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Abstract

To aid assessments of the impact of climate change on water related activities in the case study regions (CSRs) of the EC-funded project
SWURVE, estimates of uncertainty in climate model data need to be developed. This paper compares two methods for estimating uncertainty
in annual surface temperature and precipitation for the period 2070-2099. Both combine probability distribution functions for global temperature
increase and for scaling variables (i.e. the change in regional temperature/precipitation per degree of global annual average temperature
change) to produce a probability distribution for regional temperature and precipitation. The methods differ in terms of the distribution used
for the respective probability distribution function. For scaling variables, the first method assumes a uniform distribution, whilst the second
method assumes a normal distribution. For the probability distribution function of global annual average temperature change, the first method
uses a uniform distribution and the second uses a log-normal approximation to a distribution derived from Wigley and Raper, 2001. Although
the methods give somewhat different ranges of change, they agree on how temperature and precipitation in each of the CSRs are likely to
change relative to each other. For annual surface temperature, both methods predict increases in all CSRs, although somewhat less so for NW
England (5" and 95" percentiles vary between 1.1-1.9 °C to 3.8-5.7 °C) and about 1.7-3.1 °C to 5.3-8.6 °C for the others. For precipitation,
most probability distributions (except for NW England) show predominantly decreasing precipitation, particularly so for the Iberian CSR (5™

and 95" percentiles vary from —29.3 to —44 % to —9.6 to —4 %).

Keywords: uncertainty, regional climate model, temperature, rainfall, Europe

Introduction

As climate model projections are often used in climate
change impact studies that may influence policy decisions
within different socio-economic sectors, it is important to
have some understanding of the uncertainties involved with
climate model data (Webster ef al., 2003). This is particularly
true within the framework of the EU-funded project
SWURVE, which is focused on the impacts of climate
change on specific water management activities (Kilsby,
2007).

Uncertainties linked with climate projections stem from
several different sources, e.g. uncertainty in estimates of
emission scenarios, scientific uncertainty (due to
inadequacies of the models) and uncertainty due to natural
variability. The first category relates to the storylines upon

which the rates of emission scenarios are based, i.e.
descriptions of what a future world may look like in terms
of population growth, economic development and
technological change (see, for example, Nakicenovic, 2000,
and Webster et al., 2002). The second group of uncertainties
is due to the climate models, i.e. uncertainty in the present
understanding of climate processes and how they are
represented in global atmospheric and global coupled
Atmosphere-Ocean General Circulation Models (AGCMs
and AOGCMs) (Allen and Ingram, 2002; Collins and Allen,
2002; Jenkins and Lowe, 2003). Because individual
modelling groups have used different formulations and often
simplifications when representing physical processes,
individual Global Circulation Models (GCMs) will have
different strengths and weaknesses that lead to inter-model
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differences (Covey ef al., 2003; Grotch and MacCracken,
1991; Lambert and Boer, 2001; Riisdnen, 1997,2001,2002).
Furthermore, when a GCM is combined with a regional
climate model (RCM), systematic errors may be added as
the climate of the RCM is affected by model resolution,
numerical scheme and physical parameterisations and by
the forcing boundary conditions (Rummukainen et al.,
2001). These errors are difficult to quantify and few
publications, (Moberg and Jones, 2004), are available on
the subject. The uncertainty introduced by the RCM is,
however, generally considered to be substantially smaller
than that inherited by the driving GCM (Jenkins and Lowe,
2003). The last category of uncertainties, due to natural
variability, represents the year-to-year and decade-to-decade
variability due to the chaotic nature of the climate system.
It also includes the impact on climate of changes in the
output of the sun or changes in stratospheric aerosols due
to volcanic activity (Jenkins and Lowe, 2003).

There are broadly two different ways in which to address
uncertainty when working with forecast or predicted data.
These are: scenario analysis (outcomes are given for a range
of probable scenarios, e.g. the Intergovernmental Panel on
Climate Change (IPCC) Special Report on Emissions
Scenarios (SRES) described in Nakicenovic and Swart
(2000)) and uncertainty analysis (the outcomes are
associated with specific probabilities, e.g. Jones (2000a,b);
Wigley and Raper (2001); Forest ef al. (2002) and Tebaldi
et al. (2004, 2005). Whilst the scenario analyses explore a
range of different views of the world with no attached
likelihood, the uncertainty analyses quantify the likelihood
for a particular variable to fall within a specified range.

In SWURVE, an uncertainty approach was chosen to
estimate probability distributions associated with regional
surface (1.5 m) temperature and precipitation for the future
perturbed period 2070-2099. These two variables were used
as input data for hydrological studies in five European case
study regions (CSRs) (Kilsby et al., 2007). The choice of
methodology was motivated by the wish to use a
probabilistic approach for climate change impact
assessments performed within the CSRs.

In this paper, two methods to estimate uncertainty for the
two regional variables are described and compared. Both
methods estimate the probability distribution for change in
the regional variables by combining a probability density
function for global temperature change (1961-1990 to
2070-2099), with a probability density function of the
scaling variables (i.e. the change in regional temperature/
precipitation per degree of global temperature change) for
the same period. The first approach follows the methodology
outlined by Jones (2000a,b) (Method I). It uses a uniform
shape for both probability density functions to represent the
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view that, because the probability density functions of the
uncertainties are not known, a uniform distribution limited
by an upper and lower limit is probably the most appropriate.
The second method, developed by Hingray et al., (2007)
(Method II) assumed the distribution of the scaling variable
to be normal instead of uniform. Its variance is estimated
by applying an ANalysis Of VAriance (ANOVA) to scaling
variables calculated from a suite of 19 GCM-RCM
experiments. A log-normal approximation to a distribution
derived from Wigley and Raper (2001) is used for global
temperature change. Examples using both methods are
shown for each of the five SWURVE case study regions
(CSRs) (Kilsby et al., 2007).

Climate model data

To estimate the uncertainty in the scaling variables for
regional temperature and precipitation changes, a suite of
RCM experiments (Table 1), forced by different GCMs
(Table 2) is used. The RCM data were made available
through the EC project PRUDENCE (Prediction of Regional
scenarios and Uncertainties for Defining EuropeaN Climate
change risks and Effects, Christensen et al., 2002). The
individual RCMs have different integration domains and
resolutions; however, within the PRUDENCE project,
30-year average seasonal grids were produced for the control
(1961-1990) and future (2070-2099) simulations on a
common European grid (0.5° latitude by 0.5° longitude) for
each RCM. With one exception (ECHAM4/OPYC, Table
2) the GCMs used to provide the boundary conditions to
the PRUDENCE RCMs were not coupled Atmosphere-
Ocean GCMs but high resolution Atmospheric GCMs.

Using the seasonal PRUDENCE grids, annual averages
of surface temperature and precipitation for the control and
future simulations were calculated using only those grid
boxes that covered each specific CSR: NW England, Rhine
basin, the Iberian region, Jura lakes basin (Switzerland) and
Mauvoisin dam (Switzerland). The extent of each CSR in
the PRUDENCE regular grid is shown in Fig. 1.

The GCMs (and hence the RCMs) were forced using
emissions scenarios from the IPCC SRES A2 and the B2
scenario (Nakicenovic and Swart, 2000). The two scenarios
follow different storylines with respect to technological and
economic growth in the world. The A2 storyline describes
a heterogeneous world with strengthening of regional
cultural identities, high population growth but with less
concern for rapid economic development (Nakicenovic,
2000). The B2 storyline also describes a heterogeneous
world, but emphasises local solutions to economic, social
and environmental sustainability. It describes a less rapid
but more diverse technological change compared to A2
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Table 1. The modelling groups within the PRUDENCE project (Christensen et al., 2002) and the corresponding RCM.

Acronym  Institution RCM Scenario Reference

CNRM  Centre National de Recherches Météorologiques, Toulouse, ARPEGE A2 and B2 Gibelin and Déqué (2003)
France

DMI Danish Meteorological Institute, Copenhagen, Denmark HIRHAM A2 and B2 Christensen et al. (2001)

ETHZ Institute for Atmospheric and Climate Science, Zurich, CHRM A2 Vidale et al. (2003)
Switzerland

GKSS Institute for Coastal Research, Geesthacht, Germany CLM A2 Doms and Schiittler (1999)

HC Hadley Centre for Climate Prediction and Research, HadRM3H A2 and B2 Hulme ez al. (2002)
United Kingdom

ICTP International Centre for Theoretical Physics, Trieste, Italy RegCM A2 Giorgi et al. (1993ab)

MPI Max-Planck-Institut fir Meteorologie, Hamburg, Germany REMO A2 Jacob (2001)

SMHI Swedish Meteorological and Hydrological Institute, RCAO(E) A2 and B2 Raisédnen et al. (2003)
Norrkoping, Sweden

UCM Universidad Complutense de Madrid, Toledo, Spain PROMES A2 and B2  Arribas et al. (2003)

Table 2. Global average warming [°C] for the two SRES scenarios A2 and B2 obtained
with the GCMs used in the PRUDENCE project (Christensen et al., 2002)

GCM Reference AT-42 AT-B2

HadAM3H Pope et al. (2000) 3.09 2.28

HadCM3 Gordon et al. (2000) 3.25 2.39

ARPEGE/OPA-SST Gibelin and Déqué (2003) 3.02 2.35

ARPEGE/HadCM3-SST Gibelin and Déqué (2003) 3.07 2.30

ECHAM4/0PYC3 Roeckner et al. (1999) 3.56 2.76
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Fig. 1. Positions of selected regional grids in the regular PRUDENCE grid (0.5° longitude by 0.5° latitude).

storyline (Nakicenovic, 2000). In terms of emissions, an that not all models were run for both scenarios. In the cases

A2 world experiences larger emissions of greenhouse gases where only one integration experiment was completed, this
compared to B2, hence greater global temperature increase generally used the A2 scenario.
is associated with A2 than the B2 world. It should be noted The lower and upper limits of the uniform probability
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distribution function of global temperature change used in
Method I were given by the range of annual global mean
temperatures from the GCM experiments used to drive the
PRUDENCE RCM experiments (Table 2). For comparison,
a second uniform distribution was given by the projected
IPCC range (IPCC, 2001). The first range includes five
GCM experiments based on the A2 and B2 scenarios and is
calculated from the difference between the future (2070—
2099) and the control simulation (1961-1990) (2.28 to
3.56°C). The second range is derived from 35 SRES
scenarios, based on the increase in global annual mean
temperature from 1990 to 2100 as predicted from a number
of GCMs (1.4 to 5.8°C). The latter range does not take into
consideration the uncertainties in the modelling of radiative
forcing (IPCC, 2001). The two ranges of future global
temperature change are not directly comparable as the range
obtained from IPCC experiments gives the increase from
1990 to 2100 rather than the difference between the future
(2070-2099) and the control (1961-1990) period. Hence,
the range given by the IPCC is larger, not only due to the
inclusion of more scenarios and more GCMs but also due
to the way in which the range was computed. For Method
11, the probability distribution function of the 1990 to 2070—
2100 global temperature change is given by a log-normal
approximation to the Wigler and Raper (2001) distribution,
which considers uncertainties in emissions, the climate
sensitivity, the carbon cycle, ocean mixing and aerosol
forcing (Hingray et al., 2007).

Assessing uncertainty of regional
changes

To derive probability distributions for the change in regional
annual surface (1.5 m) temperature [°C] and precipitation
[%] between the control (1961-1990) and the future (2070—
2099) simulation period a probability distribution function
of global annual average temperature increase was combined
with a PDF of change in regional temperature/precipitation
per degree of global temperature increase (Jones, 2000a,b).
The combination of the two probability distribution
functions gives a total estimate of the uncertainties associated
with climate simulations.

The suggested methodology assumes that a linear
relationship exists between change in regional temperature/
precipitation and change in global temperature, which allows
for the creation of a scaling variable, giving the change in
regional temperature/precipitation per degree global
temperature change. Although a perfect linear relationship
between regional variables and global temperature is
unlikely to exist, Huntingford and Cox (2000) and Mitchell
(2003) confirmed that many changes associated with mean
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surface climatology projected by climate models may be
scaled by changes in global mean temperature. Scaling
variables were also used in the UK climate impacts
programme (Hulme et al., 2002) to derive climatologies for
years between the 1990s and the 2070s, when global but
not regional simulations were available. There may however
be cause for concern if, within a case study area, different
emission scenarios, e.g. A2 and B2, exhibit differently signed
scaling ratios; however, this is not the case in any of the
regions used here.

Assuming that the annual regional change in temperature
or precipitation is zero for zero global-mean temperature
increase, the scaling variables (o7 [dimensionless] and 6P
[°C-'] for regional temperature and precipitation
respectively) were estimated using the following
expressions:

oT = ATreg./ATgIob. Q)
where ATregA :TregAfut. _TregAcontr.
and
5P = ((R’eg.fut./R’eg.contr.)_l) )
ATglob.
where AT, is the global average temperature increase

expressed in °C, and T, cacomn® Lreg s L regconr ng‘ A€ the
regional annual average temperature and precipitation for
control and future simulation periods. Scaling variables were
computed for all 19 GCM-RCM experiments (Table 1 and
2) for each of the five SWURVE CSRs (see range in scaling
ratios for each CSR in Table 3).

The scaling variables were used in two different ways to
estimate probability distributions for regional temperature
and precipitation. The methods have varying degrees of
complexity and make different assumptions with respect to
the shape of the probability distribution functions that

Table 3. The range of the regional variable (annual mean surface
temperature and seasonal mean daily precipitation total) per degree
of global temperature change for each case study.

Case study region Local variable per degree of global
temperature increase

Temperature Precipitation

(AT, /AT, ] [%P, /AT, ]

reg glol
Annlow  Ann high  Ann low Ann high

NW England 0.7 1.2 -1.4 5

Rhine basin 1.0 1.7 -3.1 0.7
Iberia 1.2 1.7 -9.7 -3.1
Jura lake 1.0 1.8 -5.5 -0.1
Mauvoisin 1.0 1.8 -5.7 0.4
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describe: (1) the global temperature change and 2) the
scaling variables for regional temperature and precipitation
changes. Descriptions of the methods are provided here,
with examples of the probability distributions for the
regional variables for each of the European CSRs.

METHOD 1

In Jones (2000a,b) two uniform distributions (for global
annual average temperature change and for the scaling
variables) are combined to give a peaked distribution. The
uniform distribution is used to represent the view that current
knowledge does not allow the creation of accurate estimates
ofthe uncertainties surrounding regional and global climate
data. Because the distributions of the uncertainties are
unknown, a uniform distribution, limited by upper and lower
bounds, is probably appropriate.

To estimate the probability distributions for annual
regional surface temperature, 50 000 values were sampled
randomly (assuming a uniform distribution) within the
minimum and maximum values of absolute change in
regional temperature per degree of global annual average
temperature change for each case study area (see limit values
in Table 3). These were then multiplied with 50 000 values
sampled randomly (assuming a uniform distribution) within
the two global ranges to produce probability distributions
for the change in annual regional temperature. The same
procedure was repeated for precipitation but this time
percent change was used as the unit for the regional variable
rather than the absolute difference, as used for the regional
temperature.

METHOD I1

Here, the distribution of each scaling variable is assumed to
be normal. The selection of distribution was based on the
spread of the residuals from the mean value of the 19 GCM-
RCM combinations. This procedure relies on the
assumptions that all available GCM-RCM experiments are
equally skilful and that increased confidence can be given

2: addressing uncertainty in regional climate model data

to scaling values that tend to be similar. To find the variance
parameter for the normal distribution, an unbalanced
Analysis of Variance was applied to the 19 scaling values
derived from the PRUDENCE dataset. Each scaling variable
is assumed to have the following expression:

i=12...,A

j=12,...,B )

yi=u+ta +b, + g {
with 4 the number of ‘emission-scenario GCM’
configurations (4=6 in the present study), B the number of
RCMs in the PRUDENCE ensemble (B=10), z an unknown
constant, a, a deviation related to the particular “emission-
scenario GCM” configuration, b, a deviation associated with
the RCM, and e,a noise term that accounts for the natural
variability of a 30-year mean. The three random variables
on the right-hand side of Eqn. (3) are assumed to have zero
mean and variances U;, sz and O'e2 , respectively.
Assuming that these variables are independent, the variance
05 of y is given by:

6§=0a2+0'§+6: “)

Equation (3) represents a two-way crossed classification
(Searle, 1977). A specific ANOVA framework was
developed by Hingray et al. (2007) to account for the
dependence of O'EZ to the global temperature change A7 and
the correlation between the e, This correlation results from
the strong correlation between annual temperatures (resp.
annual precipitation) from two different RCMs driven by
the same GCM boundaries. The mean scaling ratio m, the
variance components and the correlations between the e,
are estimated as described in Appendix A and Appendix B
of Hingray et al. (2007).

The mean value (x), and a pooled estimate of the total
variance (0'5 ) of the scaling variables are given for each
CSR in Table 4. A mean scaling value for regional
temperature greater than 1 indicates that regional annual
average temperature change is expected to be greater than

Table 4. Mean scaling variable (x) and total variance (&%) for annual regional surface temperature and

precipitation for the SWURVE CSRs.

Regional temperature change per degree global temperature increase

NW England  Rhine

0.89
0.041

1.239
0.061

4 [dimensionless]
0.’ [dimensionless]

Regional precipitation change per degree global temperature increase

NW England  Rhine

0.0109
0.00034

uIec]
Gyz [OC-Z]

-0.0135
0.00023

Iberia Jura lakes Mauvoisin
1.351 1.308 1.331
0.041 0.061 0.055
Iberia Jura lakes Mauvoisin
-0.0671 -0.0229 -0.0257
0.00063 0.00034 0.00039
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the global annual average temperature increase (all regions
except NW England in Table 4). For precipitation, negative
mean scaling ratios indicate decreasing regional
precipitation with increasing global annual average
temperatures (all regions except NW England in Table 4).
The variance of the scaling relationships indicates the spread
of results amongst the RCM experiments. The variance is
particularly large for precipitation; thus, although the mean
scaling ratio is often negative, positive scaling ratios are
also possible.

For each SWURVE CSR, the probability distribution
function of regional change is obtained via 50 000 Monte
Carlo simulations from the log-normal approximation of the
global mean warming distribution derived from Wigley and
Raper (2001) and the probability distribution for the scaling
ratio.

Uncertainty estimates for regional
variables

Probability distributions were constructed for the future
change in annual regional surface (1.5 m) temperature [°C]
and annual precipitation [%] for each of the five CSRs (Figs.
2-4). In total, three sets of probability distributions were
produced: two sets were produced using Method I and one
set using Method II. The two Method I approaches are
henceforth referred to as Method Ia (global temperature
increase in the range from Table 2: 2.28 to 3.56 °C) and Ib
(global temperature increase in the range from IPCC (2001):
1.4 to 5.8 °C) to differentiate between their respective results.

Graphs illustrating the probability distribution for regional
annual temperature and precipitation are displayed as
occurrences in 5% increments of the total range (Figs. 2—

a)

Probability [%]
o

8 10 12 14 16

Regional temperature [deg C]

[—#—NW Eng ——Rhine — Iberia —6—Jura —— Mauvoisin |

12

b)

Probability [%]

12

-90 -80 -70 -60 -50 -40 -30

Regional rainfall [%]

[—#—NW Eng

Rhine —%— Iberia —©— Jura ——Mauvoisin ‘

Fig. 2. Probability distributions for (a) annual regional temperature and (b) precipitation in the SWURVE case study areas. The plots show the
probability of occurrence in 5% increments (see percentiles in Table 5). The markers show the mid-value of the increment and the line is a
visual aid indicating the trend. The ranges of the respective regional components are found in Table 3 and the range of global temperature

increase is 2.28 to 3.56 °C (Table 2).
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a)

Probability [%]
(o2}

Regional temperature [deg C]

——NW Eng

Rhine =%~ Iberia —©— Jura —=— Mauvoisin

b)

Probability [%]

-90 -80 -70 -60 -50 -40 -30

40 50

Regional rainfall [%]

[—#—NW Eng

Rhine —%—Iberia —©— Jura —— Mauvoisin ‘

Fig. 3. Probability distributions for (a) annual regional temperature and (b) precipitation in the SWURVE case study areas. The plots show the
probability of occurrence in 5% increments (see percentiles in Table 5). The markers show the mid-value of the increment and the line is a
visual aid indicating the trend. The ranges of the respective regional components are found in Table 3 and the range of global temperature

increase is 1.4 to 5.8°C (IPCC, 2001).

4). The Ist, 5th, 50th, 95th and 99th percentiles for each
probability distribution are given in Table 5.

REGIONAL TEMPERATURE

The projected changes for annual regional temperature are
similar for all CSRs except for NW England (Figs. 2a, 3a
and 4a). The generally lower and narrower range of the NW
England probability distribution is evident when comparing
the Sth and 95th percentiles of the three methods. For this
region, for Method Ia, Method Ib and Method II, the
percentiles are, respectively: 1.9 and 3.8°C/ 1.5 and 5.7°C
/1.1 and 4.2°C; for the rest of the CSRs the same percentiles
are approximately 2.9 and 5.5°C/ 2.2 and 8.4°C/ 1.8 and
6°C (Table 5). Whilst the distributions using Method Ia and
Method II peak about 2.5°C/2°C for NW England and about

4°C/ 3.5°C for the rest of the CSRs, the distributions using
Method Ib have a flattened top between 1.5 to 4°C for NW
England and about 2 to 6.5°C for the rest of the CSRs. The
flattening of the temperature distributions is a direct result
of combining a large uniform range (the global range) with
a smaller uniform range (the regional range).

In short, in all CSRs, regional temperature is expected to
rise, but less so for NW England. The uncertainty, given by
the probability distributions, is similar for all CSRs with
only NW England showing a somewhat smaller range in
projected change. The mean and variance of the scaling
ratios (Table 4) suggests that the RCMs are in overall
agreement concerning the future change in regional annual
temperatures.
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32

28 @
24

20 1

Probabilities [%]
>

0 2 4 6

FO HON—OO— OO
8 10 12 14 16

Regional temperature [deg C]

—e—NW England Rhine —<—Iberia —©—Jura lakes —— Mauvoisin

b)

Probabilities [%]

-90 -70 -50 -30

LS

-10 10 30 50

Regional rainfall [%]

[——NW England = Rhine —%—Iberia —6—Jura —— Mauvoisin |

Fig. 4. Probability distributions given by Method 11 for (a) regional temperature and (b) regional precipitation in the SWURVE case study
areas. The plots show the probability of occurrence in 5% increments (see percentiles in Table 5). The markers show the mid-value of the
increment and the line is a visual aid indicating the trend. Increments associated with less than 0.01 probability of occurrence are removed
from the plot. PDFs were obtained from 50 000 Monte-Carlo simulations where the scaling ratio was randomly selected from its normal PDF
and where the global temperature increase was randomly selected from the Wigley and Raper PDF (Wigley and Raper, 2001). The mean
scaling ratio and its variance are found for each regional variable in Table 4.

REGIONAL PRECIPITATION

The graphs of probability distributions for annual change
in regional precipitation show larger differences amongst
the CSRs compared to the distributions for the regional
temperature (Figs. 2b, 3b and 4b). The relative order of
change amongst the CSRs is, however, similar across all
methods. The two Swiss areas show almost the same
distributions; with Method Ia and Ib, the distributions
indicate mainly decreased precipitation (5th and 95th
percentiles for la/Ib are, on average: —16.3/~24% and —0.4/
0.5%, Table 5) whilst Method II suggests a somewhat more
positively skewed distribution (the 5th and 95th percentiles
are, on average: —17% and 2%, Table 5). The distribution
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for the Rhine basin is narrower than that for the Swiss CSRs
(probably because it is a much larger region) (the 5th and
95th percentiles for Method Ia/Ib/IT are: —8.8/—12.7/~11%
and 1.5/1.8/3%, Table 5), indicating a smaller reduction in
future rainfall. The NW England differs from the rest in
being the only distribution with a likely positive increase,
particularly so for Method Ia and Ib (the 5th and 95th
percentiles for Method Ia/Ib/II are: —3.2/-3.9/—6% and 14/
20.2/12%, Table 5). The largest decrease in annual rainfall
is evident in the probability distributions for Iberia (the 5th
and 95th percentiles for Method la/Ib/Il are: —29.3/-44/
—34% and —9.6/-8.4/-4%, Table 5).

Hence, most regions, except for NW England, predict a
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Table 5. Probability distributions (1%, 5%, 50", 95" and 99" percentile) for change in annual regional temperature and
precipitation in the SWURVE case study areas between control (1961-1990) and future (2070-2099) simulations.
Probability distributions are calculated using Method I (a: range of global temperature increase provided by the GCMs
in Table 2, b: range of global temperature increase provided by IPCC (2001)), and Method II. The distributions are

based on 50 000 randomly sampled values.

Case study region Temperature [°C]

Precipitation [%]

Pl P5 P50 P95 P99 Pl P5 P50 P95 P99
METHOD IA
NW England 1.7 1.9 2.7 3.8 4.0 -4.1 -3.2 5.0 14.0 16.0
Rhine 2.4 2.7 3.8 53 5.7 -10.0  -8.8 3.4 1.5 2.1
Iberia 2.8 3.1 4.1 5.4 5.7 =322 -293 -18.5 -9.6 -8.2
Jura lakes 2.6 2.8 4.0 5.5 6.0 -18.0 -16.1 -8.0 -1.0 -0.4
Mauvoisin 2.6 2.9 4.1 5.6 6.0 -18.6  -16.5 -7.8 0.2 0.8
METHOD IB
NW England 1.2 1.5 3.3 5.7 6.4 -6.2 -3.9 5.4 20.2 24.9
Rhine 1.6 2.1 4.7 8.1 9.0 -15.4  -127  -3.7 1.8 3.0
Iberia 1.9 2.3 5.1 8.3 9.1 -50.8 -44.0  -21.2 -8.4 -6.1
Jura lakes 1.8 2.2 4.9 8.5 9.5 -28.3 -23.7 8.7 -1.1 -0.4
Mauvoisin 1.8 2.2 5.0 8.6 9.6 -29.1 -24.3 -8.4 0.2 1.1
MEeTHOD [1
NW England 0.8 1.1 2.3 4.2 5.4 -9 -6 3 12 17
Rhine 1.2 1.7 3.2 5.8 7.4 -15 -11 -4 3 6
Iberia 1.5 1.9 3.4 6 7.4 -42 -34 -18 -4 2
Jura lakes 1.3 1.8 3.3 6.1 7.6 =22 -16 -6 2 6
Mauvoisin 1.4 1.8 3.4 6.1 7.7 -24 -18 -7 2 6

general decrease in regional precipitation. The width of the
probability distribution suggests that uncertainty is largest
for Iberia (particularly at the negative end of the
distribution), followed by the two Swiss CSRs and NW
England, with the narrowest distribution being that for the
Rhine basin (the largest region). The relatively large
differences in range between the probability distributions
indicate less relative agreement between models with respect
to change in regional precipitation compared to change in
regional temperature.

Discussion and conclusions

Two methods were applied to five CSRs to estimate
uncertainty associated with RCM data (annual average
surface temperature and precipitation) in the SWURVE
CSRs. The methods are similar in the sense that they
combine a probability distribution function for change in
the regional variable per degree of global temperature
change with a probability distribution function for global
temperature increase to derive a probability distribution of

the regional variable. The combination of probability
distribution functions produces a probability distribution that
incorporates (i) uncertainty due to spread in global
temperature increase amongst different GCMs, (ii)
uncertainty due to different RCM parameterisations and (iii)
uncertainty in future emissions. Method II additionally
accounts for a random natural variability component.
Communal assumptions on which both methods rely are
(1) the existence of a linear relationship between global
temperature increase and regional changes in temperature
and precipitation and (2) that global warming and scaling
variables can be described by two independent random
variables. These are strong assumptions and more GCM-
RCM experiments are required to investigate their validity.
Although the methods share these basic assumptions, there
are also some fundamental differences between them.
While Method I assumes uniformly distributed probability
distribution functions, Method II combines a normal (for
the scaling variable) with a log normal (for the global
temperature change) distribution to produce probability
distributions for the regional variables. The choice of
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distribution reflects two different views of the GCM and
RCM data. While a shaped distribution assumes that some
outcomes are more likely than others, the uniform
distribution states that each outcome has the same likelihood.
In Jones (2000 a,b), the choice of a uniform distribution
followed recommendations by the Climate Impact Group
of CSIRO Atmospheric Research (Jones, 2000a). To avoid
central tendencies (which looks too much like a prediction)
and because of a lack of knowledge of the probability
distribution function of uncertainties, CSIRO recommends
the use of an upper and lower limit of regional projections
in impact studies. Similar recommendations are given by
Nakicenovic (2000) who suggests that the broad range of
alternatives presented by future scenarios cannot be
represented by a single or even by a set of scenarios.

In Method II, however, non-uniform distributions were
used to estimate the probability distribution for the regional
variables. Unlike Method I, the underlying assumption for
Method II is that the likelihood of outcomes can be derived
from the relative agreement between outcomes of available
climate experiments; hence, it is possible to estimate a non-
uniform probability distribution function for regional change
per degree of global temperature increase from RCM and
GCM data. This approach is in accord with that of Giorgi
and Mearns (2002), who suggest that, using available GCM
data, it is possible to assess the reliability of the projected
regional climate. Giorgi and Mearns (2002) used two
reliability criteria: the performance of the model in
representing present-day climate and the convergence of
the simulated changes across models. This view is based on
the assumption that increased confidence in simulated
regional climate changes is justified if the models are in
agreement, particularly if it is maintained under different
forcing scenarios (Giorgi et al., 2001).

It is not possible to say whether one method is more correct
than the other; Method I is more conservative and is
sometimes difficult to assess when the distributions exhibit
aflat top. It is, however, less influenced by central tendencies
amongst the models as it treats all outcomes within the
uniform range as equally plausible. Method II, on the other
hand, produces probability distributions with clear
indications of ranges with increased likelihoods. Although
the distributions of Method Il may be easier to implement
in impact studies, it is highly conditioned on the shape and
parameters of the distribution used to describe the scaling
variables derived from the available GCM-RCM
experiments.

It should be noted that the probability distributions
developed here are based on a relatively small number of
GCMs; this is likely to cause an underestimation of the
uncertainty, as the driving model is generally assumed to
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contribute the largest portion of the uncertainty (Jenkins
and Lowe, 2003). Furthermore, only the two SRES scenarios
representing the medium to high and the medium to low
scenarios were available. This suggests that uncertainty
could be larger if experiments with other more extreme (but
equally plausible) scenarios had been available. Finally, even
if a broad range of scenarios were used, the uncertainty
would probably still be underestimated because GCMs are
generally designed as ‘best guess’ representations of the
system, giving a clustering of model results towards the
centre of the range of physically plausible behaviour (Allen
and Ingram, 2002). Hence, the spread of response in climate
models is not a direct measure of uncertainty in climate
forecasts (Allen and Ingram, 2002). Nevertheless, even if
the probability distributions of regional change in
temperature and precipitation are likely to be conservative,
they provide some guidance on the spread in response that
may be expected from a future climate. While both methods
agree on how temperature and precipitation in the CSRs
are likely to change in a future climate, they differ slightly
in terms of the magnitude of the projected change, where
somewhat larger differences amongst the methods are shown
for precipitation rather than temperature (Table 5).

For temperature, all methods predict increases for all
CSRs, although these are somewhat less for NW England.
The smallest ranges between the 5th and the 95th percentile
are given by Method Ia, which reflects the smaller range of
the probability distribution function of global temperature
increase compared to the other two approaches. Overall,
larger regional temperature changes are predicted using
Method Ib rather than Method II, because of the use of
uniform distributions. As lesser weight is given to RCM-
GCM combinations that project extreme regional changes
in Method II rather than in Method I, differences between
the methods are greater at higher percentiles.

For precipitation, the probability distributions range from
negative to positive percent change, indicating that regional
increases or decreases are possible in all CSRs. However,
because most distributions (except NW England) show
predominantly negative percent changes, decreases are more
likely than increases, particularly for Iberia with a median
value of —18.5% (Method Ia),~21.2% (Method Ib) and
—18% (Method II) (Table 5).

For all methods, the probability distributions indicate that
the range of uncertainty with respect to annual regional
temperature is smallest for the NW England CSR (the other
CSRs have similar ranges). For annual regional precipitation
the variation is greater but the smallest range is the Rhine
basin (the largest region) followed by the two Swiss CSRs,
NW England and Iberia.
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