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Abstract

To produce probability distributions for regional climate change in surface temperature and precipitation, a probability distribution for global
mean temperature increase has been combined with the probability distributions for the appropriate scaling variables, i.e. the changes in
regional temperature/precipitation per degree global mean warming. Each scaling variable is assumed to be normally distributed. The uncertainty
of the scaling relationship arises from systematic differences between the regional changes from global and regional climate model simulations
and from natural variability. The contributions of these sources of uncertainty to the total variance of the scaling variable are estimated from
simulated temperature and precipitation data in a suite of regional climate model experiments conducted within the framework of the EU-
funded project PRUDENCE, using an Analysis Of Variance (ANOVA). For the area covered in the 2001-2004 EU-funded project SWURVE,
five case study regions (CSRs) are considered: NW England, the Rhine basin, Iberia, Jura lakes (Switzerland) and Mauvoisin dam (Switzerland).
The resulting regional climate changes for 2070-2099 vary quite significantly between CSRs, between seasons and between meteorological
variables. For all CSRs, the expected warming in summer is higher than that expected for the other seasons. This summer warming is
accompanied by a large decrease in precipitation. The uncertainty of the scaling ratios for temperature and precipitation is relatively large in
summer because of the differences between regional climate models. Differences between the spatial climate-change patterns of global
climate model simulations make significant contributions to the uncertainty of the scaling ratio for temperature. However, no meaningful
contribution could sometimes be found for the scaling ratio for precipitation due to the small number of global climate models in the PRUDENCE
project and natural variability, which is often the largest source of uncertainty. In contrast, for temperature, the contribution of natural
variability to the total variance of the scaling ratio is small, in particular for the annual mean values. Simulation from the probability distributions
of global mean warming and the scaling ratio results in a wider range of regional temperature change than that in the regional climate model
experiments. For the regional change in precipitation, however, a large proportion of the simulations (about 90%) is within the range of the
regional climate model simulations.

Keywords: uncertainty, regional climate model, temperature, rainfall, scaling, climate change

Introduction

The possibility of an important climate change in the next
decades as a result of anthropogenic increases of greenhouse
gases is of great international concern. To assess the potential
impacts of climate change on a given water resource system,
regional changes in different key meteorological variables
such as precipitation and temperature must be characterised.
The projections of regional climate changes, based mainly
on the results of coupled Atmosphere-Ocean General
Circulation Models (AOGCMs), are uncertain; future
greenhouse gas emissions are unknown and the models are

a highly simplified representation of reality due to imperfect
knowledge of some key processes and the need for
simplifying complex ones. Crude description of cloud
formation, of sea-ice and uncertainty about the magnitude
of indirect effects of aerosol forcing are often reported as
important sources of uncertainty in model results (IPCC,
2001). Hence, state-of-the-art AOGCMs usually simulate
different climate evolutions for the same emission scenario
(Arnell and Hulme, 2000; Réisdnen, 2001, 2002). Finally,
because of their coarse resolution, AOGCMs have a very
crude representation of topography. Even the most recent
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models cannot, therefore, give a detailed description of
regional features. For a set of 14 AOGCMs, Réisédnen (2001)
demonstrated that the inter-model agreement on changes in
mean temperature or mean precipitation due to a doubling
of CO, depends strongly on the scale of the region of interest.
The agreement is rather poor for changes in precipitation at
the grid box scale (2.5°latitude x 3.75°longitude) but it
improves when climate changes are averaged over areas
larger than grid boxes. Regional Climate Models (RCMs)
driven by AOGCMs with a higher spatial resolution
(0.5°latitude x 0.5°longitude or higher) are intended to
describe regional features of climatic variables better. RCMs
are, however, still based on simplified representations of
processes in the atmosphere and at the land surface, using
uncertain parameters. For the same AOGCM experiment,
the results of regional climate models can, therefore, differ
significantly (Frei et al., 2003; Raisdnen et al., 2004).

Evaluating the full range of possible climate changes for
a given location or region would thus require analysing and
combining effects of emission scenarios, effects of model
structures and parameterisations. This would need a very
large number of AOGCM-RCM experiments with different
emission scenarios. As climate model simulations are highly
time consuming, alternative approaches have to be found.
Wigley and Raper (2001) recently presented such an
approach to determine the full range of global-mean
warming from 1990 to different future years. A simple
upwelling-diffusion energy balance model was calibrated
against the results of seven state-of-the-art AOGCMs. The
uncertainties in emissions, the sensitivity of the climate
system to radiative forcing (i.e. the ‘climate sensitivity’,
characterised by the equilibrium global-mean warming for
a doubling of the CO, level), carbon cycle, ocean vertical
diffusivity and aerosol forcing were represented by
appropriate Probability Density Functions which drove the
simple climate model, resulting in Probability Density
Functions of global-mean warming.

The approach presented in the present paper aims to
evaluate the Probability Density Functions of climate
changes for different regions across Europe, accounting for
the full range of global-mean warming. It is based on the
assumption that a simple scaling relationship exists between
regional climate changes and global-mean warming. For the
changes in regional meteorological variables, this scaling
is usually expressed in terms of a ratio describing the
absolute or the relative regional changes per degree global-
mean warming (Jones, 2000). The uncertainty of this scaling
relationship has been characterised by the range of regional
changes per degree of global-mean warming in a set of
AOGCMs (Whetton et al., 1996) or RCM-AOGCMs
(Ekstrom et al., 2007). Here, this uncertainty is assessed
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with an analysis of variance of the results from a set of
AOGCM-RCM experiments provided by the EU-funded
project PRUDENCE (Christensen et al., 2002). The
Probability Density Functions of regional changes are next
obtained by combining a Probability Density Function of
global mean warming derived from Wigley and Raper (2001)
with Probability Density Functions from the scaling analysis.
This research has been conducted within the 2001-2004
EU-funded project SWURVE (Sustainable Water,
Uncertainty, Risk and Vulnerability in Europe) where the
impact of climate change on specific water management
activities is analysed. The methodology is illustrated with
results obtained for the five SWURVE case study regions
(Kilsby, 2007).

The paper describes the datasets used in this study, the
scaling relationships between regional mean changes and
global mean warming obtained from the datasets and
evaluation of the uncertainty of these relationships. Details
on the methodology are given for the Mauvoisin case study
region located in the Swiss Alps (Lat: 46.25° —Long: 7.25°)
(Schaefli et al., 2007). Finally, Probability Density Functions
of regional changes for seasonal and annual mean
temperature and precipitation are presented for the five
SWURVE case study regions (CSRs).

Datasets

Each RCM experiment comprises a simulation for the period
1961-1990 (control run) and a simulation for the period
20702099 (future run). Boundary conditions were obtained
from the three AOGCMs used in the PRUDENCE project:
ARPEGE/OPA (Royer et al., 2002), HadCM3 (Gordon et
al., 2000; Pope et al., 2000) and ECHAM4/OPYC3
(Roeckner et al., 1999). In the case of HadCM3, a global
model of the atmosphere alone (HadAM3H) was used
between the global coupled model and the RCMs; this
intermediate model resulted in a much better simulation of
the present-day climate (Hulme ef al., 2002). The AOGCM
experiments were done both with SRES A2 and SRES B2
emission scenarios (Nakicenovic and Swart, 2000).

In the present study, nine RCMs are included (Table 1).
One of these models, ARPEGE, is, however, not a regional
but a global atmospheric model with variable horizontal
resolution, from 50 km in the centre of the Mediterranean
Sea to 450 km in the southern Pacific Ocean (Gibelin and
Déqué, 2003). In PRUDENCE, the low boundary conditions
(sea-surface temperatures, sea-ice) were obtained from
ARPEGE/OPA (Déqué, pers. comm.). For the five
SWURVE CSRs, the horizontal resolution is comparable
to that of the other RCMs. ARPEGE is considered further
as an RCM in this paper. Some RCMs were run successively
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Table 1. (a) The three AOGCM and (b) the nine RCM models used in the PRUDENCE project (Christensen et al., 2002) and the

corresponding institutions.

Acronym  Institution AOGCM Reference

(a)

CNRM Centre National de Recherches Météorologiques, Toulouse, France ARPEGE/OPA Royer et al. (2002)

HC Hadley Centre for Climate Prediction and Research, Exeter, UK HadCM3 Gordon et al. (2000)
Pope et al. (2000)

MPI Max-Planck-Institut fiir Meteorologie, Hamburg, Germany ECHAM4/OPYC3 Roeckner et al. (1999)

(b)

CNRM Centre National de Recherches Météorologiques, Toulouse, France ARPEGE Gibelin and Déqué (2003)

DMI Danish Meteorological Institute, Copenhagen, Denmark HIRHAM Christensen et al. (2001)

ETHZ Institute for Atmospheric and Climate Science, Ziirich, Switzerland CHRM Vidale et al. (2003)

GKSS Institute for Coastal Research, Geesthacht, Germany CLM Doms and Schittler (1999)

HC Hadley Centre for Climate Prediction and Research, Exeter, UK HadRM3H Hulme ez al. (2002)

ICTP International Centre for Theoretical Physics, Trieste, Italy RegCM Giorgi et al. (1993ab)

KNMI Royal Netherlands Meteorological Institute, De Bilt, The Netherlands RACMO Lenderink et al. (2003)

MPI Max-Planck-Institut fiir Meteorologie, Hamburg, Germany REMO Jacob (2001)

SMHI Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden RCAO Réisdnen et al. (2004)

UCM Universidad Complutense de Madrid, Toledo, Spain PROMES Arribas et al. (2003)

using the boundary conditions of different AOGCMs. All
RCMs were run at least for scenario A2 with one AOGCM.
Some RCMs were also run for scenario B2. For this study,
19 experiments were available, 12 of those for scenario A2
and 7 for scenario B2. The synthesis of these experiments
is given in Table 2.

The 30-year seasonal means of surface air temperature
and precipitation were produced within the PRUDENCE
project over the whole European domain on a common
0.5°latitude x 0.5°longitude grid. The regional seasonal (and
annual) mean values are denoted as M7 for temperature and
MP for precipitation. For 12 experiments, indicated by a
star in Table 2, the seasonal values for the individual years
were obtained.

To be compatible with the usual requirements of
hydrological applications, regional changes are expressed
in terms of absolute changes (XMT:MT e mrT, ) for
seasonal mean temperatures and in terms of relative changes
XMp=mp, /MP,  —1)forseasonal mean precipitation.
For the relatively small Mauvoisin CSR, the mean change
of20 grid boxes was considered rather than that of the single
grid box encompassing the study region. Though RCMs are
reported to reproduce well the regional features of
meteorological surface variables such as precipitation and
temperature (Frei ez al., 2003), they are less reliable for each
individual grid box, in particular in mountainous regions. It
is, therefore, highly recommended that several grid boxes
are considered for hydrological applications (Christoph Frei,

Table 2. Clusters of RCM experiments according to driving
AOGCM and to emission scenario. All RCM experiments were
conducted in the framework of PRUDENCE. Time series of
seasonal values were obtained for all RCMs marked with a star,
otherwise, only the 30-year averages were considered.

Scenario N° AOGCM N°  RCM N°

Name Name Name

A2 1  HadCM3 1 CHRM* 1
HadCM3 CLM 2
HadCM3 HadRM3H 3
HadCM3 HIRHAM* 4
HadCM3 PROMES 5
HadCM3 RCAO(H)* 6
HadCM3 RegCM* 7
HadCM3 REMO* 8
HadCM3 RACMO* 9
ARPEGE/OPA 2 ARPEGE 10
ECHAM4/0PYC3 3 HIRHAM* 11
ECHAM4/0PYC3 RCAO(E)* 12

B2 2 HadCM3 4 HadRM3H 13
HadCM3 PROMES 14
HadCM3 RCAO(H)* 15
HadCM3 RegCM* 16
ARPEGE/OPA 5 ARPEGE 17
ECHAM4/0PYC3 6 HIRHAM* 18
ECHAM4/0PYC3 RCAO(E)* 19
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NW England
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Fig. 1. Location of selected regions in the regular PRUDENCE grid for the five SWURVE case study regions (0.5°

latitude by 0.5° longitude) (from Ekstrém et al., 2007).

Table 3. Description of the five case study regions (see Kilsby,
2007, for details) The number of grid boxes refers to the 0.5°x0.5°
grid of the PRUDENCE data.

Acronym Case Study Region (CSR) N° of grid boxes
NWE North West England 11
RH The Rhine Basin 118
IB Iberia 76
JL Jura Lakes System 35
MA Mauvoisin Dam 20

pers. comm.). For the other CSRs, regional changes were
averaged over the grid boxes encompassing the region of
interest (Fig. 1 and Table 3).

Linear relationships between regional
climate changes and global mean
warming

The global mean warming predicted by the three AOGCMs
varies from 2.35 to 2.76 °C for scenario B2 and from 3.02
to 3.56 °C for scenario A2 (Table 4). For these ‘emission-
scenario AOGCM’ configurations, the ratio between the
highest and the lowest warming projection is thus 1.5.
Regional climate change is usually more variable (Arnell
and Hulme, 2000; Réisdnen, 2001; Réisanen, 2002). For
each of the five CSRs, the ratio between the highest and
lowest regional warming in the PRUDENCE dataset is about
2.5.
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The regional change predictions obtained from the
PRUDENCE RCM experiments are conditioned by the six
different ‘emission-scenario AOGCM’ experiments listed
in Table 2. These driving models do not account fully for
the uncertainties of the global mean warming. The global
mean warming range of the six ‘emission-scenario AOGCM’
experiments covers, for example, only 45% of the 90%
probability interval of the 1990 to 2070-2100 global mean
warming based on the results of Wigley and Raper (2001)
for the years 2070, 2080, 2090 and 2100 (kindly provided
by Tom Wigley). The lowest (resp. highest) global mean
warming projection of these experiments corresponds to the
40th (resp. 85th) percentile of the derived global mean
warming distribution for 2070-2100. Thus, the lower range
ofthe global mean warming is not captured by the AOGCMs
in the PRUDENCE project mainly because of their relatively
high sensitivity to radiative forcing. The variability of the
regional changes in the PRUDENCE dataset might,
therefore, not be representative of that obtained from a larger
set of AOGCM and emission scenario experiments.

To assess the uncertainty of regional precipitation and
temperature changes, it has been assumed, as is frequently
done, that regional changes are a linear function of global
mean warming. Then, using any available Probability
Density Function of global mean warming, it becomes
possible to produce the Probability Density Function of
regional changes using Monte Carlo simulations (Jones,
2000). For the Mauvoisin CSR, the relationship between
the regional changes (for winter and summer) and global
mean warming is shown in Fig. 2. The hypothesis of linearity
seems to hold well for temperature. For precipitation, the
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Table 4. Change AT in the global mean temperature between 1961-1990 and
2070-2099 for the two SRES scenarios A2 and B2 as obtained with the three
AOGCMs used in the PRUDENCE project.

AOGCM Reference AT-A2 (°C) AT-B2 (°C)
HadCM3 Gordon et al. (2000) 3.25 2.39
ARPEGE/OPA Gibelin and Déqué (2003) 3.02 2.35
ECHAM4/OPYC3 Roeckner et al. (1999) 3.56 2.76

relationship is much weaker, although still significant at the
5% level. The estimate of the slope in Fig. 2 represents the
mean regional change per degree global warming. In fact,
each of the 19 RCM experiments provides a value of this
scaling ratio. The variance of the individual scaling ratios
is a suitable measure of the uncertainty of the scaling
relationship.

Estimating uncertainty in the scaling
relationship

THEORETICAL FRAMEWORK

In this section the following scaling ratios are studied:
YMT = XMT | AT (1
YMP = XMP | AT 2)

where AT is the global mean warming expressed in °C and
where s refers to the period (s = 0: annual; s = 1: DJF; s = 2:
MAM; s=3: JJA; s=4: SON). Note that YMT is
dimensionless and YMP is expressed in °C".

Both for precipitation and temperature, no dependence
between the 19 scaling ratios and global mean warming
could be detected (Fig. 3). Though the emission scenario
and the driving model are usually expected to give the largest
contribution to the regional climate-change uncertainty
(Giorgi and Mearns, 2002), Fig. 3 shows that scaling ratios
obtained from different RCMs driven by the same AOGCM
can also be very variable. The contribution of RCMs to the
regional climate-change uncertainty cannot, thus, be
neglected a priori. Another source of uncertainty is the
natural variability of a 30-year mean.

Only experiments with the SRES A2 and B2 emission
scenarios are available from the PRUDENCE dataset. It is
assumed that the linear trend highlighted in Fig. 3 would
remain under other emission scenarios.

For both the A2 and B2 emission scenarios, a limited
number of AOGCM simulations were considered in the

PRUDENCE project and, for each AOGCM simulation, a
limited number of RCM experiments were conducted. It is
assumed that the scaling ratios from the available set of
experiments are representative of the scaling ratios that could
be obtained from an infinite population of AOGCM-RCM
experiments. However, even with these drastic assumptions,
estimating the uncertainty of the scaling ratios YMT and
YMP is not straightforward for three main reasons:

(1) The dataset can be partitioned into different classes and
subclasses. RCM experiments driven by the same
AOGCM are expected to give similar results and have
thus to be clustered according to the driving AOGCM.
These AOGCM clusters should for the same reason be
clustered again according to the emission scenario (see
clusters in Table 2).

(2) The number of experiments can be very different from
one cluster to the other (for example: nine experiments
in the cluster HadCM3-A2, two experiments in the
cluster ECHAM4/OPYC3-A2; twelve and seven
experiments for A2 and B2 respectively).

(3) Difterent experiments obtained with a different driving
AOGCM but the same RCM may show similarity as
the same parameterisations are used for regional
modelling.

An ANalysis Of VAriance (ANOVA) was used to estimate
the uncertainty of the scaling relationships (Searle, 1997)
making the following assumptions:

e HI: Scaling relationships that could be obtained
independently for emission scenarios A2 and B2 have
the same occurrence probability.

e H2: All AOGCM models as well as all RCM models
perform equally well. Although this is probably not the
case, it is the simplest assumption to make.

e H3: Instead of considering that the two emission
scenarios and the three AOGCMs produce two levels
of uncertainty, it is reasonable to consider that the six
‘emission-scenario AOGCM’ configurations belong to
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Fig. 2. Scaling relationships between regional climate changes and global mean warming for the Mauvoisin CSR (Lat: 46.25; Long: 7.25).
Left: regional temperature changes, right: regional precipitation changes. Top: winter season, bottom: summer season (AT is not specific for a
given season). Symbol shape indicates the driving AOGCM (squares: ECHAM4/OPYC3; triangles: ARPEGE/OPA (circles: HadCM3). Symbol
colour indicates the emission scenario (gray for B2 — white for A2). Each small sized symbol corresponds to one RCM experiment. Large sized
symbols correspond to the centroid of each AOGCM group. The straight lines are based on a least-squares fit to the mean values of the six
AOGCM clusters. Linear regressions were forced to pass through the origin
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a unique super-ensemble. Scaling ratios obtained for
the A2 and B2 emission scenarios did not reveal
significant differences (Fig. 3). Moreover, the
differences between the scaling ratios for the two
emission scenarios were of magnitudes similar to those
observed between the three different AOGCMs for a
given emission scenario.

It is furthermore assumed that the seasonal (resp. annual)
scaling ratio (YMT, or YMP_; s=0,...,.3 or 4) can be
expressed as:

i=12,., A
Vi=#ra e 15 B 3)

with 4 the number of ‘emission-scenario AOGCM’
configurations (4 = 6 in the present study), B the number
of RCMs in the PRUDENCE ensemble (B = 10), x an
unknown constant, a, a deviation related to the particular
‘emission-scenario AOGCM’ configuration, b, a deviation
associated with the RCM, and e,a noise term that accounts
for the natural variability of a 30-year mean. It is assumed
that the a, b and e, have zero mean and variances 0'
and O'e , respectlvely A possible dependence of O' on AT
has been explored.

The number of experiments with the jth RCM in the ith
‘emission-scenario AOGCM’ configuration is indicated as
n,. Although three out of the 19 AOGCM-RCM experiments
1n Table 2 were repeated twice with different initial
conditions, only one ensemble member was considered. So

=0orl.

“Assuming that the three random variables on the right-
hand side of Eqn. (3) are independent, the variance 0'5 ofy
is given by:

2 2 2 2
o,=0,+0, +0, 4)

The mean g and the total variance 05 characterise the
magnitude and uncertainty of the scaling variable.
Equation (3) represents a two-way crossed classification
(Searle, 1997). The fact that the number of RCM
experiments varies over the ‘emission-scenario AOGCM’
clusters makes the ANOVA unbalanced. A further
complication is that seasonal temperatures and precipitation
from two RCMs driven by the same AOGCM boundaries
are strongly correlated causing a correlation between the
corresponding e . Because of this correlation, the stat1st1cal
techmques for estlmatmg the variance components 0' 2
and O' in a two-way crossed classification cannot be used
In this study, the variances and correlations of the e, were
derived from the 12 experiments for which the seasonal
values of temperature and precipitation were available

(Appendix A). Estimates of 0'5 and of were then obtained
from the following sums of squares:

Ssl:ﬁni.(yi. B Y..jz :ﬁ Yie _ Ye (5)

i=1 ni. n i=1 ni. n

&< V.Y && o, &Y
$2 :Zzn”(ylj - nl J :Zzn” yl] _Z nl

i=1 j=1 ie i=1 j=1 i=1 i.(6)

with n, =" n; the number of RCM simulations in the ith

‘emission-Scenario AOGCM’ cluster, » the total number of
RCM simulations

n=>n.=>n ™

i=1 i=1 j=1

and
B A
W=Z%W,L=ZM. (8)
j=1 i=1

Details are given in Appendix B. As Eqns. (5) and (6) may
yield a negative estimate of 0'5 or 05, in that case the
variance component was set to zero. From the 12 RCM
experiments used for estimating 0' , no systematic
relationship could be found between the variances o}, of
the regional mean changes (XMT and XMP ) and global
mean warming. Figure 4 demonstrates this for the Mauvoisin
CSR. Though there is some dependence of the variance of
the regional mean changes on the ‘emission-scenario
AOGCM'’ configuration, no general trend can be identified.
It was, therefore, assumed that O',i is constant. In line with
this, the variance of ¢, should be inversely proportional to
the square of the global temperature change AT, (Appendix
A), ie..o., —var(ej) /(AT, )

Finally, the parameter x# was estimated as a weighted
average of the means ¥, = .. /n, ofthe ‘emission-scenario
AOGCM'’ clusters. The weights were taken to be inversely
proportional to var(¥,).

ANOVA RESULTS

Results of the analysis of variance are given for the annual

and seasonal scaling variables YMT and YMP. For each CSR,

Table 5 presents the estimates of 1 and the variances of the

random components in Eqn. (3). The estimate of o in this

table is a weighted average of the estimates 6': ; for the

different ‘emission-scenario AOGCM’ clusters:

A

&ez l ni.& ez,i 9
Nz

The pooled estimate of 0'5 in Table 5 was derived from
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Table 5. Statistics of seasonal and annual scaling ratios obtained from ANOVA for the five SWURVE CSRs (statistics relate to the 19
PRUDENCE RCM experiments). u : mean scaling ratio (dimensionless for temp.; °C™ for prec.), 6, 6%, 0,%, ¢ total variance of
scaling ratio, variance due to the natural variability contribution, to the RCM contribution and to the ‘emission—scenario AOGCM’
contribution, respectively (dimensionless for temp.; °C* for prec.) and p,, : correlation coefficient between the contributions of the
natural variability for the RCM simulations in the HadCM3-A2 cluster. Values for which u differs more than 2 x o, from 1 for temperature
or from O for precipitation are printed in bold and underlined.

Absolute temperature change Relative precipitation change
per degree global mean warming per degree global mean warming
ANNUAL DJF MAM JJA SON ANNUAL DJF MAM JJA SON
NWE ux  0.890 0.695 0.787 1.047 1.045 0.0109 0.0701 0.0057 -0.0757  0.0233
65 0.041 0.058 0.062 0.050 0.021 0.00034  0.00084  0.00065 0.00153  0.00080
o’ 0.007 0.001 0.005 0.029 0.006 0.00012  0.00022  0.00019  0.00012  0.00019
GE 0.033 0.050 0.052 0.017 0.012 0.00009  0.00000  0.00000 0.00109  0.00006
62 0.002 0.006 0.006 0.005 0.004 0.00013  0.00062  0.00047  0.00032  0.00055
p, 091 0.94 0.90 0.86 0.82 0.87 0.93 0.79 0.83 0.86
RH u  1.239 1.051 1.028 1.601 1.302 -0.0135  0.0524 -0.0108  -0.0814  -0.0183
65 0.061 0.074 0.076 0.177 0.033 0.00023  0.00066  0.00075 0.00191  0.00046
ol 0.025 0.013 0.012 0.121 0.018 0.00012  0.00001  0.00006  0.00079  0.00012
GE 0.033 0.047 0.052 0.043 0.007 0.00000  0.00000  0.00039  0.00084  0.00000
62 0.004 0.014 0.012 0.013 0.007 0.00011  0.00064 0.00031  0.00029  0.00035
p, 0.86 0.91 0.86 0.77 0.75 0.82 0.94 0.78 0.74 0.78
IB u  1.351 0.979 1.287 1.805 1.358 -0.0671  0.0127 -0.1180 -0.1292  -0.0886
65 0.041 0.045 0.085 0.054 0.050 0.00063  0.00273  0.00146  0.00466  0.00086
ol 0.011 0.009 0.016 0.024 0.007 0.00010  0.00000  0.00045  0.00084  0.00000
GE 0.027 0.030 0.054 0.022 0.037 0.00000  0.00000  0.00000 0.00287  0.00000
03 0.003 0.005 0.014 0.008 0.006 0.00053  0.00273  0.00101  0.00095  0.00086
p, 091 0.90 0.96 0.85 0.86 0.96 0.99 0.94 0.73 0.85
JL u  1.308 1.088 1.110 1.752 1.319 -0.0229  0.0384 -0.0186  -0.0937 -0.0318
ol 0.061 0.082 0.093 0.165 0.034 0.00034  0.00084  0.00120  0.00196  0.00039
05 0.022 0.015 0.011 0.104 0.016 0.00019  0.00001  0.00018 0.00100  0.00000
GB 0.035 0.054 0.070 0.047 0.010 0.00002  0.00000 0.00070  0.00068  0.00000
03 0.004 0.013 0.013 0.014 0.008 0.00013  0.00083  0.00033  0.00029  0.00039
p,, 0387 0.92 0.87 0.79 0.74 0.83 0.93 0.79 0.69 0.74
MA u  1.331 1.119 1.173 1.745 1.321 -0.0257  0.0335 -0.0247  -0.0902  -0.0346
o2 0.055 0.084 0.098 0.110 0.037 0.00039  0.00098  0.00129  0.00209  0.00042
05 0.017 0.017 0.009 0.067 0.017 0.00025  0.00003  0.00024 0.00104  0.00000
GB 0.034 0.054 0.076 0.031 0.013 0.00001  0.00000 0.00074  0.00078  0.00000
03 0.004 0.013 0.013 0.012 0.007 0.00014  0.00094 0.00032  0.00027  0.00042
p,, 087 0.91 0.87 0.79 0.74 0.85 0.94 0.78 0.66 0.71

Eqn. (4) by substituting 62 for o’. The table further  Results for temperature

presents the estimates of the correlation coefficient, p |, Table 5 shows that, for the annual mean temperature, the
between the e, for the HadCM3-A2 cluster. Similar values mean scaling ratio is larger than 1 for the Rhine basin, Iberia
were obtained for the HadCM3-B2 cluster. The correlations and the Swiss CSRs, implying that the temperature increase
for the ECHAM4/OPYC3 cluster are, however, only about in these regions tends to be larger than the expected global
half those for the HadCM3-A2 cluster because the two mean warming. The value of the estimated standard
RCMs in that cluster were nested in two different simulations deviation &, (roughly about 0.2 for all CSRs) is, however,
of ECHAM4/OPYC3 for the 2070-2100 climate (Ole such that a regional temperature increase smaller than the
Christensen, pers. comm.). expected global mean warming is possible. In contrast to

the other CSRs, the expected annual temperature increase
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Fig. 4. Variance of changes in the seasonal mean as a function of global mean warming for regional temperature (Nar(XMT)) and precipitation
(Var(XMP)). Results for the Mauvoisin CSR. Each symbol corresponds to one RCM experiment marked with a star in Table 2. Top: winter
season, bottom: summer season. See the caption of Figure 2 for further details and Appendix A for variance estimation.

in the NWE CSR is smaller than that expected for the global
mean temperature. An annual temperature increase larger
than the expected global mean warming is, however, also
possible for NWE. Regional warming is expected to be
larger for summer than for autumn and larger for autumn
than for winter and spring. The regional warming for NWE
in winter and spring is expected to be substantially less than
global mean warming. For the other four CSRs, the expected
summer warming is much higher than the global mean
warming. For three of them (the Rhine basin, Jura lakes
and Mauvoisin), the relatively large mean scaling ratio is
accompanied by a large value of the standard deviation o,
The values of of suggest that much of this uncertainty is
induced by the differences between RCMs; this is also the
case for the uncertainty of the scaling ratios for the autumn
season. The contribution of &7 to the total variance 05 is
small for winter and spring. Systematic differences between
the AOGCMs give a substantial contribution to o . The
values of ¢ are relatively large for spring and small for
autumn. However, the estimate of o2 is unreliable due to
the small number of AOGCMs included in the PRUDENCE
ensemble. Natural variability contributes only a small part
to the total variance, in particular to that of the annual mean
temperature. There is a rather strong correlation between

the e, of the HadCM3-A2 cluster. The largest values of p, |
are found in the winter and spring seasons.

Results for precipitation

The mean scaling ratio in Table 5 indicates that annual mean
precipitation is expected to decrease in the Rhine basin,
Iberia and the Swiss CSRs and increases in the NWE CSR.
For the Iberian CSR the mean differs more than 2x &y from
0, implying that the probability of a positive scaling ratio is
small. Precipitation is expected to decrease in summer in
all CSRs. Although 5'y is relatively large for summer, the
mean scaling ratio differs about 2 x &, from zero. The mean
scaling ratio is positive in winter. With the exception of
Iberia, the probability is small that YMP takes negative
values for that season. The contribution of natural variability
to the total variance o for precipitation is much larger than
that for temperature. In winter and autumn o is the largest
variance component for all CSRs. In a number of cases, no
positive estimate of J§ and o was found, partly due to
the large influence of natural variability on the scaling ratio
and, for o also, to the small number of AOGCM s in the
PRUDENCE project. For the summer season, there is a
considerable contribution of & to o} for the Rhine basin
and the Swiss CSRs; the component o is of minor
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importance for the other seasons. A rather strong correlation
was obtained for the e, of the HadCM3-A2 cluster. The
largest values of p | are found in the winter season and the
smallest values in the summer season.

Seasonal variation of the range of the scaling ratios
Figure 5 shows that the range of the scaling ratio is usually
much higher for summer than for the other seasons. This is
mainly because the inter-RCM variance O'bZ is quite
significant in summer. In winter, meteorological events are
largely determined by large-scale circulation patterns, which
are mostly accounted for by the driving AOGCMs. The
variation in the scaling ratio is then due to systematic
differences between the simulated large-scale patterns of
these models (represented by the a, in the ANOVA model)
and natural variability. In summer, small -scale processes
are also important (formation of convective rainfall cells,
evolution of soil moisture and evapotranspiration). These
processes are accounted for mainly by the RCMs. Their
description has, however, to be simplified because of their
complexity and because of the large size of RCM grid boxes.
The parameterisation of these processes may differ
significantly from one RCM to the other. Inter-model
difference results then from differences between the driving
AOGCM and between RCM parameterisations (Christoph
Frei, pers. comm.). Results obtained for summer are, thus,
expected to be more variable from one RCM to another in
comparison with results for winter.

Simulating Probability Density
Functions of seasonal regional
changes

For each SWURVE CSR, the Probability Density Function
of regional change is next obtained via Monte Carlo
simulation as indicated in the introduction. A global mean
warming value AT is generated from a log-normal
approximation to the Wigley and Raper (2001) distribution.
This value is then combined with a random scaling ratio y
to obtain one realisation x =y AT of the regional change X.
It is assumed that y = 4+ a + b + e, where a, b and e are
independent normal random variables with mean 0 and
variances o2, 02 and o /(AT)?, respectively. The
regional change X can then be represented as a simple
function of three independent random variables:

X=Y.AT+N (10)

where Y is a normal random variable with mean x and
. 2 2 I
variance o, +0,, and N, the contribution of natural
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variability, is normal with mean 0 and variance o, .

Table 6 presents the percentiles of the resulting
distributions. Probability Density Functions of the seasonal
changes are shown in Fig. 6. The differences between CSRs
and seasons follow from the properties of the scaling ratios
as discussed earlier in the analysis of ANOVA results. Some
additional comments have, however, to be noted.

ANNUAL TEMPERATURE CHANGES

All percentiles of the annual temperature change for NWE
in Table 6 are smaller than the corresponding percentiles
for the other CSRs. For NWE the range between the 5th
and 95th percentile is 3.1°C, which is 20% larger than that
for the Wigley and Raper (2001) distribution of the global
mean temperature change. The percentiles for the Rhine
basin, Iberia and the Swiss CSRs bear a strong resemblance
(the Ist, 5th, 50th, 95th and 99th percentiles are about 1.3,
1.8, 3.3, 6 and 7.6°C) as a result of the similarity between
the means and variances of the underlying scaling ratios.
The range between the 95th and 5th percentile, about 4.2°C
for these CSRs, is considerably larger than that for the NWE
CSR (and 60% larger than that for the Wigley and Raper
(2001) distribution of global mean warming). This difference
can be explained easily by examining the expression for
the variance of X. Since Y, AT and N are independent, the
variance of X is given by

var X = (o-j +o-§).var AT + 1 var AT +
(032 +0'§).[E(AT)]2 +ol (1)

For the annual temperature change of the CSRs being
considered, the second term on the right-hand side dominates
strongly. For the NWE CSR, this term is smaller than for
the other CSRs because of the smaller value of 1 for NWE
(Table 5).

ANNUAL PRECIPITATION CHANGES

For Iberia, only the 99th percentile is slightly positive
whereas the lower percentiles are negative, suggesting a
decrease in annual precipitation. The direction of change is
more uncertain for the other CSRs. There is a good
correspondence between the percentiles for the Rhine basin
and the two Swiss CSRs (the 1st, 50th and 99th percentiles
are about —20, —5 and 5%).

SEASONAL TEMPERATURE CHANGES

For all CSRs, the expected warming for summer is higher
with a larger uncertainty range than the regional warming
for the other seasons (Table 6). With the exception of NWE,
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Table 6. 99th, 95th, 50th, 20th, 5th and st percentiles of regional temperature and precipitation changes (XMT and XMP) obtained from
Monte Carlo simulations for the five SWURVE CSRs (percentiles based on 50000 simulations from a log-normal approximation to the
Probability Density Function of the global mean warming from Wigley and Raper (2001) and from the Probability Density Functions of
the scaling variables derived from the 19 PRUDENCE RCM experiments). The minimum and maximum changes in the 19 RCM
experiments are also given for comparison.

Absolute Temperature changes (°C) Relative Precipitation changes (%)
Annual  DJF MAM JJA SON Annual  DJF MAM JJA SON
NWE 99th 5.4 4.7 52 6.2 5.9 17 47 19 5 27
95th 4.2 3.5 4 4.9 4.7 12 37 14 ) 20
50th 2.3 1.8 2 2.7 2.7 3 18 2 -19 6
20th 1.6 1.1 1.3 1.9 2 -1 10 -5 -30 -1
05th 1.1 0.7 0.8 1.4 1.5 -6 3 -10 -43 -7
01st 0.8 0.3 0.4 1 1.1 -9 -3 -16 -57 -13
Max RCMs 4 34 4 4.6 4.2 14 38 18 -4 17
Min RCMs 1.6 1 1.1 1.8 1.7 -7 7 -11 -42 -9
RH  99th 7.4 6.5 6.4 10 7.3 6 36 16 6 9
95th 5.8 5.1 5 7.8 5.8 3 29 10 -2 5
50th 32 2.7 2.6 4.1 3.4 -4 14 -3 221 -5
20th 23 1.9 1.8 2.8 25 -7 7 -9 -33 -10
05th 1.7 1.2 1.2 1.9 1.9 -11 0 -16 -48 -16
01st 1.2 0.7 0.7 1.2 1.4 -15 -5 -23 -64 221
Max RCMs 6 5 54 8.3 5.7 5 36 10 10 6
Min RCMs 2.2 1.8 1.7 2.2 2.5 -11 -1 -17 -52 -20
IB 99th 7.4 5.7 7.4 9.8 7.5 2 39 -1 9 1
95th 6 4.5 5.9 7.9 6 -4 28 -9 -3 -6
50th 3.4 2.5 33 4.6 3.5 -18 3 -31 -33 -23
20th 2.6 1.8 2.3 3.5 2.6 -26 -10 -44 -51 -33
05th 1.9 1.3 1.6 2.6 1.9 -34 -22 -58 =72 -43
01st 1.5 0.9 1.1 2 1.4 -42 -32 =71 -89 -53
Max RCMs 6 4.1 6.4 7.7 5.8 -8 22 -18 -2 -3
Min RCMs 2.6 1.7 2 32 2.6 -35 -19 -62 -83 -46
JL 99th 7.6 6.7 7 11 7.4 6 32 18 3 6
95th 6.1 52 5.4 8.3 5.9 2 25 11 -4 2
50th 3.3 2.8 2.8 4.5 3.4 -6 10 -5 -24 -9
20th 24 1.9 1.9 3.2 2.5 -11 3 -13 -37 -14
05th 1.8 1.3 1.2 22 1.9 -16 -4 =22 -52 -19
01st 1.3 0.8 0.8 1.5 1.4 =22 -10 -31 -68 -24
Max RCMs 6.3 5 5.9 8.9 5.9 1 41 11 -3 2
Min RCMs 2.3 1.8 1.7 2.8 2 -19 2 -27 -55 -20
MA  99th 7.7 6.9 7.3 10 7.5 6 32 17 5 6
95th 6.1 5.4 5.7 8.1 6 2 25 10 -3 1
50th 3.4 2.9 3 4.5 3.4 -7 9 -6 -23 -9
20th 2.5 2 2.1 32 2.5 -12 1 -15 -36 -15
05th 1.8 1.3 1.3 2.4 1.9 -18 -6 -25 -52 -20
01st 1.4 0.8 0.8 1.7 1.4 -24 -13 -35 -69 -25
Max RCMs 6.2 52 6.1 83 5.9 0 39 12 6 2
Min RCMs 2.4 1.9 1.8 2.7 24 221 0 -29 -54 -17

the 99th percentile of the summer warming is as large as for spring resembles either the Probability Density Function
10°C. Figure 6 shows that the Probability Density Function for winter (NWE, Rhine basin and Swiss CSRs) or autumn
(Iberia).
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SEASONAL PRECIPITATION CHANGES

In the discussion of the ANOVA results it was already noted
that precipitation is expected to decrease in summer for all
CSRs. The decrease in precipitation is accompanied by a
negatively skewed PDF of the relative changes (Fig. 6),
implying that quite large decreases are possible. Table 6
shows that the 1st percentile of the relative change is as low
as —57% for NWE, —64% for the Rhine basin, —-68% for the
Swiss CSRs, and even —89% for Iberia. For winter, the
Probability Density Function is more or less centred on the
origin for Iberia (indicating that an increase in precipitation
is as likely as a decrease) but for the other CSRs the 20th
and higher percentiles are positive (indicating that a
precipitation increase is probable). The expected increase
for the latter is accompanied by a positively skewed
Probability Density Function of the relative changes, which
can be as high as 47% (99th percentile for NWE). For spring,
all percentiles of the relative changes are negative for Iberia
whereas the Probability Density Functions are more or less
centred on the origin for the other CSRs. The latter is also
the case for NWE for autumn. For the other CSRs most
percentiles are negative for autumn, indicating that a
decrease in precipitation is more likely than an increase.

PERCENTILES OF REGIONAL CHANGES IN THIS
STUDY VERSUS THOSE OBTAINED FROM THE
PRUDENCE EXPERIMENTS

Table 6 shows that for all CSRs, the maximum regional
changes from the 19 RCM experiments correspond more or
less to the 95th percentiles of the regional changes from the
Monte Carlo simulations in this study. This holds both for
the temperature and precipitation changes and for the annual
and seasonal changes. The minimum changes from the
RCMs correspond to the 20th percentiles of the simulated
values for XMT and to the 5th percentiles of the simulated
values for XMP. To assess climate-change impacts on
specific water systems, regional scenarios from RCM
experiments only would, thus, not be representative enough
of the temperature changes. This is mainly due to the fact
that the lowest and highest global mean warming in the
PRUDENCE AOGCM experiments correspond to the 40th
and 85th percentile of the 1990 to 2070-2100 global mean
warming distribution derived from Wigley and Raper
(2001). The PRUDENCE experiments are, thus, unable to
capture the low regional warming that would be obtained
for low global mean warming. The estimation of regional
temperature changes therefore needs a relevant Probability
Density Function of global mean warming. By contrast, the
regional precipitation changes from the PRUDENCE
experiments cover more or less the full range of possible
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precipitation changes as predicted by the Monte Carlo
simulations in this study. For regional precipitation the
uncertainty of the regional scaling relationship has a larger
influence on the distribution of the relative changes than
for temperature. That the minimum regional changes in the
19 RCM experiments correspond to the 5th percentile and
the maximum to the 95th percentile is a result to be expected
for a sample of 19 independent realisations. This suggests
that the dependencies between the various RCM simulations
have little effect on the range of regional climate change. It
should finally be noted that the Probability Density Function
is sensitive to the values of zzand 05 , and not to the partition
of 0'5 over the variance components o,c; and o2,

Conclusion

The uncertainty of regional climate changes can be estimated
with different AOGCM-RCM experiments for different
emission scenarios. Unfortunately, such experiments are
highly time consuming and cannot be applied to assess
regional changes for all possible emission scenarios and all
possible sets of uncertain model parameters. The
methodology presented in the paper allows the generation
of an extended range of possible regional changes for both
seasonal temperatures and precipitation. It combines a
Probability Density Function of the global mean warming
derived from those of Wigley and Raper (2001) with the
Probability Density Functions of scaling ratios from a large
set of RCM experiments carried out in the framework of
the PRUDENCE project (Christensen et al., 2002). The
resulting Probability Density Functions of regional changes
can be used to produce a large number of climate change
scenarios as needed for impact studies.

The Probability Density Functions of scaling ratios are
based on an analysis of the relationships between regional
changes and global mean warming. Results indicate that a
linear relationship between these regional-global changes
can be assumed as a first approximation. The emission
scenario and the driving model are usually expected to give
a large contribution to the uncertainty in regional climate
change. Unfortunately, this contribution could not be
estimated accurately because only three AOGCMs and two
emission scenarios were considered in the PRUDENCE
project. For precipitation, the estimation of the uncertainty
due to the driving ‘emission-scenario AOGCM’
configuration was further hampered by the large natural
variability of the seasonal and annual mean values. In a
number of cases, RCM inter-model differences contributed
substantially to the total variance of the scaling ratio. Most
of these cases were found in summer and autumn for
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precipitation change (XMP in %).
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temperature and in summer for precipitation. Natural
variability turned out to be an important source of
uncertainty for the scaling ratio for precipitation, but not
for temperature.

For the five SWURVE CSRs, the ranges of the changes
in temperature (resp. precipitation) from the Monte Carlo
simulations are larger than (resp. similar to) those obtained
from the 19 PRUDENCE RCM experiments. For
temperature, this has to be related mainly to the rather high
sensitivity to radiative forcing of the AOGCMs considered
in this study. The range of the regional precipitation changes
depends strongly on the uncertainty of the scaling ratio. Two
companion papers of this special Hydrology and Earth
System Sciences issue focusing on the two Swiss SWURVE
CSRs reveal that uncertainty associated with scaling explains
much of the total uncertainty in impact Probability Density
Functions (Schaefli et al., 2007; Hingray et al., 2007). This
is also in line with results obtained for different
hydroclimatic regions of Switzerland by Horton et al.
(2006).

The design of the PRUDENCE ensemble is far from
optimal from an ANOVA point of view (small number of
AOGCMs, very uneven distribution of RCM experiments
over the AOGCM simulations). The estimates of O'j and
sz were based on two sums of squares. Other quadratic
forms of the y, may be considered (Searle, 1997). The
ANOVA model given in Eqn. (3) assumes that the effects
of the ‘emission-scenario AOGCM’ configuration and the
RCM are purely additive. There is some need to investigate
this assumption. A reviewer suggested the development of
separate ANOVA models for the future and control climate.
Natural variability may be included as a between-year
component in these models.

The results of this work are of course highly conditioned
on the different hypotheses and simplifications used to
obtain the global warming Probability Density Function and
the Probability Density Functions of scaling ratios. Global
warming and scaling ratios were assumed, respectively, to
be log-normally and normally distributed. By contrast, Jones
(2000) advocates the use of the uniform distribution to
describe the uncertainty of global warming and scaling
ratios; in his study, the lower and upper bound of the
distribution were set equal to the minimum and maximum
values in a suite of climate model experiments. The two
methods were compared by Ekstrom et al. (2007) for the
changes in annual temperature and precipitation in the five
SWURVE CSRs. The directions of change are similar in
both methods but the magnitude of the expected changes
differs. The global warming Probability Density Function
depends on assumptions regarding future greenhouse gas
emissions. Wigley and Raper (2001) arbitrarily assumed that
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each of the 35 SRES scenarios was equally likely. An
alternative approach that avoids assumptions about the
likelihood of emission scenarios is to construct separate
climate-change Probability Density Functions for a number
of these emission scenarios. The climate sensitivity is
another uncertain factor that determines the global warming
Probability Density Function. Wigley and Raper (2001)
assumed that the climate sensitivity ranged between 1.5 and
4.5°C with a probability of 90%. Some authors (Andronova
and Schlesinger, 2001; Stainforth et al., 2005) have reported
much wider intervals (up to about 9°C).

The possibility of a climatic surprise is not accounted for
in the climate-change Probability Density Functions.
Probability Density Functions of regional changes describe
only uncertainty resulting from known sources of
uncertainty that can be represented by appropriate
Probability Density Functions.

To assess climate change impacts on water related
activities, the changes in means for key variables such as
temperature and precipitation are of major importance but
are, however, not sufficient. Impacts are usually highly
dependent on extreme events. As extremes are highly
sensitive to the width of statistical distributions, changes in
variability are often said to be more important than changes
in averages (Katz and Brown, 1992; Schaer et al., 2004).
Changes in variability are also outcomes of climate model
experiments and, as already shown by Réisdnen (2002),
changes in variability may differ from one experiment to
another. Uncertainty in the change in variability can be
accounted for with the same methodology as that presented
here. To assess climate change impacts on water related
activities, the way such uncertainties can be combined to
produce time series scenarios of temperature and
precipitation for future climate conditions has finally to be
addressed (at a daily time step, for example). One difficulty
is to account for the possible correlation between the changes
in the different key meteorological variables in this scenario
development. High correlation is, for example, usually
predicted between the four mean seasonal temperature
changes. This is, of course, partly due to the fact that these
changes are strongly coupled to the global mean warming.
It is, however, also due to the high correlation between
seasonal scaling ratios obtained from climate-change
experiments. A possible framework to account for such
correlations is proposed in Hingray et al. (2007).
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Appendix A: Natural variability

The effect of natural variability is included in the ANOVA
model (3) by the term e,. Common GCM boundaries lead
to a correlation between the e, from RCM experiments
within the same AOGCM cluster. Expressions for the
correlation coefficients and the variances of the e, are
derived in this appendix, first for temperature and then for
precipitation.

Two different RCMs, RCMP and RCMq, are considered,
for which the changes in mean temperature are given by

XMTp - MT/i/Ich,p - control.p (A 1)
XMTq = MT/i/Ich,q - control,q (A2)

It is expected that there is no correlation between the
means in the control and future climate. There might,
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however, be a correlation o, between MT I and MT, »
and a correlation p, between MT, e and MTﬁnure,q' Then it
follows: ’ ’

var(XMT, )=0? , +02, (A3)

cov(XMTp, XMT q) =Py Oy, Opy + P O, O, (A4)
with o, = stdev (MT, ) and o, = stdev (MTﬁ”m B2
k=pq.

From Eqns. (A3) and (A4), the correlation between XMT,
and XMTq is:

O = PrOr 1Ok gt PcOc 0cq

XMT — AS
J(o2, 402, ) (o2 g+ 2, (A3)

Assuming independence between years, the standard
deviations o, and o, are obtained as
k=pq (A6)

O-C,k = Gcomrol,k / ncontrol

Ok x = O ek | A/ Muture ,k=pq (A7)

where o and o are the standard deviations of the
control k Suture k
individual seasonal (resp. annual) values, and » and n

control future

are the number of years in the control and future run (n,
=y = 30). No attempts were made to account for serial
dependence effects, which would require long control
simulations. Hence, the natural variability of XMT might be
somewhat underestimated. The assumption of independence
between years further implies that p, and p,. are equal to the
correlation coefficients of the individual seasonal (resp.
annual) values.

A linear trend was subtracted from the simulated seasonal
(resp. annual) values in the future run before estimation of
o-,zutureyk and p,. A pooled estimate of o g = var (XMT) was
obtained by averaging the individual estimates from the 12
RCM experiments starred in Table 2.

Because the variability of the global mean temperature is
small compared to that of the seasonal temperatures in the
case study regions, AT in Eqn. (1) may be considered as a
constant. Hence,

var (YMT) ~ var (XMT)/(AT)* (A8)
and
Corr(Yl\/ITp,Yl\/ITq) ~ Dyt (A9)

The variance o2, for the ith ‘emission-scenario AOGCM’
cluster was obtained by dividing the pooled estimate of o/,



Probability distributions for regional climate change from uncertain global mean warming and uncertain scaling relationship

by the square of the global temperature change A7. The
correlation coefficient p, was set equal to the cluster mean
of the estimates of p,, .. '

Similar expressions can be derived for the variances and
correlations of the changes XMP in mean precipitation. Let

XMP, = MP / MP -1

Suture,p control p

(A10)

XMP = MP / MP -1

Suture,q control,q

(A1)

Define Hey = E (MPwmmLk), 4, =E (MP_MW D) k=paq.
Approximations to var (XMP,) and the covariance between
XMP and XMP can be obtained by the delta method (Stuart
and Ord, 1987, Sections 10.5 and 10.6):

(A12)

2 2
var(XMP)N#FkliUF,u%} , k=pq

2
ex | Hrx  Hex

cov(XMP, , XMP,) ~ (A13)

:uF,p /uF,q |:,0 O-F,p O-F,q O-C,p O-C,q:|

F *Pc
:uC,p :uC,q AuF,p :uF,q :uC,p :uC,q

where o, and o,, are defined in the same way as for
temperature.

From Eqns. A(12) and A(13), the correlation between
XMP, and XMP, is :

Pr CVe , CVe  + 0 CV ,CV,
J(oveE, +ovg, ) (cv2, +ave,)
where CV,, = o /y.  and CV,, = o, /pt,,, k=p,q. Equation
A(14) has the same form as Eqn. A(5), except that the
standard deviations are replaced by the coefficients of
variation.

The values of o and P were derived from the
individual estimates of var(XMP) and p,, , as for
temperature, except that no trend was subtracted from the
simulated seasonal (resp. annual) values in the future run.

(A14)

Pxvp &

Appendix B: Estimation of ¢’ and o}

In the ANOVA model given by Eqn. (3), it is assumed that
the a, and the b are independent random varlables with
varlancescr and ol b , that the variances 0' ; of the noise
component e, may vary over the “emission-scenario
AOGCM?” clusters and that the RCM simulations in the ith
cluster (i = ., A) have a correlation pg;. In the first
instance it is assumed that that there is no correlation
between the e, in different ‘emission-scenario AOGCM’
clusters.

The means of the sum of squares in Eqns. (5) and (6) can
be written:

svary, vary,,
E(SS)=) —=-—= (B1)
R n
& &\ vary;,
$S)=2 2 vary, -3~ (B2)
i=1 j=1 i=1 i-
The variance of y, is given by
vary; :U§+0't32 + 0'; (B3)
For the sums y, and y :
B B
Y. :ni,y+n. a, +Zn”b] Jan”eIJ (B4)
=1 B
y,,—nu+2n,, I+Zn b +22n”eij (B5)
=1 j=1
A
with n,; =Znij , the number of simulations with the jth
RCM. =1

Then it follows, for the variances of y, and y :

f+n.ol +n.(n, —1p, 0 (B6)

e ei

Zn ol +Zn ol +Zn ol

+ann ie pel e, (B7)

vary,, = nfﬁi +Nn,o

vary,,

Substitution of (B3), (B6) and (B7) into (B1) and (B2)
results in:

E(s8)- (1K) + (ko
gut 1 > (n-n, )[1+ (n. -Dp.; ]o—jI (BS)

i=1

3

E(SS,) =(n- A)o! + ﬁ(ni. ~)-pa i (B9

where
1& 18
k,==>ni ad k,==>'n?,
ni:l nj:l

The estimate &7 of ¢/ is obtained from Eqn. (B9) by
replacing E(SS,) by SS, and ol and p,,; by their estimates
from Appendix A:
~ 2 A
o
*n- A{ -2

i=1

Y (B 5 } (B10)

The estimate is taken to be zero if the right-hand side of
Eqn. (BIO) is negative. Subsequently o is estimated as:

{sa (A-k, )¢ -
—Zn n L+ (n.

6l=

n-k

~1p,, 2 } (B11)
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Again, in the case of a negative value, the estimate is set to
Zero.

In the derivations above no correlation was assumed
between the e, of different “emission-scenario AOGCM”
clusters. For a number of RCMs that have both a simulation
for the A2 and B2 emission scenario, there is a correlation
of about 0.5 because of common control runs. An additional
covariance term should therefore be included in the right-
hand side of Eqn. (B7). This leads to a slightly larger estimate
of 0'§ than the values in Table 5. It has no effect on the
estimate of 5.
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