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Abstract

This paper discusses basic issues in hydrological modelling and flood forecasting, ranging from the roles of physically-based and data-
driven rainfall runoff models, to the concepts of predictive uncertainty and equifinality and their implications. The evolution of a wide range
of hydrological catchment models employing the physically meaningful and data-driven approaches introduces the need for objective test
beds or benchmarks to assess the merits of the different models in reconciling the alternative approaches. In addition, the paper analyses
uncertainty in models and predictions by clarifying the meaning of uncertainty, by distinguishing between parameter and predictive uncertainty
and by demonstrating how the concept of equifinality must be addressed by appropriate and robust inference approaches. Finally, the
importance of predictive uncertainty in the decision making process is highlighted together with possible approaches aimed at overcoming

the diffidence of end-users.
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Introduction

The history of hydrological modelling ranges from the
Rational Method (Mulvany, 1850) to recent distributed
physically-meaningful models (Abbott ef al., 1986a,b;
Wigmosta et al., 1994; Refsgaard and Storm, 1995; Ewen
et al, 2000; Kouwen, 2000; De Roo ef al., 1998, 2000; Liu
and Todini, 2002; Vivoni, 2003). Over the same period,
starting from the simple Unit Hydrograph (Sherman, 1932),
input-output models, now called data-driven models, have
evolved into ANN models (Garcia-Bartual, 2002) and Data
Based Mechanistic (DBM) models (Young, 2001, 2002).
From the wide range of models available, the choice of the
one most appropriate for any specific task is difficult,
particularly as each modeller tends to promote the merits of
his/her own approach. Moreover, apart from the
intercomparison of conceptual models conducted in the
seventies, (WMO, 1975), no objective comparisons using
benchmarks, or test beds using standard data sets, have been
proposed or effected.

Hydrological models serve many purposes, one of the
most important applications being flood forecasting in which
uncertainty plays a major role. Unfortunately, the
implications of using uncertainty in the decision-making
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process and even the concept of uncertainty seem to deter
hydrologists from addressing the problem. Indeed, many
hydrologists do not appear to appreciate the need to quantify
predictive uncertainty and tend to describe the uncertainty
implicit in the model rather than in possible future values
of the quantity to be predicted or forecast, conditional upon
the output of the model (Krzysztofowicz, 1999). To this
confusion is added a lack of appreciation of the difference
between parameter uncertainty (and the possible need to
estimate the parameter values) and predictive uncertainty.
Moreover, the introduction of the ‘equifinality’ principle
(Beven and Binley, 1992) has not served to clarify this
distinction.. Hence, in delineating possible future lines of
research, the uncertainty problem must be viewed in the
correct perspective.

After a brief history of the development of hydrological
models, this paper proposes a reconciliation of the different
approaches, by developing objective benchmarks or test-
beds relevant to the many diverse potential applications.
The problem of uncertainty in hydrological models is
addressed as well as possible approaches to describing a
real-world case study.



Brief history of hydrological models

FROM EMPIRICAL TO PHYSICALLY MEANINGFUL
MODELS

The Rational Method proposed by Mulvany (1850) is a clear
exposition of the concept of time of concentration and its
relation to the maximum runoff; it estimates peak flow but
not flood volume and is physically meaningful only in small
impervious catchments in which flow is effectively a purely
kinematic process. Applications of the method to the design
of sewers appeared in the literature from the end of the 19
century (Kuichling, 1889; Lloyd-Davies, 1906).

The concept of the unit hydrograph (UH) (Sherman, 1932)
was based on the principle of superposition of effects; it
enabled the complete flood hydrograph to be predicted from
rainfall sampled at constant intervals. With the introduction
of systems theory, the unit hydrograph was then interpreted
as the response of a linear, causative, dynamic stationary
system and two forms of the unit hydrograph were then
considered. The first one, the continuous time impulse
response of a linear system, is known in hydrology as the
instantaneous unit hydrograph (IUH) and the second one,
the response to a time discretised input, is known as the
finite period unit hydrograph (TUH) (O’Donnell, 1966).
Indeed, the introduction of the IUH can be viewed as the
starting point that led to the separation of physically
meaningful and data driven models. If the ‘shape’ of the
IUH is defined a priori by the modeller as the integral
solution, a set of linear or linearised differential equations
and the parameter values are estimated not from the input-
output historical data but computed as a function of the
physical characteristic quantities of the phenomenon, then
the IUH is a physical interpretation of the phenomenon.
Examples can be found easily in flood routing models. For
instance, Kalinin and Milyukov (1957) demonstrated that,
by linearising the unsteady flow equations, the integral
solution is a Gamma density function, namely a Nash
cascade (1958, 1960) with parameters » and &, where the
parameter 7 is now extended to the domain of real numbers,
which can be expressed in terms of the Froude number, the
bed slope, the velocity, etc. (Dooge, 1973). Furthermore,
Hayami (1951) showed how to derive an IUH from the linear
diffusion equation, while Todini and Bossi (1986) derived
a TUH from the linear parabolic approximation of the
unsteady flow equations, with the two parameters, celerity
and diffusivity, which are recomputed at each integration
time interval in terms of the hydrodynamic characteristics
of the reach (discharge, the friction slope, etc.) .

However, if the shape of the [UH/TUH cannot be defined
a priori on physical grounds, both the shape and the relevant
parameters must be derived from the measurements, so
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clearly, the result is a data-driven model (Natale and Todini,
1976a,b).

As well as difficulties of physical interpretation, the
extension of the IUH/TUH approach to larger, not
necessarily impervious, catchments presented problems
requiring subjective choices, such as:

® separation of storm runoff from base flow;

e the determination of ‘effective’ rainfall, namely that
portion of the rainfall that is not lost through
replenishing soil moisture etc;

e the actual derivation of the [IUH/TUH shape and/or of
the IUH/TUH parameters from the measurements
available.

To overcome these problems, research into non-linear or
threshold-type systems led to representations based on:

(i) Volterra integrals of an order greater than the first,

(i) orthogonal polynomials (Amorocho and Orlob, 1961)
or

(iii) piecewise linearisations (Todini and Wallis, 1977,
Todini, 2002b), reproducing the consequences of
threshold effects introduced by soil saturation.

To achieve a better physical interpretation of catchment
response, the 1960s saw the development of models in
which individual components in the hydrological cycle were
represented by interconnected conceptual elements; each
ofthese represented, in the hydrological model, the response
of a particular subsystem: Dawdy and O’Donnell, 1965,
Crawford and Linsley, 1966 — Stanford Watershed 1V;
Burnash er al., 1973 — Sacramento; Rockwood, 1964 —
SSARR; Sugawara, 1967, 1995 —Tank, etc. All these models
represented in different ways the responses of, and the
interconnections between, the various sub-systems; at the
time, they were regarded as the very best that could be
achieved with the then current data and computational
resources. At that time the modellers strongly believed that
the parameters of their models, such as the storage
coefficients, roughness coefficients or the different
thresholds, were physical entities which could be inferred
from the physiographic characteristics of the catchments.
Due to the need to obviate a time-consuming trial and error
approach in parameterising these models, model parameter
optimisation was introduced (Dawdy and O’Donnell, 1965).
As a result, when the estimates were made on the basis of
objective functions to be minimised (for example, the sum
of squares criterion), the resulting parameter values were
generally unrealistic, perhaps because they incorporated
errors of measurements as well as those of the model itself.
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Also, the conditions of observability (the need for sufficient
information content in the data to determine the parameter
values) were not always guaranteed, particularly for multiple
input—output hydrological models (Gupta and Sorooshian,
1983; Sorooshian and Gupta, 1983; Singh and Woolhiser,
2002). In essence, these models became data-driven.

At the end of the 1970s, a new type of lumped models
was introduced, based on the idea that the rainfall runoff
process is mainly dominated by the dynamics of saturated
areas, which can be related to the soil moisture storage using
a simple monotone function, thus leading to the variable
contributing area models. These models generally employed
the Dunne assumption that all precipitation enters the soil
and that surface runoff originates by saturation of the upper
soil layer. These variable contributing area models, the
Xinanjiang (Zhao, 1977) and the Probability Distribution
(PDM) (Moore and Clarke, 1981) were characterised by
few significant parameters: although expressing the physical
concepts of continuity of mass they were still not entirely
meaningful in their dynamics. Thereafter, Juemou et al.
(1987) combined the Xinanjiang soil moisture distribution
function with the Constrained Linear Systems (CLS) model
(Natale and Todini, 1976a,b; Todini and Wallis, 1977; Todini,
2002b) into the Synthesized Constrained Linear Systems
model (SCLS). Later, by modifying the Xinanjiang soil
moisture distribution function, Todini (1996, 2002a)
developed the ARNO model, from which Wood et al. (1992)
derived the VIC model by increasing the number of soil
layers (Liang et al., 1994, 1996a,b). The core of all these
models is a two parameter distribution function curve
representing the relation between the total volume of water
stored in the soil and the extension of the saturated areas.
Unfortunately, the parameterisation of this curve, as well as
of the other processes represented (drainage, percolation,
groundwater flow, etc), was based on empirical parameters
to be estimated from the data. Beven and Kirkby (1979)
originated a more physically-meaningful distribution
function model, TOPMODEL, based on the distribution
function of a topographic index. This assumes that the
accumulation of soil moisture can be approximated by
successive steady states of the water table originating in the
upper soil layer. They derived a new relation between the
volume of water stored in the soil and the extent of saturated
areas (the topographic index distribution function) on the
basis of physically-meaningful parameters. Unfortunately
this proved to be true only for very small hill-slope
catchments represented with extremely fine meshes
(Franchini ef al., 1996).

In a further step towards a physical representation of the
rainfall-runoff process, Wooding (1965a,b, 1966), and
Woolhiser and Liggett (1967) used kinematic models for
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the study of small urban basins, while Freeze and Harlan
(1969) proposed, albeit only as a future project, the creation
of a mathematical model based on distributed physical
knowledge of surface and subsurface phenomena. By
numerical integration of the coupled sub-systems of partial
differential equations describing surface flow and flow in
the unsaturated and saturated zones, and by matching the
solutions of each sub-system with the boundary conditions
of another, catchment scale predictions could be produced.
This concept was developed into SHE (Systéme
Hydrologique Européen), by the Danish Hydraulic Institute
(DK), the Institute of Hydrology at Wallingford (UK) and
SOGREAH (France) (Abbott e al., 1986a,b). SHE has since
evolved into a robust physically-based model, available as
MIKE-SHE (Refsgaard and Storm, 1995) and SHETRAN
(Ewen et al., 2000). The limitation to its practical use is the
large requirement for data and computational time which
restrict its use to small, extensively instrumented catchments.

More recently, the wider availability of distributed
information, ranging from soil types and land use to radar
rainfall, have facilitated the production of simplified
physically-meaningful distributed hydrological models.
These models, based on simplifying assumptions, with
simpler and more parsimonious parameterisations than those
employed in MIKE-SHE and SHETRAN, can be applied
successfully to flood forecasting. Such models are:
WATFLOOD (Kouwen, 2000), DHSVM (Wigmosta et al.,
1994), TOPKAPI (Todini, 1995; Todini and Ciarapica,
2002; Liu and Todini, 2002), FEWS NET Stream flow
Model (Verdin and Klaver, 2002), LISFLOOD (De Roo et
al., 1998, 2000) and tRIBS (Vivoni, 2003).

DATA-DRIVEN MODELS

The Sherman (1932) UH, the starting point for data-driven
models, was expressed in discrete form by Box and Jenkins
(1970), who showed the link between the Transfer Function
models and the Auto-Regressive with Exogenous variables
models (ARX). Following this idea, Todini (1978) used the
UH in the form of an Auto-Regressive Moving-Average with
Exogenous variables models (ARMAX) for the reduction
of model parameters in a Kalman Filter based real-time flood
forecasting system. This Box and Jenkins type modelling
introduced a loss of ‘physicality’ in the models, for instance
when using the integration to eliminate cyclo-stationarities
in data, with the loss of the possibility of preserving the
mass balance or Intervention Analysis models, in favour of
more mathematically oriented approaches. Later, system
engineering approaches, including various types of input—
output techniques, were applied in developing better
performing and more parsimonious models to represent the



hydrological behaviour of a catchment, although with a
larger loss of physical interpretation. This loss of physicality
increased further with Artificial Neural Network (ANN)
approaches, which can be viewed as non-linear analogues
of'the original linear transfer function models; unfortunately,
forecasts may be poor when the events are larger than those
in the training set (Cameron et al., 2002, Gaume and Gosset,
2003). Although Dawson and Wilby (2001) and Shamseldin
(1997) review applications of ANN to rainfall-runoff
modelling, few operational forecasting systems are presently
based on ANN (Garcia-Bartual, 2002); as already noted,
outside the range of the training set, the ANN may be less
robust and may sometimes diverge (Gaume and Gosset,
2003). More recently, a Data Based Mechanistic (DBM)
modelling approach, introduced by Young (2002), derived
the model structure and the parameter values from the input
and output data using system engineering identification and
parameter estimation techniques that attempted to go beyond
the black-box concept by selecting those (not necessarily
linear) model structures that are considered physically
meaningful (Young, 2001, 2002). Although the DBM
modelling approach recognises the importance of the
physical coherence of the identified model structure, it
derives it from the observations, thus disregarding de facto
the results of at least 50 years of research efforts aimed at
specifying the physical hydrological mechanisms that
generate floods. This contrasts with the Bayes principle
which would combine the observations with all possible a
priori knowledge on the hydrological processes and possibly
on the parameter values to obtain less uncertain a posteriori
forecasts.

THE NEED TO RECONCILE THE TWO APPROACHES

Unfortunately, hydrological modellers emphasise the merits
of their own approaches while disregarding those of others.
In particular, physical process-oriented modellers have no
confidence in the capabilities of data-driven models’ outputs
with their heavy dependence on training sets, while the more
system engineering-oriented modellers claim that data-
driven models produce better forecasts than complex
physically-based models. Implicit in this controversy is the
basic question: should 50 years of research by scientists
seeking better representations of hydrological processes be
jettisoned?

In this new century, there is the need, for the sake of
hydrology as a science, to reconcile the two streams of
thought by (a) combining the advantages of both approaches
(Klemes, 1983) and (b) designing extensive benchmarks or
test beds, to determine the role, validity and fields of
application of the different models.

Hydrological catchment modelling: past, present and future

Krzysztofowicz (1999) has already proposed estimating
the predictive probability by combining a generic model of
unknown nature — but presumably physically-meaningful
— with an autoregressive model by means of a Bayesian
approach. Recent experiments have shown that the resulting
Bayesian processor works well over a short forecasting
horizon when the autoregressive model output is highly
correlated with the observations, but it decays rapidly as
soon as the required length of the forecasting horizon
becomes larger; moreover, when dealing with water stages
or with discharges, the autoregessive model is successful
in the recession but less so in the rising limb of the
hydrograph. Therefore, to reconcile the different approaches,
as an improved alternative to the Krzysztofowicz approach,
the Bayesian processor could be used to combine a
physically-based to a data driven model. This approach
would in fact benefit from the robustness of the former and
the adaptability of the latter.

At the same time, appropriate benchmarks or test beds
might be made freely available for modellers to assess,
objectively, the qualities of their models as well as their
limitations and the possible fields of application. The task
is not simple but, once problems have been characterised,
along with high quality data sets from appropriate
catchments, a set of test cases, reflecting the various fields
of application, could be devised. Thus, models could then
be tested on the benchmarks or test beds, and quality
assurance certificates could be issued.

Uncertainty in models and parameters

Uncertainty plays an increasing role in modelling and
forecasting but has yet to reach a consensus among
hydrologists, partly due to the statistical complexity and also
because end users have no clear ideas on the use of the
relevant information.

To provide a logical introduction to the discussion below,
the reader is provided with a simple representation of
certainty and uncertainty. For a line from —o0 to + oo, full
knowledge or certainty can be represented by a Dirac delta
over a specific real number. For instance the certainty that
the value of a given quantity x is 3, can be represented by
O,_5 - At the same time, total uncertainty can be represented
mathematically by a uniform distribution between — oo and
+ oo . Between these limits, partial knowledge will always
be represented by a probability density, which will tend to
be more and more peaky, as a function of the increasing
knowledge level, around the imperfectly known quantity
(here x = 3) and, in the limit, when all the necessary
information is acquired, it may converge onto the Dirac delta,
for instance 0, _;.
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Therefore, either a quantity is known perfectly and
probabilistic concepts need not be invoked, or a quantity is
not known perfectly and the most comprehensive
information available is either its probability density function
(pdf) or its integral, the Probability Distribution Function
(PDF). This point must be clear when dealing with
uncertainty in mathematical models based on a number of
model parameters. In this case, either the model parameter
values are known perfectly, in the sense that they do not
need to be estimated because they are known on physical
grounds (or it is believed so), or alternatively, if we are not
sure and they are uncertain, we must not estimate ONLY
their expected values but rather try to obtain their entire
pdf, because the pdf'is the information necessary for dealing
with uncertain quantities.

When dealing with uncertainty, the issues to be clarified
are:

1. How is predictive uncertainty defined and how is it
derived?

2. Can the conditional predictive uncertainty be used
instead of the unconditional?

3. What is the implication of using model uncertainty, as
in the ‘ensemble forecasts’ instead of predictive
uncertainty?

4. What is the implication of focussing on parameter
estimation and estimation of their uncertainty, as
opposed to prediction and the estimation of predictive
uncertainty?

5. Should formal Bayesian inference be used or less formal
likelihood-based approaches such as GLUE?

6. What is the benefit of using predictive probability in
operational decision making?

PREDICTIVE UNCERTAINTY

In clarifying to hydrologists the real meaning of predictive
uncertainty, Krzysztofowicz (1999), points out that
“Rational decision making (for flood warning, navigation,
or reservoir systems) requires that the total uncertainty about
a hydrologic predictand (such as river stage, discharge, or
runoff volume) be quantified in terms of a probability
distribution, conditional on all available information and
knowledge.” and that “Hydrologic knowledge is typically
embodied in a deterministic catchment model”.

These statements underline two aspects usually not clearly
understood by hydrologists. The first is that the objective
of forecasting is to describe the uncertainty of actual future
values of water stage, discharge, runoff volume, etc. rather
than the uncertainty of predictions generated by the
hydrological forecasting models. The second is that this
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uncertainty, generally expressed in terms of a probability
density (or probability distribution) function, is ‘conditional’
upon the forecasting model prediction, which is now seen
as the available, although uncertain, knowledge of the future.
In other words, the forecasting model prediction is now a
function in the decision making process and not the provider
of deterministic (and therefore ‘certain’) future levels, flows,
etc.

To clarify these aspects, let us introduce the concept of
the joint probability distribution of the real quantity of
interest y, the predictand (namely the discharge, the water
level in a specific cross section, etc.), and the model forecast
Y. Unless the model is so exceptionally accurate, thus
perfectly matching the observations, a scatter will always
be observed in the y —y plane as in Fig. 1. This scatter is a
representation of the joint sample frequency of y and ¥
that can be used to estimate the joint probability density.

For any given model, the model forecast y,, where ¢ is
time, is a function of a specific value g of the parameter
set and of the input forcing X; (the covariate); thus the joint
probability density can be expressed as in Eqn.(1):

Fly,. (9. 9) (1

which, for the sake of clarity, is written in a more explicit
way than in the classical statistical notation, by explicitly
writing the model output ¥, conditional on the covariate
and the parameters.

y A
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Fig. 1. Joint y —§ sample frequency from which a joint probability
density can be estimated. The conditional density of y givenis then
obtained by cutting the joint density for the given a value of y,
namelyy,, and re-normalising it as for Eqn. (2).



If there is no scatter and Y, = )A/t Vt, then and only then
can Y, be used as a forecast of Y,. In all the other, more
generally occurring, cases where there is inherent
uncertainty, the conditional probability of Yy, given y, must
be derived in order to predict Y, . This is easily done by
cutting for a given Y, the previously mentioned joint
probability density (Fig. 1) and renormalising it, which can
be formalised as:

£y, 5. ) - - (5. 9)

9
If (yti(yt‘xt 13))dy 2)
0

It is important that the reader understands that the
conditional uncertainty given in Eqn. (2) expresses the
predictive uncertainty of a ‘given’ model under a ‘given’
input forcing and a ‘given’ set of parameter values. This
has nothing to do with the uncertainty induced by the model
choice, and/or by the parameter values and/or by the input
and output measurement errors. If it is believed that these
additional uncertainties may strongly affect the forecast and
its uncertainty, then they have to be assessed and
marginalised out. Following the Bayesian approach, all the
previously mentioned additional uncertainty (namely model,
parameters and measurements) is concentrated in a number
of ‘dummy’ parameters, the uncertainty of which is
described via a posterior probability density and successively
marginalised out.

In the notation in Mantovan and Todini (2006), a formal
definition of such predictive uncertainty is represented by:

Yo, Xo) = [F(yifx.9) g9, X,)dg 3)

(]

This can also be written in a more explicit way, as:

POl Yo X0 )= [5Gl 9) ol8lY,. X,) ds
° )

where the predictand Y, is explicitly written conditionally
upon the model output ¥,, which is in turn conditional on
the covariate and the parameters.

In Eqns. (3) and (4):

f(yt|x’[’Yn’Xn) or

(y, (9:[x..Y,. X,))is the probability density of the
predictand conditional upon the historical observations
and the covariate after marginalising the uncertainty due
to the parameters.

Y, is the set of historical predictand observations (for
instance water levels, discharges, etc.) and # is the record
length;
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X, is the set of historical covariates (for instance rainfall,

upstream inflows, etc.)

Y, is the predictand value of interest

X, is the corresponding value of the covariate

9 s a given parameter vector

® is the ensemble of all possible parameter realisations

f(y, F(t .9) o

f Eyt Vil % :9)5 is the probability density of the predictand
value of interest conditional upon the covariate and a
generic set of parameters 4

g(&‘Yn, Xn) is the posterior density of parameters given
the historical observations

n

Equation (4) shows that, when all the different (model,
parameters and measurements) uncertainties are account for,
the predictive uncertainty is obtained by marginalising our
dummy parameters effect from the conditional probability
density expressed by Eqn. (2). Therefore, the posterior
probability density for the parameter vector 9, namely
g(S‘Yn,Xn), can be derived by means of a Bayesian
inferential process (see Mantovan and Todini, 2006) and
plays an essential role in the derivation of the predictive
uncertainty. The Bayesian inference process allows this
posterior probability density to be derived from the historical
observations Y , X , starting from a prior density expressing
our subjective knowledge about the parameters. The
posterior density is used to marginalise out the conditionality
on the parameters; this involves integrating over ®, the entire
domain of existence of the parameters, its product with the
conditional probability density function f yt\()?t\xt,g) of
the predictand y, conditioned on the covariate x, and the
parameter vector ¢ that identifies the specific model.
Equation (1) is then the basis for deriving the predictive
probability density for the #* observation, and can be used
to describe the predictive uncertainty both in ‘hindcast’
mode, when ¢ < n, and in ‘forecast’ mode for > n .

The predictive uncertainty expressed by Eqn. (4) is
unconditional on the parameters, since parameter uncertainty
has been integrated out. This means that, following Eqn.
(4), to estimate the most likely outcome (the expected value
of the predictand) one has to take into account and use all
possible model predictions (namely one per parameter vector
realisation) and not only the one relevant to the most likely
parameter values, and all the predictions have then to be
averaged using the derived posterior probability function
to marginalise out all the uncertainty which is now
encapsulated in the model parameters (De Finetti, 1975).

Therefore, in dealing with the derivation of the
unconditional predictive probability, which is one of the
main scopes of predictive modelling (and in particular of
hydrological modelling), the estimation of the parameter
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values is not the main goal, since the full predictive
uncertainty information about the parameters will be
incorporated in the derived posterior probability density of
the parameters, given the observations.

Hence, the essential steps in evaluating the predictive
uncertainty using a Bayesian inferential approach are to:

a) define a subjective prior density for the parameters;

b) assume an appropriate likelihood for the parameters,
namely a probability density of the observations given
the parameters coherent with the Bayes theorem
(Mantovan and Todini, 2006);

c) derive a pdf for the parameters from the observations
(the posterior density);

d) compute the probability density of the predictand
conditional on the parameters; and

e) marginalise the parameter uncertainty by integrating,
over the parameter space, the derived parameters
posterior pdf times the probability density of the
predictand conditional upon the parameters.

The above explanation has addressed Issue 1; Issue 2 is
now addressed. When dealing with modelling and
prediction, it is common practice to estimate a ‘best set’ of
parameter values to make predictions and forecasts
(Sorooshian and Gupta, 1983; Thiemann et al., 2001; Vrugt
et al.,2003). In this case the estimated predictive uncertainty

1000 -
(1 2

a00 -

600

is referred to as ‘conditional upon the parameters’ and can
be expressed as:

2
where:

f (yt‘(yt‘xt ’Yn’ Xn)): f(yt
1§ represents the given parameter values which can be
estimated as expected values, as maximum likelihood (ML)
estimates, as modal values, as trial and error estimates, etc.
or just simply assigned on the basis of physical
considerations.

It should be noted that, unless the relation between the
parameters and the predictand is linear, the conditional
probability density derived from Eqn. (5) will not coincide
with that given by Eqn. (4). Therefore, this approach may
lead to less robust predictions and uncertainty estimates and
its use should be justified either by a need for less
computationally demanding approaches, such as in the case
of real-time flood forecasting (as in Krzysztofowicz, 1999),
or by proving that the distortion generated by disregarding
the parameter uncertainty (which may result from a relatively
small variability of the parameter values or by weak non-
linear structures in the hydrological model) does not
seriously affect the predictive probabilities. Following the
example in Liu ef al. (2005), Fig. 2 shows how in the case
of the River Xixian, the difference between the unconditional
predictive probability distribution function, computed by

.90, %)
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o o o
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Q
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Q

Fig. 2. Cumulative predictive probabilities estimated at various points in time. The solid line represent the unconditional (Eqn. (4)) while the
dashed line represents the conditional (Eqn. (5)).
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marginalising the 50 000 distributions obtained per each set
of parameters (solid line) does not differ too much from the
conditional (dashed line) obtained using the maximum
likelihood parameter value estimates. This may happen
either when the forecast is linearly or quasi-linearly related
to the parameters, or when the forecast is relatively
insensitive to the parameter variation around the estimated
value, or, alternatively, the variance of the parameters is
small. Therefore, this second and less formal approach may
be acceptable in certain circumstances.

Issue 3 is now addressed which relates to a tendency
among hydrologists and meteorologists to confuse predictive
uncertainty with model uncertainty (Stephenson et al.,
2005). Model uncertainty is either expressed in the form of
an ensemble of forecasts by varying model parameters as
well as the initial and boundary conditions or by mimicking
the predictive probability estimation, using an equation
similar to Eqn. (6):

f(yt‘xl’Yﬂ’Xn)ég(lg‘Yn’Xn) (6)

Clearly the density of Eqn. (6) differs from that represented
by Eqns. (4) and (5) since it does not include the conditional
density of the predictand, given the model forecast, as
expressed by Eqn. (2) and therefore has nothing to do with
the definition of predictive probability.

Although the use of ‘ensemble forecasts’ to represent the
predictive uncertainty has been increasingly proposed by
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meteorologists, it is not difficult to show, particularly when
the members of the ensemble are used to produce flood
forecasts, that very rarely will the measured value of the
predictand lie between the 0.05 and the 0.95 probability
bounds derived from the ensemble. Figure 3 compares the
observed flow (thick solid line) in the Po river in Italy at the
gauging station of Ponte Becca (~35 000 km?) with the
modelled one using the actually measured rain over the
catchment (dashed line) and the forecasts obtained using
all the ensemble members (thin lines). Both the observed
flows and the ones modelled using the measured rainfall
are most of the time completely outside the uncertainty band
described by the ensemble members.

As previously mentioned, many hydrologists also make
the mistake of not including the conditional probability
expressed by Eqn. (2) in the computation of the predictive
uncertainty. This confusion also occurs in many GLUE
papers where the predictive probability is defined as the
cumulative probability deriving from Eqn. (6) instead of
from Eqn. (4). To clarify this point, a few lines of the Beven
and Freer (2001) paper are reproduced here.

“Given a large enough sample of Monte Carlo simulations,
the range of likelihood weighted predictions may be
evaluated to obtain prediction quantiles at any time step.
This is most easily done if the likelihood values are
renormalized such as zi: L[I\/l (o, )] =1, where M(®,) now
indicates the ith behavioural Monte Carlo sample, so that
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Fig. 3. Up to 10 days flow forecasts in the Po river in Italy at the gauging station of Ponte Becca (~35 000 km?). Observed flow (thick solid
line); modelled flow using observed rainfall (dashed line); forecasts obtained using all the ensemble members (thin lines).
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at any time step t
Pz, <2)=37" Lm(®,)Z, <2 ™

where Zt,i is the value of variable z at time ¢ by model
M(®,).”

Noting that, in the Beven and Freer (2001) paper, the
notations Zt , Z are equivalent to Y, , )7t used in the
present paper, it is not difficult to understand that in GLUE
the quantiles essentially relate to the ‘model’” predicted
variable Z,, not to the possible true value Z, conditional
on the predicted value Z, as a correct definition of predictive
probability (Krzysztofowicz, 1999; Mantovan and Todini,
2006) implies, namely P{Z, < 4ZAtj\./’The reason for this
definition is that decisions must be taken on the basis of
what will possibly happen, not on what the model is
predicting: the model is not the reality, it is only a tool to
reduce uncertainty on future outcomes, by conditioning the
predictand uncertainty on the model forecast. Therefore, in
the rest of this paper the predictive probability used will be
that given by Eqn. (4).

EQUIFINALITY IS INEQUIFINALITY

Beven and Binley (1992) introduced the concept that
alternative models (generally the same hydrological model
with different values of the parameters) may have the same
predictive value, which was subsequently formalised as
‘equifinality’. The equifinality principle reflects, up to a
certain point, the concepts expressed above where a
distinction was made between a prediction based on a unique
set of parameters, and that derived by assuming a prior range
within which the parameters may vary and deriving the
posterior parameter density from the observations. In
principle, when dealing with non-linear models, the typical
hydrological modelling with fixed parameter values may
lead to large predictive biases and to an incorrect evaluation
of the predictive uncertainty. If uncertain parameters are
assumed in accounting for the presence of uncertainties,
then, after expressing Eqn. (4) in discrete form, an ensemble
of model predictions (one for each parameter vector
realisation) must be averaged with the derived posterior
parameter probability mass (the marginalisation) which will
reflect the knowledge gained from the observations (the
Bayesian learning process). Therefore, the objective of any
Bayesian inference process is to obtain peakier posterior
parameter densities from the observations, to reach
‘inequifinality’, namely that some models (linked to some
of the parameter vector values) and their predictions are
more likely than others (Mantovan and Todini, 2006).

476

The GLUE approach proposed by Beven and Binley
(1992) uses Eqn. (7) rather than Eqn. (4), resulting in
extremely ‘flat’ posterior probability distributions and
unrealistically wide predictive uncertainties; by contrast, the
application of Bayesian inference leads to peakier posterior
densities and smaller predictive uncertainties.

Although the Bayesian statisticians would prefer to start
with informative priors on the parameters (namely by using
densities with a mode expressing prior knowledge), the
hypothesis of complete ‘equifinality’ may be accepted at
the outset of the Bayesian inference process, thus expressing
the idea that all the models, one per parameter vector
realisation, have the same informative value, due to prior
lack of knowledge. This is why the real scope of the Bayesian
inference process should be associated with ‘inequifinality’,
to produce peakier posterior densities where some of the
models are more likely to be correct than others (Mantovan
and Todini, 2006).

PARAMETER ESTIMATION VERSUS PREDICTIVE
UNCERTAINTY

This section addresses Issue 4. In the classical Bayesian
approach, the parameters of a model do not necessarily
represent physically meaningful quantities which have true
(albeit unknown) values, but rather temporary ‘dummy’,
‘convenient’ or ‘nuisance’ quantities of uncertain nature,
over which all uncertainty in the model, observations,
boundary conditions, etc. is projected, to be marginalised
out by their ‘posterior probability density’, obtained from
observations via the Bayesian inference process (De Finetti,
1975, Chapters 11 and 12). Therefore, it is necessary to
clarify the objective of this uncertainty assessment: Is
‘parameter estimation’ the main objective, or is it
‘prediction’?

If the objective is ‘parameter estimation’, it is assumed,
implicitly, that the parameters have a true, albeit unknown,
value to be found. Note that now the scope is not to identify
dummy values for the parameters aiming at estimating the
predictive density, but rather to determine the true, physically
meaningful parameter values. In this case, if the
observability conditions (Gelb, 1974) are met and if all the
uncertainties in the model, the input, the output, etc. can be
reflected, fully and correctly, in an appropriate likelihood
function (which is not easy), only then will it be possible to
estimate physically meaningful parameter values after
deriving the posterior parameter probability density function
(which coincides with the likelihood function if one takes
the uniform as the a priori on the parameters), either using
an ML approach or as an expected value. This is an
extremely complex problem that in real cases can rarely be



solved to produce physically meaningful parameter values.
The alternative ‘prediction’ problem is less complex and
more feasible because, in the Bayesian approach, the
estimation of the ‘true’ parameter values is not required; it
is rather their entire ‘posterior probability density’ that
expresses their uncertainty after sampling the observations.
This posterior density may not be that associated with the
‘true’ value of the parameters, since in Bayesian inference
the parameters become ‘convenient’ quantities, used to
absorb and reflect all the sources of uncertainty; these are
finally marginalised out at the end of the process. It is true
that, if the different types of uncertainties, such as input
and output uncertainties, model structural uncertainties,
parameter uncertainties, etc. can be defined and described
through pdfs, this could be beneficial, in the sense that they
could then be marginalised out to obtain the predictive
uncertainty, but as mentioned earlier, this is not essential
when the aim is specifically ‘predictive uncertainty’.

LESS FORMAL LIKELTHOODS AS AN ALTERNATIVE
TO FORMAL BAYESIAN INFERENCE

The point raised by Beven and Binley (1992), who
advocated the use of less formal likelihoods to represent
the likelihood of parameters when dealing with complex
models and several types of errors (input, output, model,
parameters, etc.) showing non-normal or asymmetrical
densities, correlation and heteroscedasticity, is good. This
descends from the fact that to be successful, a Bayesian
inference process requires stringent assumptions on the
shape of the probability density of errors, which is difficult
to define correctly in the case of complex hydrological
models. Unfortunately the proposed solution, GLUE, is
based on a number of non-formal likelihoods that do not
satisfy Bayes theorem and which lead to incoherent and
paradoxical Bayesian inferential properties with a reduced
capability of extracting information from the observations,
and a consequent over-estimation of predictive uncertainty
(Mantovan and Todini, 2006).

Presently, research aims, on the one hand, at finding
coherent less formal likelihoods and, on the other hand, to
transform the errors in ‘convenient’ spaces, where formal
Bayesian inference can be used to demonstrate the
robustness of the derived approaches with respect to their
complexity and different typologies of errors. Liu et al.,
(2006), have recently used the Normal Quantile Transfom
(NQT) (Van der Waerden, 1952, 1953a,b) to convert
discharge observations and model predictions into a
multivariate normal space where the Bayesian approach
could be applied successfully. Recently, using the a,b,c
model, an extremely simplified hydrological model
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introduced by Fiering (1967) for didactic purposes, both
GLUE- and NQT-based Bayesian inference were applied
to synthetic data with complex asymmetric, heteroscedastic
and time correlated errors, to describe the improvement
obtainable—in terms of predictive uncertainty—from the
prior uncertainty expressed by a multi-uniform distribution
on the parameters. Figure 4 compares the results that can
be obtained; they will be described more completely in a
forthcoming paper with Mantovan and Martina. Figure 4(a)
shows the expected value, the 0.05 and the 0.95 quantiles
deriving from the discretisation of Eqn. (8):

f(yt‘(yt‘xt)): J.f(yt‘(yt\&,,g))go(g)ds (8)
(C]

written in discretised form, where 90(3) represents the
multi-uniform prior density on the parameters; this
represents the prior predictive uncertainty before Bayes
theorem and the NQT have been applied to derive the
posterior pdf of the parameters. Figure 4(c) displays the
expected value, the 0.05 and the 0.95 quantiles obtained
from Eqn. (4) in discretised form (i.e. using the posterior
density of the parameters), while Fig. 4(b) reproduces the
0.05, the 0.5 (not the expected value, since this is how GLUE
results are typically shown) and the 0.95 quantiles obtained
using the GLUE approach. It is interesting to see that, while
the formal Bayesian inference approach applied to the NQT
transformed data, which does not require assumptions on
the probability distribution of errors in deriving the posterior
pdf of the parameters, largely reduces the prior predictive
uncertainty expressed by Eqn. (4), GLUE reduces it much
less and in places, for instance around the peaks at the 120
and the 160 time steps, the posterior predictive uncertainty
appears to be larger than the a priori uncertainty. Therefore,
in response to Issue 5, it appears that formal Bayesian
inference should be employed in preference to GLUE.

One of the issues that presently enriches the debate about
uncertainty among hydrologists is how to show the benefits
arising from the operational use of predictive uncertainty, a
corollary of which is how to communicate uncertainty to
the end-users, namely the decision-makers. Indeed, the end-
users such as water managers, emergency managers, etc.
have difficulty in perceiving the benefits arising from the
operational use of predictive uncertainty. What is certain is
that hydrologists must not make statements such as: “the
probability of flooding in the next 12 hours is 67.5%”. This
is meaningless to an end-user. What he/she would like to
hear is the answer to the basic question: “what are the
expected benefits and drawbacks of issuing a flood alert for
the next 12 hours?”. Therefore, hydrologists must define,
in dialogue with end-users, subjective utility functions,
which can be used to compute the expected benefits or the
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Fig. 4. Comparison of predictive uncertainty estimates. (a) expected value, 0.05 and 0.95 quantiles obtained using the prior parameter density
by discretising Eqn. (8); (b) 0.05, 0.50, 0.95 quantiles obtained using the GLUE approach; (c) expected value, 0.05 and 0.95 quantiles
obtained using the posterior parameter density obtained via the NOT transform and Bayesian inference by discretising Eqn. (4).

expected damages contingent on the predictive density of
the quantity of interest.

A schematic example of such utility functions is shown
in Fig. 5, redrawn from Martina et al. (2006), for the case
of a flood alert (please note that in this simple schematic
example casualties are not taken into account). The dashed
line represents the end-user perception of damage (not
necessarily the real one) that will occur if the dykes are

— Alert g
—— No Alert

Damages
\

P >
B »
Q* Discharge

Fig. 5. The utility functions deriving from a flood alert problem
(Redrawn from Martina et al., 2006). Solid line represents
perceived cost and damage if an alert is issued,; dashed line
represents perceived damage if alert is not issued.
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overtopped, namely Q > Q* where Q* is the maximum
discharge that may safely flow in the river. The solid line
represents the perception of cost plus damages when an
alert has been issued. As can be seen from Fig. 5, if an alert
is issued a cost must be inevitably incurred for mobilising
civil protection agents, alerting the population, laying
sandbags, etc., but the damage in that case will be smaller
than in the previous case due to the raised awareness of the
incoming flood. The decision on whether or not to issue an
alert will then descend from the comparison of the ‘expected
damage’ for the two options, obtained by integrating the
product of the cost function times the predictive uncertainty
pdf over all possible values of future discharge. It should
be noted that the ‘expected damages’ are a function of the
actual future discharge that will happen, not of the discharge
predicted by the model. By using the expected value of
damage instead of the ‘model forecast’, the probability of
false alarms as well as of missed alarms should be much
reduced, as the uncertainty about the future discharge is
taken into account. In addition, the peakier the predictive
density is, the more reliable will be the resulting decision,
so that improvements in forecasting, rather than looking
for a better ‘deterministic’ forecast, must essentially aim at
reducing predictive uncertainty by whatever means are
available.

To show how one can use predictive uncertainty in



operation (Issue 6), the Lake Como real-time management
decision support system is considered here as one of the
few successful examples of the operational use of forecast
uncertainty (Todini, 1999). Lake Como is a natural lake in
northern Italy closed at its exit and managed as a multi-
purpose lake for flood control, irrigation and electric power
production. Using a stochastic dynamic programming
approach, a standard operating rule was developed on a ten-
day basis to optimise long term irrigation and energy
production. However, when a flood is forecast, the reservoir
manager would like to modify the standard operating rule
to deal with the incoming flood. To achieve this goal, a utility
function describing the damage perception of the manager
was developed; every morning an incoming flood forecast,
together with its predictive uncertainty, is issued and an
optimal release, computed by minimising the expected
damage using the inflow predictive uncertainty, is then
proposed. Note that all this process is totally hidden from
the water manager who is aware only of the suggested
optimal release and of its expected consequences (Fig. 6).

The performance of the system was assessed on the basis

@ ArcView GIS Version 3.0a
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of a hindcast simulation for the 15 year period January 1,
1981 to December 31, 1995; the results are presented in
Table 1. When applying the optimised rule, the lake level
never falls below the lower acceptable limit of —0.40 m,
while historically this was observed on 214 days. In terms
of Como flooding, over the 15 years, the lake level was

Table 1. Summary of results. A comparison between recorded
water level occurrences (historical) and the results of the operation
rule based on the forecasting uncertainty (optimised) for the
period January 1%, 1981 to December 31*, 1995.

Water level No. of days
Historical Optimised
>—40 cm 214 0
> 120 cm 133 75
> 140 cm 71 52
> 173 cm 35 34
Water deficit 890.27 10° m? 788.59 10° m?

Previsione:
112 1998 - 20 2 1998 Afflussi (milioni m3) Livelli a Malgrate (cm)
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48
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Fig. 6. The Lake Como operational decision support system. The system, on the basis of the expected value of inflows to the lake (light blue
line) and its uncertainty (not shown on the screen, but used in the process) suggests to the water manager the optimal release (green line)
which minimises the expected damage and shows the consequent expected lake level (blue line) for the following 10 days.
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historically recorded to be above the lower flood limit of
1.20 m on 133 days, whereas the optimised rule reduced it
to 75 days. A noticeable reduction also appears at higher
lake levels: at 1.40 m, when the traffic must stop in the main
square of Como, the reduction is from 71 to 52 days and at
1.73, the legal definition of ‘normal flood’ when people can
claim compensation for their damage, the reduction is from
35 to 34 days. At the same time, the irrigation water deficit
decreases by an average of almost 100 x 10° m* yr'. This
result is exceptional, given that meeting irrigation demand
implies higher lake levels, an objective conflicting with the
need to reduce the frequency of flooding.

It is quite interesting how the system was accepted by the
end-user. At the end of 1997, the system was installed
operationally and the Director of Consorzio dell’Adda, who
is in charge of lake management, was invited to look at it
but not to use it until he had confidence in its effectiveness.
After six months the Director admitted that he had been
beaten four to nil. Every time he took a decision different
from that suggested by the Decision Support System (DSS),
he was wrong. Ever since, the system has been in operation
and used successfully; it has produced not only a reduction
in the number, frequency and magnitude of Como flooding
events, but also a 3% increase in energy production and a
large volume of extra water for irrigation.

This example shows that, if appropriately briefed and
involved, the end-users will quickly become aware of the
benefits arising from the use of predictive uncertainty,
provided they are not asked to interpret the forecasting in
statistical terms or the stochastic computation and
optimisation frequently required in problems in this type.

It is the author’s personal belief that considerable effort
is required to inform the end-users of the improvements
obtainable without burdening them with the computational
complexity. In this way, they can appreciate and receive the
full benefits of an approach aimed at improving the success
of their decision-making.

Conclusions and future perspectives

From the Rational Method to the distributed hydrological
models presently available, a vast evolution of
conceptualisation and parameterisation of hydrological
processes has evolved in catchment models over several
decades of research. This effort in describing hydrological
phenomena in physical terms from the pixel to the catchment
scale (the bottom-up approach), is not fully acknowledged
by the proponents of data-driven or data-mechanistic models
(the top-down approach) who do not require the derivation
of rigid model structures from the physical balance
equations. Similarly, the proponents of the physically
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meaningful models do not acknowledge the merits of the
data-driven approach.

It is difficult to demonstrate the superiority of either
approach but, although recognising the merit of the data-
driven models, a danger exists in broad philosophical terms:
namely, that all the work aimed at gaining a better physical
understanding of the runoff generation and routing processes
and their representation at different space and time scales
can be dismissed as unnecessary. Therefore, the hydrological
research community would do well to follow the advice of
Klemes from over 20 years ago (Klemes, 1983) and combine
the advantages of both approaches while designing
appropriate benchmarks or test-beds to evaluate the roles
and fields of application of the different types of models.
Furthermore, the recent introduction of the ‘equifinality’
principle, instead of leading to possible solutions, has
amplified the dissatisfaction with physically-based models
because their parameter uncertainty is deemed to be
enormous. Again, in respect of physically-based models,
research hydrologists, with knowledgeable statisticians,
must agree on the principles of ‘predictive uncertainty’ and
on the counter-principle of ‘inequifinality’; they must
construct formally correct and less diffuse posterior
parameter distribution functions to reflect the quantity of
data available as indeed they do for the data-driven models.
These can then be used to marginalise the parameter
uncertainty to deliver more appropriate measures of
predictive uncertainty. Only by sharing the framework for
estimating predictive uncertainty for both data-driven and
physically-based models can benchmarks or test-beds be
established to determine their predictive merits and roles.

Finally, water and emergency managers must be made
aware of the potential benefits of correct estimates of
predictive uncertainty. For their part, hydrologists must
understand the actual problems of stakeholders rather than
retreating into a haze of equations and complex statistical
and mathematical representations.
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