfall excess to total streamflow via two
parallel linear reservoirs.

The Aare catchment is highly influenced by water

derivations, i.e. where water is collected from subcatchments
and routed via artificial collectors to other subcatchments,
and by several regulated natural and artificial lakes. The
hydrological regime of the Jura catchment is influenced
significantly by karsts. As it is unrealistic to simulate the
discharge of these two catchments by simple conceptual
models, the Data-Based Mechanistic (DBM) modelling
approach proposed by Young and Beven (1994) has been
tested. In this approach, the most parsimonious model
structure is inferred statistically from the available time
series, using the time variable parameter estimation method
called Fixed Interval Smoothing (FIS) presented by Young
(1984) and Young (1993).

For the Aare and Jura catchments, the DBM modelling
approach highlighted the predominating effect of the lagged
runoff, resulting in an autoregressive model where the
rainfall as driving forces is negligible. Such an approach is,
clearly, not applicable in climate change impact studies. The
elimination of the autoregressive part of the DBM model
led to a linear regression model between the daily discharge
and the equivalent rainfall filtered by moving averages. The
same filtering is applied to the temperature series in the
regression model as a second explanatory variable. For the
Aare catchment, the final model has seven parameters, the
constants a, b, b, b, and the window sizes w, for the
moving average filtering:

1 o are 1 < 1 < arine
Q=a+b-—> P +b,-—> T  +b-—> P
W1 k=1 Wz k=1 W3 k=1 (1)

where Q, is the simulated discharge on day 7 and T is the
mean temperature for the entire Aare catchment for day #-.
P and PS5 are the area average equivalent rainfall
for the two subcatchments upper-Aare and Sarine. A similar
multiple regression model has been developed for the Jura
catchment.

Using the coefficient of determination (R?) as an objective-
function, the values of R’ for the calibration period are,
respectively, 0.77, 0.68 and 0.89 for the Aare, Jura and Broye
catchments; for the validation period the values are 0.67,
0.43 and 0.97. Bearing in mind the parsimony constraints
and the highly disturbed hydrological regimes, the
performance of the three models is rather good.

MANAGEMENT MODEL

The simulation of the temporal evolution of the water levels
is based on a simple water balance model accounting for
lake inflow, direct evaporation from the lake surfaces and
water release at the unique system outlet. The water routing
through the hydraulic system and especially between the
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lakes is assumed to be negligible. The water release is
simulated according to the regulation rules (VAW, 1996)
that determine the release as functions of the observed lake
level (estimated through appropriate storage-to-level
functions) and of the calendar day. Except for a few extreme
situations, the weir manager follows these regulation rules
strictly and, consequently, the observed water levels are well
simulated (Denk, 2002).

SYSTEM PERFORMANCE MEASUREMENT

Because of the high number of stakeholders directly
concerned about the temporal evolution of the lake level,
an integrated assessment of all potential impacts of climate
change is impossible. Hence, attention has been directed at
three particular fields of interest, namely, agriculture
(focusing on spring crops), fishery (focusing on pikes), flood
protection (focusing on flooding of riparian urban areas)
and wetland protection (focusing on the reed population in
the Grande Caricaie ecosystem).

To judge the behaviour of water resources systems under
different future climatic situations, a pertinent set of criteria
has to be defined. These should be discriminant and easily
calculable and they should not be redundant, i.e. there should
be no or little correlation between the information encoded
in respect of the different criteria. Because the main interest
is concerned with the ability of the system to deal with future
uncertain climate conditions without severe damage, the
robustness of the system i.e. its capacity to absorb adverse
conditions without lasting damage, must be one of the
criteria. The system may fail but should be able to recover
rapidly. Hashimoto ef al. (1982) have defined the RRV
criteria (Reliability, Resilience and Vulnerability); they
measure how often a system failure occurs, how severe it is
and how quickly the system returns to a satisfactory state
afterwards. These criteria can be interpreted as probabilistic
measures of the frequency, duration and intensity of
occurring failures. They are quantitative risk criteria and,
therefore, highly adapted to climate change impact analysis.
Several applications appear in the literature (Lane et al.,
1999; Vogel et al., 1999; Fowler et al., 2003).

The use of RRV criteria for the lake system studied
requires definition of the acceptability of outputs of the
system under examination. This task may be straightforward
— as for a drinking water supply system for example — or
quite difficult — as for agriculture or flood protection in
the present case study. For agriculture, high water levels
during the sowing season will delay access to the land or
may inundate the seeds by water logging after sowing.
During the maturation season, flooding over several
consecutive days could affect the harvest and reduce the
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productivity significantly. For a given field, at a given
altitude compared to the lake level, a critical lake water level
can be identified. The different fields are however not at
the same altitude compared to the lake level.

Similarly, the water level threshold for urban flood damage
varies (430.35 m a.s.l., 430.70 m a.s.l., 430.25 m a.s.l. for
the lakes of Neuchatel, Morat and Bienne ). The extent of
damage can be modelled as a function of the number of
buildings and infrastructure affected by the inundation. This
depends on the intensity of the flood and on the altitude of
the riparian urban zones. As was found for agriculture, a
unique critical water threshold is difficult to define.

The analysis of impacts on animal or vegetal species is
even more complex. The definition of a proper failure state
is difficult mainly because the interaction between the
physical system and the studied populations is difficult to
measure and can evolve with time. In the present study,
potential climate change impacts are quantified through so-
called welfare indices. Two different types have been
defined: one measures the success of reproduction of pikes
and the other the viability of reed. For the pikes, the
relationship between the reproduction success and the annual
lake level evolution is known (Zaugg et al., 1994). For reed,
the long-term viability can be expressed as a function of the
maximum fluctuation of the water level (Buttler ez al., 1995;
Clerc, 1999). All welfare indices have been evaluated on a
yearly time step. Based on these annual time series, an
intensity— frequency—duration analysis of the occurring
events is completed. Such an analysis is comparable to an
RRV-analysis even if the events analysed events are not
necessarily failures.

The same approach has been adopted for analysing
potential climate change impacts on all identified fields of
interest. In the following, the events analysed have been
summarised:

® Reed population: annual maximum water level
fluctuation defined as the difference between the annual
minimum daily water level and maximum daily water
level.

e Pike population: the annual reproduction success score
is SO, the product of four different scores S1 to S4,
each of which has a value between 0 and 1 and is related
to a different aspects of success in reproduction. To
reach their spawning areas, pikes need a sudden spring
flood, the magnitude of which gives score S1 and the
minimum expected variation in level is 30 cm. Score
S2 is determined by the arrival date of this spring flood
and the best date is 15" February. The final water level,
which determines the extent of accessible spawning
areas, should reach at least 429.9 m a.s.l. and gives score
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S3. Score S4 measures the speed of flood decrease. Pike
alevins need a slow decrease in flood to return to deep
water, ideally less than 10 cm per 100 days and this rate
gives Score S4. If conditions are optimal in a given year,
all the scores are set to 1; otherwise, they are decreased
according to Zaugg et al. (1994).

® Flood protection of urban areas: annual maximum flood
is defined as the annual maximum daily water level.

® Spring crop: seasonal failure events are defined for the
sowing season (spring) and the maturation season
(summer) if the minimum daily water level over n-
consecutive days (n = 2 for sowing season, n = 10 for
maturation season) is above a given threshold /s, that
is expected to produce water logging in the sowing
period in spring and field inundation in summer when
the crops mature.

Pattern scaling and time series
generation

GENERATION OF FUTURE TIME SERIES FOR A
GIVEN CLIMATE CHANGE SCENARIO
Based on a probability distribution of the future global-mean
warming and on available AOGCM and RCM model
outputs, the generated future time series must meet the
following requirements. (i) They should reflect the
seasonality of regional climate changes. For the catchments
studied, the mean temperature increase is expected to be
higher in summer than in winter (Hingray et al., 2007). (ii)
For the meteorological variables (surface air temperature
and precipitation), they should reflect changes both in the
mean and in variability. Potential climate related impacts
are generally highly dependent on extreme events. As the
occurrence of extreme events is highly sensitive to the width
of statistical distributions, changes in variability are
generally supposed to influence their occurrence more than
changes in averages (Katz and Brown, 1992; Mearns ef al.,
1996; Schir et al., 2004). Nevertheless, changes in
variability are rarely taken into account in the development
of future time series scenarios. As they can be estimated
easily from outputs of climate model experiments, they
should be integrated in a time series generation framework.
The method of Shabalova et al. (2003) is well adapted
for the development of such time series scenarios for daily
mean precipitation and temperature. Local scale
meteorological time series for a given future scenario (here
2070-2099) are generated by perturbing the observed series
for a control period (here 1961-1990). The perturbation
preserves the changes in mean and variability given by the
climate change scenario. This scenario is defined by the

following seasonal statistics: The absolute change of the
mean temperature (XM7) and the relative change of the mean
precipitation (XMP), of the standard deviation of daily
temperature (XSDT7) and of the coefficient of variation of
daily precipitation (XCVP). The perturbation equation for
temperature is,

1* (XSDT, +1)+ MT.

obs,s

+ XMT,
(2)

Tscen,s(t) = [-’;bs,s(t) -MT

obs,s

where 7 (#) (°C) is the local scale scenario temperature
on day ¢ of season s (s = 1: DJF; s =2: MAM; s = 3: JJA;
s =4:SON). T, (1) (°C) is the observed temperature on
day ¢ of season s and M7, (°C) is the observed mean
temperature of season s. XMT, is the absolute change in the
mean temperature of season s (defined as the mean
temperature of the RCM output for the future period minus
the mean temperature of the RCM output for the control
period) and XSDT is the relative change of the standard
deviation of the daily temperature of season s (defined as
the difference between the values obtained from the RCM
output for the future period and the control period divided
by the value for the control period).

The perturbation of the daily rainfall series is described
in Appendix 1. A perturbation method similar to that for
temperature is not used because this would generate negative
rainfall values. Shabalova et al. (2003) fit a Weibull
distribution to the observed daily rainfall amounts and the
Weibull parameters of the perturbed series are computed
based on the parameters of the observed distribution
according to the relative changes in precipitation mean and
variability predicted by the climate scenario.

GENERATION OF CLIMATE CHANGES SCENARIOS

The objective of the generation of multiple climate change
scenarios is twofold: (i) to enable the generation of regional
climate change scenarios for a large range of possible global-
mean warming predictions and (ii) to account for the
uncertain regional response to a given global-mean warming
scenario (i.e. for the uncertainty related to the inter-RCM
variability). Additionally, the scenario generation
methodology has to preserve the correlations between the
seasonal changes in temperature and precipitation predicted
by the RCM experiments.

The prediction uncertainty due to the global-mean
warming has been highlighted in previous studies and has
been characterised, for example, by Wigley and Raper
(2001). The uncertainty due to inter-model variability has
been described for the mean values of different key
meteorological variables and for their variability (e.g.
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Réisdnen, 2001; Réisdnen, 2002). The temporal correlation
between some of the key variables might well be significant.
New and Hulme (2000) have highlighted a significant
positive correlation between winter precipitation and
temperature changes for Scotland and East Anglia. For the
case study presented in this paper, the correlation between
the four mean seasonal temperature changes is not
negligible, partly because these changes are strongly related
to the global-mean warming. Another explanation arises
from the high correlations between the seasonal scaling
ratios obtained from some climate experiments, such as the
correlation between seasonal DJF and MAM temperatures
shown in Fig. 3). To take these correlations into account,
the pattern scaling technique discussed earlier has been
adopted.

PATTERN SCALING

The generation of temperature and precipitation time series
according to the above perturbation methodology requires
regional climate change statistics as input. These statistics
correspond to a 16-values matrix X = [XMT, XSDT, XMP,,
XCVP ], , . Inthe following, a different notation for X is

X = [Xv,s]v:1..4, s:1.4 (3)

where X is one key statistic v of the daily mean temperature
or precipitation series (X, = XMT, X, =XSDT,X, =XMP,,
X,, =XCVP) and where s refers to the season.

Given a RCM called r that has been run for the control
period (1961-1990) and the future period (2070-2099), the
response pattern is defined as the following matrix

Yr = [Yv,s,r]v:1..4,s:1..4 (4)

where ¥, _is the scaling ratio for one of the four key statistics
used (Yl;” =YMT, .Y, =YSDT .Y, =YMP .Y =
YCVP ) for season s and RCM experiment r. For each
variable, the scaling ratio is defined as its regional change
(absolute or relative) per degree of global-mean warming.
For a given RCM experiment r, the scaling ratios are
estimated based on

Y,., =X

v,s,r v,s,r

/AT, (5)

where X is the change in variable v for season s predicted
by RCM experiment » between the control and the future
period and AT is the global-mean warming value obtained
for the AOGCM used to drive RCM experiment 7.

Based on the outputs of a RCM experiment, a range of
regional climate change scenarios can be generated by
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scaling their response patterns according to different global-
mean warming predictions drawn in an appropriate global-
mean warming PDF. If several RCM experiments are
available, a range of scenarios can be generated for each of
the corresponding response patterns and, accordingly, the
uncertainty of the regional climate response to a given
global-mean warming scenario can be quantified.

The pattern scaling technique is based on the critical
assumption that there is a linear relationship between the
scaler (annual global-mean warming) and the response
pattern of regional climate changes obtained from the climate
model. For a given climate model (in the present case for
an AOGCM/RCM configuration), the validity of this
assumption can be analysed if several climate experiments
are available for different radiative forcing scenarios.
Mitchell et al. (1999) and Mitchell (2003) have examined
this assumption for spatial changes in mean temperature and
precipitation from ten climate change experiments obtained
with the HadCM2 GCM. Their results indicate that for the
model studied, pattern scaling could be applicable to a wide
range of variables. For the present work, not more than two
climate change experiments are available for each AOGCM/
RCM configuration. The reliability of the assumption of
linearity is, thus, difficult to check. Figure 2 presents regional
changes in temperature and precipitation versus global-mean
warming for six AOGCM/RCM configurations having
climate experiments for both A2 and B2 emission scenarios.
From these experiments, the linearity assumption seems to
hold well for changes in mean seasonal temperatures and
precipitation but the relationship is weaker for changes in
temperature and precipitation variability. In the absence of
any further climate experiments, it was decided to retain
the assumption of linearity for all the variables studied. Note
that it would be difficult to assess the reliability of this linear
scaling assumption from all climate experiments available
in this work. Non-negligible deviations from a mean linear
scaling relationship are actually expected (e.g. Fig. 2 in
Hingray et al., 2007). Such deviations do not, however,
necessarily contradict the assumed linear scaling relationship
between regional changes and global-mean warming. They
could be also due to differences between the models or to
the effects of the natural variability in the climate model
response.

DATASET: REGIONAL RESPONSE PATTERNS OF 26
RCMS

The present study has used a set of 26 RCMs experiments,
each comprising simulations for the control 1961-1990 and
for the future period 2070-2099, carried out in the
framework of the EU project PRUDENCE (Christensen et
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Fig. 2. Scaling relationships between regional climate changes and global-mean warming (AT) for the summer season. Left: regional changes
in seasonal temperature (top: changes in mean, XMT; bottom: changes in variability, XSDT). Right: regional changes in seasonal
precipitation (top: changes in mean, XMP; bottom: changes in variability, XCVP). Each symbol corresponds to one AOGCM/RCM
configuration for which experiments are available for both A2 and B2 emission scenarios. If ensemble runs are available, only one run is
plotted. For each configuration, the straight line is based on a least-squares fit to the two climate experiments. Linear regressions are forced to
pass through the origin. Note that AT is not specific to the summer season. The grey dashed curve is the probability density function of global-
mean warming from 1990 to the period 2070-2099 obtained from Wigley and Raper (2001).

al., 2002). The boundary conditions for these simulations
have been obtained from the three AOGCMs used in the
PRUDENCE project: ARPEGE/OPA (Royer et al., 2002),
HadCM3 (Gordon et al., 2000; Pope et al., 2000) and
ECHAM4/OPYC3 (Roeckner ef al., 1999). In the case of
HadCM3, use of a global model of the atmosphere alone
(HadAM3H) between the global coupled model and the
RCMs resulted in a much improved simulation of the
present-day climate (Hulme et al.,2002). AllAOGCMs have
been run for the SRES A2 and SRES B2 emission scenarios
(Nakicenovic and Swart, 2000). The corresponding values
of global-mean warming are given in Table 2.

For the present study, nine different RCMs were available
(see Table 3 for a list of the models and the corresponding
modelling institutions). However, one of these models,

ARPEGE, is not a regional but a global atmospheric model
with variable horizontal resolution, from 50 km in the centre
of the Mediterranean to 450 km in the southern Pacific
Ocean (Gibelin and Déqué, 2003). In PRUDENCE, the low
boundary conditions (sea surface temperatures, sea ice) have
been obtained from ARPEGE/OPA and HadCM3 (Déqué,
2004, pers. comm.). For the lake system studied, the
horizontal resolution of ARPEGE is comparable with that
of the other RCMs and so ARPEGE is treated as an RCM in
this paper.

Some RCMs have been run successively using the
boundary conditions of different AOGCMs. All RCMs have
been run at least for scenario A2 with one AOGCM. Some
RCMs have also been run for scenario B2. In total, 19
different AOGCM/RCM experiments are available, 12 of
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Table 2. Clusters of the RCM experiments of the PRUDENCE project
according to the driving AOGCM and to the emission scenario (A7 = global-
mean warming, * = 2 ensemble runs are available, ** = 3 ensemble runs are

available)

AOGCM RCM

Scenario No. Name AT No.  Name

A2 1 HADCM3/HADAM3H 3.25 1 CHRM(H)
HADCM3/HADAM3H 3.25 2 CLM(H)
HADCM3/HADAM3H 3.25 3**  HadRM3H(H)
HADCM3/HADAM3H 3.25 4% HIRHAM(H)
HADCM3/HADAM3H 3.25 5 PROMES(H)
HADCM3/HADAM3H 3.25 6 RCAO(H)
HADCM3/HADAM3H 3.25 7 RegCM(H)
HADCM3/HADAM3H 3.25 8 REMO(H)
HADCM3/ARPEGE 3.25 9**  ARPEGE(H)

2 ARPEGE/ OPA 3.02 10 ARPEGE(A)
3 ECHAM4/0OPYC3 3.56 11 HIRHAM(E)
ECHAM4/0OPYC3 3.56 12 RCAO(E)

B2 4 HADCM3/HADAM3H 2.39 13 HadRM3H(H)
HADCM3/HADAM3H 2.39 14 PROMES(H)
HADCM3/HADAM3H 2.39 15 RCAO(H)
HADCM3/ARPEGE 2.39 16 ARPEGE(H)

5 ARPEGE/ OPA 2.35 17%*  ARPEGE(A)
6 ECHAM4/0OPYC3 2.76 18 HIRHAM(E)

ECHAM4/0OPYC3 2.76 19 RCAO(E)

Table 3. (a) the three AOGCM and (b) the nine RCM models used in the PRUDENCE project (Christensen et al., 2002) and the
corresponding modelling institutions

Acronym Institution AOGCM Reference

(a)

CNRM Centre National de Recherches Météorologiques, ARPEGE/OPA Royer et al., 2002
Toulouse, France

HC Hadley Centre for Climate Prediction and Research, HadCM3 Gordon et al., 2000
Bracknell, United Kingdom Pope et al., 2000

MPI Max-Planck-Institut fiir Meteorologie, Hamburg, Germany ECHAM4/0OPYC3 Roeckner et al., 1999

(b)

CNRM Centre National de Recherches Météorologiques, ARPEGE Gibelin and Déqué, 2003
Toulouse, France

DMI Danish Meteorological Institute, Copenhagen, Denmark HIRHAM Christensen ef al., 2001

ETHZ Institute for Atmospheric and Climate Science, CHRM Vidale et al., 2003
Zurich, Switzerland

GKSS Institute for Coastal Research, Geesthacht, Germany CLM Doms and Schiittler, 1999

HC Hadley Centre for Climate Prediction and Research, HadRM3H Hulme et al., 2002
United Kingdom

ICTP International Centre for Theoretical Physics, Trieste, Italy RegCM Giorgi et al., 1993ab

MPI Max-Planck-Institut fiir Meteorologie, Hamburg, Germany REMO Jacob, 2001

SMHI Swedish Meteorological and Hydrological Institute, RCAO Réisdnen et al., 2004
Norrkoping, Sweden

UCM Universidad Complutense de Madrid, Toledo, Spain PROMES Arribas et al., 2003
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them for A2 and 7 for B2 (Table 2). For some RCMs,
ensemble runs exist (Table 2). This leads to a total of 26
response patterns used in the present work.

Within the PRUDENCE project, the seasonal means of
surface air temperature (M7T) and precipitation (MP) have
been produced for each experiment for the whole of Europe
on a 0.5° latitude by 0.5° longitude grid. In the absence of
standard deviations of daily temperatures (SD7) and
coefficients of variation of daily precipitations (CVP),
PRUDENCE has produced grids of 90-days’ temperature
and precipitation variances for each season, obtained for
each run (control and future) from the 30-values series (one
series for each season) of 90-days mean temperatures (90-
days precipitation amounts). These 90-days’ statistics have
been estimated directly from the RCM output series. For
the 30 years from 2070-2099, a significant temperature
trend has been simulated that could potentially influence
the estimation of variances. For the seasonal variances of
precipitation, this influence is probably small but, for the
temperature variances, it could be significant. Consequently,
the PRUDENCE data cannot be used directly for the
perturbation of observed daily series but has to be pre-
processed according to the method briefly explained in
Appendix 2. For the lake system studied, the regional
changes in mean and variability are extracted for the 35
grid boxes encompassing the entire catchment and are
averaged over this area. The inter-RCM variability of
regional climate changes and of related scaling ratios is
given for all seasons in Fig. 4.

Note that the input data required for the hydrological
models are daily series of precipitation, temperature,
evaporation from free water surfaces and potential

evapotranspiration. The future evaporation and PET series
are interpolated as a function of the future temperature based
on the observed relationship for the control climate,
assuming that this relationship remains constant in the future
(strong linear regression relationships have been found
between monthly PET and monthly temperature over the
period 1961-1990). The pattern scaling approach could be
extended to these variables but they were not available.

Simulation framework

Based on the pattern scaling technique, the uncertainty due
to global-mean warming and to the regional response
patterns can be quantified through Monte Carlo simulations.
The global-mean warming is drawn randomly in a PDF for
the global temperature change between 1990 and the period
2070-2099 derived from the results of Wigley and Raper
(2001) for the years 2070, 2080, 2090 and 2100 (provided
by Tom Wigley). The random draw of a response pattern
among the 26 patterns available from PRUDENCE is based
on a hierarchical resampling approach.

The following considerations motivated the use of this
resampling approach: the RCM experiments and
corresponding response patterns belong to different classes
and sub-classes. For some RCMs, ensemble runs are
available. The RCM experiments driven by the same
AOGCM can be expected to give similar results and can,
thus, be clustered according to the driving AOGCM. The
response patterns obtained for the A2 and the B2 emission
scenarios can differ significantly due to potentially
significant non-linearities in the climate change response
to the story lines (see Schneider and Thompson, 1981;
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Fig. 4. Boxplots of regional climate changes X (top) and related seasonal scaling ratios Y (bottom) for the 4 key variables MT, SDT, MP and
CVP. X and Y variables values are based on PRUDENCE outputs (from 90-days temperature and precipitation series); SDT and CVP values
have been corrected before perturbation (see Appendix 2). Each boxplot displays the variation of the seasonal regional climate change and of
the scaling ratio of the 26 RCM experiments of the PRUDENCE project (all available ensemble runs are included). The whiskers represent the
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Mitchell, 2003). Consequently, the AOGCM clusters can
be clustered in turn according to the underlying emission
scenario (see Table 2).

The A2 and B2 SRES-scenarios are assumed to have the
same probability of occurrence. Similarly, all AOGCM and
RCM models are assumed to perform equally well. Although
this may not be the case, it is the simplest assumption to
make. The number of experiments within each cluster is,
however, variable (for example 14 experiments in the cluster
HadCM3/HadAM3H-A2, 2 experiments in the cluster
ECHAM4/OPYC3-A2; 17 and 9 experiments for A2 and
B2 respectively). The assignment of a uniform occurrence
probability to all experiments would therefore lead to an
over-representation of some experiments. The ARPEGE/
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OPA/ARPEGE-A2 experiment for example would be drawn
9 times more frequently than the HADCM3/HADAM3H/
CHRM-A2 experiment. A detailed analysis of the data (not
discussed here but some results are given in Hingray et al.,
2007) has shown that the inter-RCM variability and the inter-
AOGCM variability have the same order of magnitude.
Consequently, the same occurrence probability is assigned
to all AOGCM/RCM experiments of an emission cluster.
Based on the above considerations, the following
hierarchical resampling approach is adopted for this work:

i. Randomly select an emission scenario (A2 or B2).
ii. Randomly draw an AOGCM/RCM experiment within
the selected emission scenario cluster.
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iii. If ensemble runs are available, randomly draw the
response pattern of one of the runs.

At each resampling step, all possible choices have the
same occurrence probability. The uncertainties due to the
differences between the emission scenarios and the
uncertainties due to the system unpredictability under a
given emission scenario are thus sampled uniformly.

The random generation of a response pattern could also
be based on a stochastic approach using parametric models.
Hingray et al. (2007) assumed that the scaling variables from
the PRUDENCE dataset follow a normal distribution. The
parameters of this distribution can be estimated from the
observed scaling ratios using an appropriate unbalanced
ANalysis Of VAriance framework (ANOVA). Following
such an approach, the probability distributions of the
regional temperature and precipitation change can be
obtained through Monte Carlo simulation by combining a
probability distribution of the global-mean temperature
increase with the probability distributions of the appropriate
scaling variables. Such PDFs are presented for five case
study regions in Hingray et al. (2007). As mentioned before,
some scaling variables are significantly correlated. A
Principal Components Analysis (PCA) can be performed
on the scaling variable dataset to produce a dataset of
uncorrelated variables [Z, ], | , where r refersto the
RCM experiment and 4 to the " component (all components
are used for the description of the response pattern ¥ ). Each
transformed Z, variable can be modelled by a normal
distribution, the parameters of which are estimated with an
ANOVA framework. Finally, a transformed [Z, 1kt 1601 26
response pattern can be generated stochasticallyyand
transformed back to produce a response pattern [YMT,
YSDT, YMP, YCVPS]““ . with correlated variables. Schaefli
et al. (2007) have applied this parametric approach to the
generation of climate change scenarios. In the present study,
the non-parametric resampling approach is used.

Results

The meteorological time series observed for the control
period (1961-1990) are used to produce the reference
discharge series for the Aare, Broye and Jura catchments
and the corresponding time series of water levels, from
which the reference statistics of the welfare indices are
estimated. The same simulation procedure is applied for each
climate change scenario. Note that the lake regulation rules
for the control and the future period are those corresponding
to the 19822000 period.

A main objective of the present study is to quantify,
separately, the climate change prediction uncertainty due to

the global-mean warming and that induced by the regional
response pattern. Consequently, climate change scenarios
are generated according to the following three different
simulation experiments:

e El:random global-mean warming and random regional
response pattern

e E2: random global-mean warming under median
regional response pattern

e [E3: random regional response pattern under median
global-mean warming

For the experiments E1 and E2, 12 000 Monte Carlo
simulations were carried out whereas for E3, only 26
simulations, corresponding to the 26 available RCM runs
were completed. The E3 scenarios are generated based on
the median global-mean warming value as predicted by the
PDF adopted for the global-mean warming between 1990
and 2070-2099 (AT, ,=2.6°C). For E2, the median response
pattern is derived from the 26 PRUDENCE response
patterns. Each scaling variable ¥ of this median response
pattern corresponds to the median of the 26 corresponding
scaling variables ¥, .

RESULTS FOR E1 EXPERIMENT (OVERALL
UNCERTAINTY)

Changes in regional meteorological variables

The simulations results show a higher regional mean
warming than the global-mean warming: The median scaling
ratio for the mean annual temperature is around +1.3°C per
°C of global-mean warming. The 5*, 50" and 95" percentiles
of the regional warming are +1.8 °C, +3.3 °C and +6.1°C.
The regional warming in summer is higher, with a larger
uncertainty range than the regional warming for the other
seasons. The 99" percentile of the summer warming is as
large as +11°C (only around +7°C for the other seasons).
The 5% and 95" percentiles of the relative change of annual
precipitation are —16% and +2%. This suggests that the
direction of the change is uncertain. Precipitation is,
however, expected to increase in winter (up to 32% increase
for the 99" percentile) and to decrease in summer and
autumn (decrease of —24% in autumn and —68% in summer
for the 1% percentile). No trend is predicted for spring
precipitation: an increase is as likely as a decrease (—22%
for the 5% percentile, +11% for the 95 percentile (Hingray
et al., 2007)).

The predicted range of daily temperature and precipitation
variability change is large, especially for the summer season
(Fig. 2). For most seasons and for both variables, a decrease
in variability is as likely as an increase. A significant trend
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is observed only for summer (the precipitation and
temperature variability is expected to increase) and for
winter (the precipitation variability is expected to decrease).
These results are illustrated (Fig. 4) based on the regional
changes predicted by the PRUDENCE RCMs (note that the
predicted changes obtained by combining the global-mean
warming and regional response uncertainties are larger than
those of Fig. 4).

Changes in mean monthly water levels and potential impacts
An increase in the mean monthly lake level is as likely as a
decrease (except for May and June, for which slight
decreases of 5 and 10 cm, respectively, are expected, Fig.
5, top left). For all months, the difference between the 5%
and 95" percentiles of these projections is small. The largest
range of water level variation (around 20 cm) is observed
in summer (May to August). In late autumn, in winter and
early spring, this range is less than 5 cm. This suggests that
the current regulation rules are also appropriate for the future
climate scenarios.

For the majority of the future scenarios, the annual water
level fluctuations simulated are less than those for the control
period (Fig. 5 top right, Fig. 6 right). For the control period,
the annual water level fluctuations are always higher than
50 cm; for 40% of the years, it is higher than 75 cm. For the
median future conditions, these annual fluctuations (50 and
75 cm respectively) are exceeded for only 80% and 20%
respectively of the years. The same results are obtained for
the maximum water level fluctuation over a three- or five-
year period. For the reed population, the future conditions
are, thus, expected to be worse than the control conditions.

The simulated annual maximum water levels are also
expected to be smaller for the future scenarios than for the
control period (Fig. 6 left). The simulated future conditions
are, thus, expected to be less critical for riparian urban areas
than the control conditions. The same conclusion can be
drawn about high water levels potentially damaging seeds
and plants in maturation (Fig. 7, right).

The overall reproduction success of pikes is expected to
decrease (Fig. 7 left). For most future scenarios, the number
of zero global success scores increases significantly (+100%
for median future conditions compared to the control
period). These results are due mainly to a shift in the arrival
date of the spring flood induced by earlier snowmelt
following increases in temperature. For several years, this
shift leads to a zero S2 score.

RESULTS FOR THE E2 AND E3 EXPERIMENTS

The previous results do not change significantly if one source
of prediction uncertainty — either the global-mean warming
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or the regional response — is considered separately. The
trends identified (criterion increase or decrease) remain
unchanged for all variables studied but the variability range
decreases significantly and for some, this reduction may
corresponds to a decrease of 100% or more. This is clearly
illustrated by the results for the mean monthly water levels
(Fig. 5 left, top, centre and bottom) or for several percentiles
of'the maximum annual water level fluctuation (Fig. 5 right,
top, centre and bottom). The contribution of the global-mean
warming uncertainty to the variability of the system
behaviour for future conditions is of the same order of
magnitude as the contribution of the uncertainty in the
regional response. Combining both sources of uncertainty
does not just sum the respective variability ranges as the
total variability is much higher. These results are in line
with those obtained by Horton et al. (2006), Hingray et al.
(2007) and by Schaefli et al. (2007). For five case study
regions, Hingray et al. (2007) show that the variance of the
simulated regional climate changes due to RCM inter-model
differences contributes substantially to the total variance.
Schaefli et al. (2007) analyse impacts of climate change on
the performance of an alpine hydropower production system
by successively integrating the uncertainties due to the
management model, the hydrological model, the future
glacier surface estimation, the regional response to global-
mean warming and the global-mean warming itself. They
also conclude that a significant part of the total prediction
uncertainty can be attributed to the uncertainty in the
regional response to climate change. In climate change
studies currently available, the emission scenario and the
driving climate model are generally assumed to determine
a predominant part of the regional climate change
uncertainty (e.g. Jenkins and Lowe, 2003). The results
presented here suggest that this assumption may not always
be valid and that more attention should be paid to the inter-
RCM variability.

Conclusion

The methodology in this paper enables a probabilistic
assessment of potential climate changes and their related
impacts on a real-world water resources system. The climate
changes predicted are highly uncertain but the results
obtained show that they are likely to have a significant
impact on the lake system under study.

The regional climate change scenarios are obtained
through scaling the regional response patterns resulting from
RCM runs by global-mean warming projections from a
simple climate model. This scenario generator allows global-
mean warming uncertainty to be combined with the
uncertainty inherent in the regional climate response. For
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Fig. 5. Variability of water level regimes obtained for the three experiments El, E2, E3. Left: mean monthly lake levels; (circular marker =
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the future climate change scenarios; for E3, each grey line corresponds to the response to one of the 26 RCM response patterns). Right:
boxplots of maximum annual water level fluctuation for different non-exceedence probabilities. For explanation of the boxplots, see Fig. 4.
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Sluctuation. The exceedence probability is obtained for each future scenario from the number of years within the 30-years simulation period for
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explanation of the boxplots, see Fig. 4.
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Fig. 7. Variability of performance indices obtained with experiment El (including global-mean warming uncertainty and regional response
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flooding events related to agriculture (Hl = 429.5 m a.s.l., H2=429.75 m a.s.l. and H3=430 m a.s.l.). For explanation of the boxplots, see Fig. 4.

all fields studied, the uncertainty due to inter-RCM
variability contributes much of the total uncertainty in
predicting the impact of climatic change and, indeed, may
be as large as the uncertainty induced by the global-mean
warming. This shows that the uncertainty of the regional
response to global-mean warming should not be neglected
in studies of the impact of climatic change.

The results presented are conditional on the models, data
and modelling assumptions used. The methodology for the
generation of the local scale time series has the advantage
of simplicity but has also some drawbacks as potential
changes in weather frequency or persistence are not
quantified (see Mearns et al., 1996, for an illustration of
possible related impacts). This is especially critical when
extreme events are analysed (floods, droughts). Even on a
seasonal time step, the risk of extreme events in a future
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climate is not negligible (Palmer and Réisénen, 2002; Schir
et al., 2003). Potential long-term droughts such as that in
2003 experienced all over Europe or, possibly, n-days of
extreme rainfall events, cannot be simulated with a simple
scaling approach whatever the number of generated
scenarios.

Using the RCM output time series directly as an input to
local system models could help in overcoming these limits.
As RCM experiments are very time-consuming, they cannot
be used to simulate the number of scenarios required for a
probabilistic impact assessment. Especially in mountain
regions, the precipitation time series derived by these models
are still too unreliable to be used directly as input to a
hydrological model. Orographic precipitation is one of the
most difficult variables to simulate in climate models (Giorgi
and Mearns, 1991). Consequently, current research pays
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increasing attention to downscaling models that connect the
local meteorological variables to variables describing
meteorological situations on a synoptic scale (for a review
of such methods, see Xu, 1999; Zorita and von Storch, 1999;
Prudhomme et al., 2002). Such downscaling techniques
could also be applied to simulate, for the control period, the
natural climate variability, the characterisation of which
would formally be required for a complete impact
assessment (e.g., Hingray ef al., 2006).

It would also be interesting to quantify the uncertainties
due to the hydrological modelling to show whether they
increase the uncertainty ranges induced by the climate
scenarios. In the present work, the rainfall-excess to runoff
relationships are assumed to remain constant in the future.
This assumption may be critical for the regression-based
models applied to the Aare and Jura catchments. Schaefli et
al. (2007) showed for another case study in the Swiss Alps
that the uncertainty in the estimation of the hydrological
model parameters is small compared to those introduced by
the climate change scenarios. The choice of the model
structure could, however, have a larger influence (Schaefli
et al., 2004; Schaefli, 2005). It would also be interesting to
compare the results of this study with results from a more
detailed hydrological model including an explicit model of
the large water reservoirs in the Aare catchment.

The impact assessment methodology is also worthy of
further investigation. The evaluation of the impacts of
climate change on highly different and sometimes competing
water-dependent interests related to human activities or
ecosystem conservation remains a very difficult task. The
present study outlines a possible solution but does not
pretend to approach this problem in its entire complexity.
The welfare indices defined give at least a partial view of
potential climate change impacts on the different fields of
interests and enable a statistical analysis. Such a simple
statistical analysis quantifying the intensity, frequency and
duration of impacts is, however, insufficient for the analysis
of natural systems. A meaningful analysis of the impacts of
climate change on ecosystems should ideally be based on
ecological simulation tools to model the long-term evolution
of the populations studied.
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F(u)=Pr(U<u)=1-exp[—(u/a)’ | (AL.1)
where Pr(U <u) is the probability that U <u and « and ¢
are the scale and the shape parameter. For such a distribution,
the pth quantile has the expression:

u, =a[-In(1-p)]" (A1.2)
For the observed data, both parameters «, and c , are

estimated by the method of moments such that the
distribution preserves the observed mean (MP ) and
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coefficient of variation (CVP , ). The theoretical values for

the mean and the variance are:

E(u):a.r[éuj (A1.3)

2
Var(u) = o* [l‘(2 + 1) - {FF + 1)} 1
C C

For the future time series scenario, the mean (MP_ ) and
the variation coefficient (CVP_ ) of the daily rainfall
amounts are estimated from the observed mean (MP,, ) and
the observed variation coefficient (CV'P , ) and their relative
changes given by the regional climate change statistics (XAM/P
and XCVP). The Weibull parameters for the future scenario
a,, andc  areestimated by the method of moments (Eqns
Al.3and Al1.4). Itis assumed that if the daily rainfall amount
u , () observed on day f corresponds to the pth quantile in
the observed series, the scenario value u_ (¢) for the same

date corresponds to the same quantile in the scenario series.
From these assumptions and Eqn. A1.2 it follows:

Cobs

C
Upps D) |Pscen (A1.5)

u () = o .
scen scen o

(Al.4)

obs

Note that the Weibull distribution parameters are estimated
independently for each season (for both the observed and
the future scenario).

Appendix 2: Estimation of daily
variances from PRUDENCE data

DETRENDING FUTURE TEMPERATURE SERIES

The variances used in PRUDENCE to describe the
variability of the temperatures are estimated from the 30
values of 90-days temperature 7 ,, where & refers to the &”
year of the 30-years period and where 7, is the mean
temperature value for the s* season of this year. The future
temperature series can show considerable trends, especially
the runs obtained for the A2 scenario, and this trend could
have a non-negligible effect on the estimated variance and
the related standard deviation. The time series T, should,
therefore, be detrended. The effect of the temperature trend
on the variance can be estimated without knowing the
individual seasonal values. The expected temperature
increase during the 21* century is assumed linear in time.
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The difference in the mean seasonal temperature between
the future and the control run will, therefore, give a
reasonable estimate of the total trend A for the years 2070~
2099 relative to season s (Eqn. A2.1):

A=XMT *30/110 (A2.1)

where XMT = MT, —MT, . 1isthe change in mean
seasonal temperature over this 110-years period and where
A is the trend for the years 2070-2099 for season s (in °C
per 30 years). Note that for the period 1961-1990, the
change in temperature is probably not large enough to have
amarked influence on the standard deviations of the seasonal
temperatures. Let Ts,v TS)Z,...,TA_’” be the mean 90-days
temperature values as simulated by the RCM for the period
2070-2099 (n = 30) for season s and o the variance
estimated based on this series:

o? =L 3(T, - MT,,,,.) (A2.2)

n-143

If the trend is linear, it can be easily shown that the mean of
o’ is given by

1 1
E(c?)=SDTg, + EAi (1+1/n)~ SDTZ , + EAi (A2.3)
where SDT. 90'52 is the true variance of the detrended series.
If an estimate of o, and of 4 is known, an almost unbiased
estimate of SDTQO’S can be obtained.

PERTURBATION OF DAILY SERIES BASED ON 90-
DAYS STATISTICS

The PRUDENCE data yields 90-day statistics that cannot
be used directly to perturb the observed daily temperature
and precipitation series. For the daily variation coefficients
CVP, a linear regional relationship has been identified
between this variable and the 90-days’ coefficients of
variation based on 15 observed rainfall time series located
in the region under study. Such a linear relationship is
identified for each of the four seasons s.

For temperatures, the change in the daily standard
deviations XSDT is set equal to the change in the 90-days
standard deviations XSDT, . It can be easily shown that, in
this case, the perturbation of the observed daily series based
on Eqn. 2 gives a future daily series that preserves the
relative change in the 90-days standard deviations.



