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Abstract

Under a single-index regression assumption, we introduce a new semiparametric proce-

dure to estimate a conditional density of a censored response. The regression model can be

seen as a generalization of Cox regression model and also as a profitable tool to perform

dimension reduction under censoring. This technique extends the results of Delecroix et

al. (2003). We derive consistency and asymptotic normality of our estimator of the index

parameter by proving its asymptotic equivalence with the (uncomputable) maximum likeli-

hood estimator, using martingales results for counting processes and arguments of empirical

processes theory. Furthermore, we provide a new adaptive procedure which allows us both

to chose the smoothing parameter involved in our approach and to circumvent the weak per-

formances of Kaplan-Meier estimator (1958) in the right-tail of the distribution. Through

a simulation study, we study the behavior of our estimator for small samples.

Keywords: asymptotic normality; empirical processes; censoring; martingales for counting

processes; pseudo-maximum likelihood; single-index model



1 Introduction

A major issue of recent papers dealing with censored regression is to propose alternatives to

the popular Cox regression model. This model, also known as multiplicative hazard regression

model (see Cox (1972)), states some semiparametric model on the conditional hazard function.

Estimation in this model is traditionally performed using pseudolikelihood techniques, and

the theoretical properties of these procedures are covered by a large number of papers (see

e.g. Fleming and Harrington (1991)). However, in some situations, the assumptions of Cox

regression model are obviously not satisfied by the data set. In this paper, our aim is to

perform estimation in a semiparametric regression model which allows more flexibility than the

Cox regression model. This new technique can be seen as a particularly interesting alternative,

since it is valid in a larger number of situations than the multiplicative hazard model.

Alternatives to Cox regression model mostly focus on the estimation of a conditional ex-

pectation, or of a quantile regression model. Koul et al. (1981), Stute (1999), Delecroix et al.

consider mean-regression models where the regression function belongs to a parametric family,

but with an unknown distribution of the residuals. Parametric quantile regression was studied

by Gannoun et al. On the other hand, Lu and Burke (2005) and Lopez (2008) considered

a semiparametric single-index regression model. Single-index regression models were initially

introduced to circumvent the so-called “curse of dimensionality” in nonparametric regression

(see. e.g. Ichimura (1993)), by assuming that the conditional expectation only depends on an

unknown linear combination of the covariates. Another appealing aspect of such kind of models

is that they include the Cox regression model as a particular case. The main assumption of this

model is that the conditional density only depends on an unknown linear combination of the

covariates, while the multiplicative hazard model states a similar assumption on the conditional

hazard rate. In this paper we focus on estimation of the parameter in a regression model in

which the conditional density of the response satisfies a single-index assumption. We provide

asymptotic results for a new M-estimation procedure for the index parameter. This procedure

can be seen as a generalization of the method of Delecroix et al. (2003) to the case of censored

regression.

As in the uncensored case, we show that, regarding to the estimation of the parametric part

of our model, there is an asymptotic equivalence between our semiparametric approach and

a parametric one relying on some prior knowledge on the family of regression functions. For

the nonparametric part, we use kernel estimators of conditional densities as in Delecroix et al.
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(2003). Since the performance of kernel estimators strongly relies on the choice of the smoothing

parameter, we also provide a method to choose this parameter adaptively. Another technical

issue in our approach concerns a truncation parameter involved in our procedure. This problem

of truncation directly comes from the censored framework, where estimators of the underlying

distribution functions sometimes fail to estimate correctly the tail of the distribution. This

problem is traditionally circumvented for example by assuming integrability assumptions on

the response and censoring distribution, see e.g. Stute (1999). On the other hand, truncation

procedure consists of removing the observations which are too large in the estimation of the

regression function, see e.g. Heuchenne and Van Keilegom (2007), or condition (2.2) in Brunel

and Comte (2006) which can be interpreted as such kind of truncation. Until now, the truncation

bounds which were used were arbitrary fixed, and usually no method is proposed to discuss a

method for choosing this truncation bound in practical situations. Therefore, in the new method

we propose, we also provide a data-driven procedure to choose the truncation parameter. In our

practical implementations, we used a criterion based on an asymptotic discussion which focuses

on the mean-squared error associated with the estimation of the single index parameter. We

also suggest some possible adaptations to other type of criterion which are covered by our

theoretical results.

In section 2, we introduce our censored regression model and present our estimation pro-

cedure. It relies on the Kaplan-Meier estimator (1958) of the distribution function, and on

semiparametric estimators of the conditional density. Following the procedure of Delecroix et

al. (2003), we considered kernel based estimators. Our theoretical results are presented in sec-

tion 3. In section 4 we report simulation results and analysis on real data. Section 5 contains

the detailed proof of our Main Lemma which states the asymptotic equivalence of estimating the

parameter in the semiparametric and parametric models. All the technicalities are postponed

to the section 7.

2 Censored regression model and estimation procedure

2.1 Notations and general setting

Let Y1, . . . , Yn be i.i.d. copies of a random response variable Y ∈ R, and let X1, . . . ,Xn be i.i.d.

copies of a random vector of covariates X ∈ X , where X is a compact subset of R
d. Introducing

C1, . . . , Cn i.i.d. replications of the censoring variable C ∈ R, we consider the following censored
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regression framework, where the observations are



























Zi = Yi ∧ Ci 1 ≤ i ≤ n

δi = 1{Yi≤Ci} 1 ≤ i ≤ n,

Xi ∈ X ⊂ R
d 1 ≤ i ≤ n.

Let us introduce some notations for the distribution functions of the random variables appearing

in this model, that is H(t) = P(Z ≤ t), FX(t) = P(X ≤ t), FY (t) = P(Y ≤ t), FX,Y (x, y) =

P(X ≤ x, Y ≤ y) and G(t) = P(C ≤ t). A major difficulty arising in censored regression models

stands in the unavailability of the empirical distribution function to estimate functions FY ,

FX,Y and G, which must be replaced by Kaplan-Meier estimators.

We are interested in estimating f(y|x), where f(y|x) denotes the conditional density of Y

given X = x evaluated at point y. If one has no insight on the function f, it becomes necessary to

perform nonparametric estimation of the conditional density. In absence of censoring, a classical

way to proceed is to use kernel smoothing, see e.g. Bashtannyk and H. (2001). However, the

so-called “curse of dimensionality” prevents this approach from being of practical interest when

the number of covariates is important (d > 3 in practice). Therefore it becomes relevant to

consider semiparametric models which appear to be a good compromise between the parametric

(which relies on strong assumptions on the function f which may not hold in practice) and the

nonparametric approach (which relies on fewer assumptions). In the following, we will consider

the following semiparametric single-index regression model,

∃ θ0 ∈ Θ ⊂ R
d s.a. f(y|x) = fθ0

(y, x′θ0), (1)

where fθ(y, u) denotes the conditional density of Y given X ′θ = u evaluated at y. For identi-

fiability reasons, we will impose that the first component of θ0 is one. In comparison to Cox

regression model for absolute continuous variables, our model (1) is more general, since it only

assumes that the law of Y given X depends on an unknown linear combination of the covariates,

without imposing additional conditions on the conditional hazard rate.

Model (1) has been considered by Delecroix et al. (2003) in the uncensored case. However,

their procedure can not be directly applied in the censored framework since the responses

variables are not directly observed. As a consequence, the empirical distribution function is

unavailable, and most of the tools used in this context are not at our disposal. A solution

consists of using procedures relying on Kaplan-Meier estimators for the distribution function.
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An important difficulty arising in this type of techniques stands in the poor behavior of Kaplan-

Meier estimators in the tail of the distribution. A practical way to prevent us from this kind of

drawback is to consider truncated version of the variable Y. In the following, we will consider

Aτ a sequence of compacts included in the set {t : τ1 ≤ t ≤ τ}, for τ ≤ τ0, where τ0 < inf{t :

H(t) = 1}. Using only the observations in Aτ allow us to avoid the bad behavior of usual

Kaplan-Meier estimators in the tail of the distribution. Moreover, this technique of truncation

is particularly adapted to our problem of estimating θ0. In our framework, this truncation does

not lead to any asymptotic bias, since, denoting by f τ (·|x) the conditional density of Y given

X = x and Y ∈ Aτ , for any τ <∞, we have, under (1),

f τ (y|x) = f τ
θ0

(y, x′θ0), (2)

where f τ
θ (y, u) denotes the conditional density of Y given X ′θ = u and Y ∈ Aτ evaluated at

y, and where the parameter is the same in (1) as in (2). In section 2.6, we will discuss a new

method allowing to choose τ from the data in order to improve the performance in estimating

θ0.

2.2 Estimation procedure

We will extend the idea behind the procedure developed by Delecroix et al. (2003), adapting

it to our censored framework. First assume that we know the family of functions fθ. This

approach is a modification of the maximum likelihood estimation procedure. Define, for any

function J ≥ 0,

Lτ (θ, J) = E
[

log f τ
θ (Yi, θ

′Xi)J(Xi)1Yi∈Aτ

]

=

∫

log f τ
θ (y, θ′x)J(x)1y∈Aτ dFX,Y (x, y).

Here, J is a positive trimming function which will be defined later in order to avoid denominators

problems in the nonparametric part of the model, see section 2.4. From (2), θ0 maximizes

Lτ (θ, J) for any τ < ∞, this maximum being unique under some additional conditions on the

regression model and J. Since, in our framework, FX,Y and f τ
θ are unknown, it is natural to

estimate them in order to produce an empirical version of Lτ (θ, J).

2.2.1 Estimation of FX,Y

In the case where there is no censoring (as in Delecroix et al. (2003)), FX,Y can be estimated

by the empirical distribution function. In our censoring framework, the empirical distribution

function of (X,Y ) is unavailable, since it relies on the true Y ′
i s which are not observed. A
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convenient way to proceed consists of replacing it by some Kaplan-Meier estimator such as the

one proposed by Stute (1993). Let us define the Kaplan-Meier estimator (Kaplan and Meier

(1958)) of FY ,

F̂Y (y) = 1 −
∏

i:Zi≤t

(

1 − 1
∑n

j=1 1Zj≥Zi

)δi

=
n
∑

i=1

δiWin1Zi≤y,

where Win denotes the “jump” of Kaplan-Meier estimator at observation i (see Stute (1993)).

To estimate FX,Y , Stute proposes to use

F̂ (x, y) =
n
∑

i=1

δiWin1Zi≤y,Xi≤x.

Let us also define the following (uncomputable) estimator of the distribution function,

F̃ (x, y) =

n
∑

i=1

δiW
∗
i 1Zi≤y,Xi≤x,

where W ∗
i = n−1[1 − G(Zi−)]−1. The link between F̂ and F̃ comes from the fact that, in the

case where P(Y = C) = 0,

Win = n−1[1 − Ĝ(Zi−)]−1, (3)

where Ĝ denotes the Kaplan-Meier estimator of G (see Satten and Datta (2001)). Asymptotic

properties of F̂ can be deduced from studying the difference with the simplest but uncomputable

estimator F̃ .

If we know the family of regression functions fθ, it is possible to compute the empirical

version of Lτ (θ, J) using F̂ , that is

Lτ
n(θ, f τ , J) =

∫

log f τ
θ (y, θ′x)J(x)1y∈Aτ dF̂ (x, y)

=
n
∑

i=1

δiWin log f τ
θ (Zi, θ

′Xi)J(Xi)1Zi∈Aτ .

In the case J ≡ 1, the estimator of θ0 obtained by maximizing Lτ
n would turn out to be an

extension of the maximum likelihood estimator of θ0, used in presence of censoring.

2.3 Estimation of f τ
θ

In our regression model (2), the family {f τ
θ , θ ∈ Θ} is actually unknown. As in Delecroix et al.

(2003), we propose to use nonparametric kernel smoothing to estimate f τ
θ . Introducing F̂X the

6



empirical distribution of X, a kernel function K and a sequence of bandwidths h, define

f̂h,τ
θ (z, θ′x) =

∫

Kh(θ′x− θ′u)Kh(z − y)1y∈AτdF̂ (u, y)
∫

Kh(θ′x− θ′u)dF̂X(u)
, (4)

where Kh(·) = h−1K(·/h). Also define f∗ the kernel estimator based on function F̃ , that is

f∗h,τ
θ (z, θ′x) =

∫

Kh(θ′x− θ′u)Kh(z − y)1y∈AτdF̃ (u, y)
∫

Kh(θ′x− θ′u)dF̂X(u)
.

f∗ will play an important role in studying the asymptotic behavior of f̂ . Indeed, f∗ is theoreti-

cally more easy to handle with, since it relies on sums of i.i.d. quantities, which is not the case

for F̂ . Since f∗ can be studied by standard kernel arguments, the most important difficulty will

arise from studying the difference between f̂ and f∗.

In the following, we will impose the conditions below on the kernel function.

Assumption 1. Assume that

(A1) K is a twice differentiable and four order kernel with derivatives of order 0, 1 and 2 of

bounded variation. Its support is contained in [−1/2, 1/2] and
∫

R
K(s)ds = 1,

(A2) ‖K‖∞ := supx∈R |K(x)| = κ <∞,

(A3) K := {K
(

(x− ·)/h
)

: h > 0, x ∈ R
d} is a pointwise measurable class of functions,

(A4) h ∈ Hn ⊂ [an−α, bn−α] with a, b ∈ R, 1/8 < α < 1/6 and where Hn is of cardinality kn

satisfying knn
−4α → 0.

2.4 The trimming function J

The reason behind introducing function J has to be connected with the need to prevent us from

denominators close to zero in the definition (4). Ideally, we would need to use the following

trimming function,

J0(x, c) = J̃(fθ′
0
X , θ

′
0x, c), (5)

where c is a strictly positive constant, fθ′
0
X denotes the density of θ′0X and J̃(g, u, c) = 1g(u)>c.

Unfortunately, this function relies on the knowledge of parameter θ0 and fθ′
0
X . Therefore, we

will have to proceed in two steps, that is first obtain a preliminary consistent estimator of θ0,

and then use it to estimate the trimming function J0 which will be needed to achieve asymptotic

normality of our estimators of θ0.
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We will assume that we know some set B on which inf{fθ′X(θ′x) : x ∈ B, θ ∈ Θ} > c,

where c is a strictly positive constant. In a preliminary step, we can use this set B to compute

the preliminary trimming JB(x) = 1x∈B. Using this trimming function, and a deterministic

sequence of bandwidth h0 satisfying (A4) in Assumption 1, we define a preliminary estimator

θn of θ0,

θn = arg min
θ∈Θ

Lτ
n(θ, f̂h0,τ , JB). (6)

This will be sufficient to obtain a preliminary consistent estimator of θ0. We then compute an

estimated version of J0 which will happen to be equivalent to J0 (see Delecroix et al. (2006)

page 738), that is

Ĵ0(x, c) = J̃(f̂h0,τ
θ′nX , θ

′
nx, c). (7)

For each sequence of bandwidths satisfying (A4) in Assumption 1, and for each truncation

bound τ, we can define an estimator of θ0

θ̂τ (h) = arg max
θ∈Θn

Lτ
n(θ, f̂h,τ , Ĵ0), (8)

where Θn is a shrinking sequence of neighborhoods accordingly to the preliminary estimation.

However, as for any smoothing approach, the performance of this procedure strongly depends

on the bandwidth sequence. Therefore it becomes particularly relevant to provide an approach

which automatically selects the most adapted bandwidth according to the data. Then, the new

question arising from the censored framework comes from the adaptive choice of the truncation

parameter τ.

2.5 Adaptive choice of the bandwidth

Our procedure consists of choosing from the data, for each θ, a bandwidth which is adapted to

the computation of fθ(z, u). For this, we use an adaptation of the cross-validation technique of

Fan and Yim (2004), that is

ĥτ (θ) = arg min
h∈Hn

n
∑

i=1

Win

{∫

f̂h,τ
θ (z, θ′Xi)

2dz − 2f̂h,τ
θ (Zi, θ

′Xi)

}

.

The estimator of θ0 with an adaptive bandwidth is now defined as

θ̂τ = arg max
θ∈Θn

Lτ
n(θ, f̂ ĥ,τ , J). (9)

In the above notation, ĥ depends on θ and τ, which was not emphasized to shorten the notation.
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2.6 Adaptive choice of τ

As we already mentioned, the Kaplan-Meier estimator does not behave well in the tail of the

distribution. For this reason, we introduced a truncation by a bound τ. However, a large number

of existing procedure which also rely on such kind of truncation do not consider the problem of

choosing τ from the data. We propose to select τ from the data in the following way. Suppose

that we have a consistent estimator of the asymptotic mean squared error,

E2(τ) = lim sup
n

E
[

‖θ̂τ (ĥτ ) − θ0‖2
]

,

say Ê2(τ) satisfying

sup
τ1≤τ≤τ0

|Ê2(τ) − E2(τ)| → 0, in probability. (10)

Such an estimator will be proposed in section 4. Using this empirical estimator, we propose to

choose τ in the following way, that is

τ̂ = arg min
τ1≤τ≤τ0

Ê2(τ).

Our final estimator of θ0 is based on an adaptive bandwidth and an adaptive choice of

truncation parameter τ, that is

θ̂ = θ̂τ̂ .

3 Asymptotic results

3.1 Consistency

The assumptions needed for consistency can basically be split into three categories, that is iden-

tifiability assumptions, assumptions on the regression model (2) itself and finally assumptions

on the censoring model.

Identifiability assumption and assumption on the regression model.

Assumption 2. Assume that for all τ1 ≤ τ ≤ τ0 and all θ ∈ Θ − {θ0},

Lτ (θ0, J) − Lτ (θ, J) > 0.

Assumption 3. Assume that for θ1, θ2 ∈ Θ, for a bounded function Φ(X) and for some γ > 0,

we have

sup
τ

‖f τ
θ1

(y, θ′1x) − f τ
θ2

(y, θ′2x)‖∞ ≤ ‖θ1 − θ2‖γΦ(X).
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Assumptions on the censoring model.

Assumption 4. P(Y = C) = 0.

This classical assumption in a censored framework avoids problems caused by the lack of

symmetry between C and Y in the case where there are ties.

Assumption 5. Identifiability assumption : we assume that

- Y and C are independent.

- P(Y ≤ C|X,Y ) = P(Y ≤ C|Y ).

This last assumption was initially introduced by Stute (1993). An important particular case

in which assumption 5 holds is when C is independent from (X,Y ). However, assumption 5 is a

more general and widely accepted assumption, which allows the censoring variables to depend

on the covariates.

Theorem 1. Under Assumptions 2 to 5,

sup
θ∈Θ,τ1≤τ≤τ0

|Lτ
n(θ, f̂h0,τ , JB) − Lτ (θ, JB)| = oP (1), (11)

and consequently,

θn →P θ0.

Proof. To show (11), we will proceed in two steps. First we consider Lτ
n(θ, f τ , J) − Lτ (θ, JB)

(parametric problem), and then Lτ
n(θ, f̂h0,τ , JB) − Lτ

n(θ, f τ , JB).

Step 1. From Assumption 3, the family {log(f τ
θ (·, θ′·)), θ ∈ Θ, τ1 ≤ τ ≤ τ0} is seen to be

P− Glivenko-Cantelli. Using an uniform version of Stute (1993) leads to supθ |Lτ
n(θ, f τ , J) −

Lτ (θ, JB)| →P 0.

Step 2. We have, on the set Θ′B,

| log f̂h0,τ
θ (y, u) − log f τ

θ (y, u)| ≤ c−1[f̂h0,τ
θ (y, u) − f τ

θ (y, u)].

Hence,

sup
θ,τ

|Lτ
n(θ, f̂h0,τ , JB) − Ln(θ, f τ , JB)| ≤ c−1 sup

θ,y,u,τ
|f̂h0,τ

θ (y, u) − f τ
θ (y, u)|1u∈Θ′B,y≤τ

∫

dF̂ (x, y)

≤ c−1 sup
θ,y,u,τ

|f̂h0,τ
θ (y, u) − f τ

θ (y, u)|1u∈Θ′B,y≤τ .

Using the uniform convergence of f̂h,τ
θ (see Proposition 6 and Lemma 7), deduce that

supθ,τ |Lτ
n(θ, f̂h0,τ , JB) − Lτ

n(θ, f τ , JB)| →P 0.
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3.2 Asymptotic normality

To obtain the asymptotic normality of our estimator, we need to add some regularity assump-

tions on the regression model.

Assumption 6. Denote by ∇θf
τ
θ (y, x) (resp. ∇2

θf
τ
θ (y, x)) the vector of partial derivatives (resp.

the matrix of second derivatives with respect to θ) of f τ
θ with respect to θ and computed at point

(θ, x, y). Assume that for θ1, θ2 ∈ Θ, for a bounded function Φ(X) and for some γ > 0, we have

sup
τ
‖∇2

θf
τ
θ1

(y, θ′1x) −∇2
θf

τ
θ2

(y, θ′2x)‖∞ ≤ ‖θ1 − θ2‖γΦ(X).

Assumption 7. Using the notation of Van der Vaart and Wellner (1996) in section 2.7, define

H1 = C1+δ(θ′0X ×Aτ ,M),

H2 = XC1+δ(θ′0X ×Aτ ,M) + C1+δ(θ′0X ×Aτ ,M)

Assume that f τ
θ0

(·, ·) ∈ H1 (as a function of θ′0x and y) and ∇θf
τ
θ0

(·, ·) ∈ H2.

If the family of functions f τ was known (parametric problem), the asymptotic normality of

θ̂ could be deduced from elementary results on Kaplan-Meier integrals (see section 7 for some

brief review of these results), as in Stute (1999) or in Delecroix et al. (2008). Using this kind

of results, we can derive the following Lemma (see section 7 for the proof) which is sufficient

to obtain the asymptotic law of θ̂ in the parametric case, from Theorem 1 and 2 of Sherman

(1994).

Lemma 2. Under Assumptions 6 and 7, we have the following representations:

1. on oP (1)−neighborhoods of θ0,

Lτ
n(θ, f τ , J0) = Lτ (θ, J0) + (θ − θ0)

′T1n(θ) + (θ − θ0)
′T2n(θ)(θ − θ0) + T3n(θ) + T4n(θ0),

with supθ,τ |T1n| = OP (n−1/2), supθ,τ |T2n| = oP (1), supθ,τ |T3n| = OP (n−1) and T4n(θ0) =

Lτ
n(θ0, f

τ , J0).

2. on OP (n−1/2)− neighborhoods of θ0,

Lτ
n(θ, f τ , J0) = n−1/2(θ − θ0)

′Wn,τ − 1

2
(θ − θ0)

′Vτ (θ − θ0) + T4n(θ0) + T5n(θ),

with supθ,τ |T5n| = oP (n−1), and defining f1(x, y) = f τ−1

θ0
(y, θ′0x)J0(x, c)∇θf

τ
θ0

(y, x),

Wn,τ =
1

n1/2

n
∑

i=1

ψ(Zi, δi,Xi; f11Aτ ),

Vτ = E
[

f τ−2

θ0
(Y, θ′0X)J0(X, c)∇θf

τ
θ0

(Y,X)∇θf
τ
θ0

(Y,X)′1Y ∈Aτ

]

,
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where ψ is defined in Theorem 4.

In the following Theorem, we show that the semiparametric estimator proposed in section

2 has the same asymptotic law as in the fully parametric case.

Theorem 3. Define τ∗ = arg minτ E
2(τ). Under Assumptions 1 to 7, we have the following

asymptotic i.i.d. representation,

θ̂ − θ0 = − 1

n1/2
V −1

τ∗ Wn,τ∗ + oP (n−1/2), (12)

where Vτ and Wn,τ are defined in Lemma 2. As a consequence,

n1/2(θ̂ − θ0) =⇒ N (0,Στ∗)

where Στ∗ = V −1
τ∗ ∆τ∗(f1)V

−1
τ∗ , ∆τ∗(f1) = V ar

(

ψ(Z, δ,X; f11Aτ∗
)
)

and f1 is defined in Lemma

2.

This Theorem is a consequence of the Main Lemma below. This result shows that, asymp-

totically speaking, maximizing Lτ
n(θ, f̂h,τ , J) is equivalent to maximizing Lτ

n(θ, f τ , J).

Main Lemma. Under Assumptions 1 to 7,

Lτ
n(θ, f̂h,τ , Ĵ0) = Lτ

n(θ, f τ , J0) + (θ − θ0)
′R1n(θ, h, τ) + (θ − θ0)

′R2n(θ, h, τ)(θ − θ0) + L̃τ
n(θ0),

where

sup
θ∈Θn,h∈Hn,τ1≤τ≤τ0

R1n(θ, h, τ) = oP (n−1/2),

sup
θ∈Θn,h∈Hn,τ1≤τ≤τ0

R2n(θ, h, τ) = oP (1).

and

L̃τ
n(θ0) = Aτ

1n(θ0, f̂
h,τ ) −Bτ

4n(θ0, f̂
h,τ )

where Aτ
1n(θ0, f̂

h,τ ) and Bτ
4n(θ0, f̂

h,τ ) are defined in the proof of this Lemma.

In view of Theorem 1 and 2 of Sherman (1994), this result will allow us to obtain the rate of

convergence of our estimators, and then the asymptotic law is the same law as the asymptotic

law in the parametric problem.

Proof of Theorem 3. Define

Γ0n(θ, τ, h) = Lτ
n(θ, f̂h,τ , Ĵ0),

Γ1n(θ, τ) = Lτ
n(θ, f̂ ĥ,τ , Ĵ0),

Γ2n(θ) = Lτ̂
n(θ, f̂ ĥ,τ̂ , Ĵ0).
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We now apply Theorem 1 and 2 in Sherman (1994) to Γin, for i = 0, 1, 2. From our Main Lemma

and Lemma 2, we deduce, that the representation (11) in Theorem 2 of Sherman (1994) holds

for i = 0, 1, 2, on OP (n−1/2)− neighborhoods of θ0, with Wn and V defined in Lemma 2. The

asymptotic representation (12) is a by-product of the proof of Theorem 2 in Sherman (1994)

and of the i.i.d. representations of Kaplan-Meier integrals (see Theorem 4).

4 Simulation study and real data analysis

4.1 Practical implementation of the adaptive choice of τ

From the proof of Theorem 3, we have the representation

θ̂ − θ0 = − 1

n

n
∑

i=1

V −1
τ ψ(Zi, δi,Xi; f11Aτ ) + oP (n−1/2).

As in Stute (1995), the function ψ of Theorem 4 can be estimated from the data in the following

way by

ψ̂(Z, δ,X; f̂11Aτ ) =
δf̂1(X,Z)

1 − Ĝ(Z−)
+

∫

∫ τ0
y

∫

X f̂1(x, t)dF̂ (x, t)dM Ĝ(y)

1 − Ĥ(y)
,

where f̂1 is our kernel estimator of f1 and Ĥ is the empirical estimator of H. To consistently

estimate ∆(f1), we use the general technique proposed by Stute (1996), that is

∆̂τ (f1) =
1

n

n
∑

i=1

[

ψ̂(Zi, δi,Xi; f̂1) −
1

n

n
∑

i=1

ψ̂(Zi, δi,Xi; f̂1)

]⊗2

, (13)

where ⊗2 denotes the product of the matrix with its transpose. A consistent estimator of Vτ

can then be computed as

V̂τ =

∫

f̂h,τ−2

θ̂
(y, θ̂′x)Ĵ0(x, c)∇θ f̂

h,τ

θ̂
(y, x)∇θ f̂

h,τ

θ̂
(y, x)′1y∈AτdF̂ (x, y).

To estimate the asymptotic mean squared error we use

Ê2
τ =

1

n
Ŵ ′

n,τ V̂τ
−1
V̂τ

−1
Ŵn,τ .

4.2 Simulation study

In order to check the finite sample behavior of our estimators of θ0, we conducted some simu-

lations using a similar model as the one in Delecroix et al. (2003). We considered the following

regression model,

Yi = θ′0Xi + εi, i = 1, . . . , n
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where Yi ∈ R, θ0 = (1, 0.5, 1.4, 0.2)′ and Xi ∼ ⊗4{0.2N (0, 1) + 0.8N (0.25, 2)}. The errors are

centered and normally distributed with conditional variance equal to |θ′0X|. We used the kernel

K(u) = 2k(u) − k ∗ k(u)

where ∗ denotes the convolution product and

k(u) =
3

4
(1 − u2)1|u|≤1

is the classical Epanechnikov kernel. The censoring distribution was selected to be exponential

with parameter λ which allows us to fix the proportion of censored responses (p = 25% and

p = 40% in our simulations). ĥ was chosen using a regular grid between 1 and 1.5.

Our estimator θ̂ was compared with two other estimators, that is θ̂∞ which does not rely on

an adaptive choice of τ, and θ̂ADE which is obtained using the average derivative method of Lu

and Burke (2005). In the tables below we report our results over 100 simulations from samples

of size 100 and 200 for two different rates of censoring. Recalling that the first component of θ0

is imposed to be one, we only have to estimate the three other components. For each estimator,

the Mean Squared Error E(‖θ̂ − θ0‖2) is decomposed into bias and covariance.

p = 25%, n = 100 Bias Variance MSE

θ̂ADE











−0.112

−0.551

−0.155





















0.14 0.005 −0.022

0.005 0.075 0.016

−0.022 0.016 0.116











0.6714181

θ̂∞











0.057

0.215

0.048





















0.033 0.012 0.001

0.012 0.073 −0.004

0.001 −0.004 0.027











0.1841227

θ̂











0.07

0.221

0.028





















0.034 0.002 0.002

0.002 0.074 0

0.002 0 0.02











0.1825980

Table 1: Biases, variances and mean squared errors for 25% of censoring and sampling of size

100
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p = 40%, n = 100 Bias Variance MSE

θ̂ADE











−0.334

−0.743

−0.158





















0.159 0.009 −0.014

0.009 0.268 0.048

−0.014 0.048 0.165











1.280163

θ̂∞











0.127

0.296

0.096





















0.11 −0.034 −0.01

−0.034 0.101 0.021

−0.01 0.021 0.059











0.3829797

θ̂











0.074

0.176

0.061





















0.064 −0.005 −0.004

−0.005 0.051 0.014

−0.004 0.014 0.069











0.2239023

Table 2: Biases, variances and mean squared errors for 40% of censoring and sampling of size

100

p = 25%, n = 200 Bias Variance MSE

θ̂ADE











−0.189

−0.578

−0.133





















0.096 0.003 0.006

0.003 0.148 −0.016

0.006 −0.016 0.131











0.7620268

θ̂∞











0.073

0.133

0.015





















0.033 0.004 −0.004

0.004 0.023 0.002

−0.004 0.002 0.012











0.0910719

θ̂











0.034

0.107

0.014





















0.007 0.001 0.004

0.001 0.011 0

0 0 0.006











0.0364064

Table 3: Biases, variances and mean squared errors for 25% of censoring and sampling of size

200
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p = 40%, n = 200 Bias Variance MSE

θ̂ADE











−0.109

−0.763

−0.053





















0.146 −0.02 0.056

−0.02 0.143 −0.014

0.056 −0.014 0.192











1.078027

θ̂∞











0.104

0.151

0.077





















0.109 0.008 0.042

0.008 0.049 0.003

0.042 0.003 0.055











0.2521227

θ̂











0.043

0.14

0.021





















0.018 −0.001 0.002

−0.001 0.022 0.002

0.002 0.002 0.014











0.07533921

Table 4: Biases, variances and mean squared errors for 40% of censoring and sampling of size

200

To give a precise idea of the number of observations which are removed from the study by

choosing τ adaptively, introduce N = ♯{1 ≤ i ≤ n,Zi ≤ τ̂}. First, we considered the case of

sampling of size 100 : for 25% of censoring, Ê[N ] ≈ 90, while Ê[N ] ≈ 87 for 40% of censoring.

Then, in the case of sampling of size 200 we obtained : for 25% of censoring, Ê[N ] ≈ 185, while

Ê[N ] ≈ 172 for 40% of censoring.

Clearly the MSE deteriorates when the percentage of censoring increases. According to the

simulations, θ̂ and θ̂∞ outperform θ̂ADE, while, as expected, choosing adaptively τ improves

the quality of the estimation. This is not obvious in the case where there are only 25% of

censoring. However, in the case where the level of censoring is high, estimation of the tail of the

distribution by Kaplan-Meier estimators becomes more erratic, and the importance of choosing

a proper truncation appears in the significant difference between the MSE of θ̂ and θ̂∞.

4.3 Example : Stanford Heart Transplant Data

We now illustrate our method using data from the Stanford Heart Transplant program. This

data set was initially studied by Miller and Halpern (1982). 184 of 249 patients in this program
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received a heart transplantation between October 1967 and February 1980. From this data, we

considered the survival time as the response variable Z, age as the first component of X and the

square of age as the second component. Patients alive beyond February 1980 were considered

censored. For easier comparison to previous work on this data set, we concentrate our analysis

on the 157 patients out of 184 who had complete tissue typing. Among these 157 cases, 55 were

censored.

Several methods of estimation have already been applied to this data set to estimate the

following regression model,

Z = α+ β′X + ε(X), (14)

where β = (β1, β2)
′, E[ε(X)|X] = 0, see Miller and Halpern (1982), Wei et al. (1990), Stute

et al. (2000). Furthermore, nonparametric lack-of-fit tests have shown that the regression

model (14) seemed reasonable, see Stute et al. (2000) and Lopez and Patilea (2008). Therefore

it seems to us appropriate to experiment our model on this data set. This strengthens the

assumption on the residual, by assuming that ε(X) = ε(θ′0X), where θ0 = (1, β2/β1), but allows

more flexibility on the regression function.

In the following table, we present our estimators and recall the values of the estimators of

β2/β1 for the linear regression model (14). We first computed θ̂∞, which is our estimator using

the whole data set, that is with τ = +∞, and compared it to the one obtained by choosing τ

from the data as in section 4.1. In this last case, τ̂ = Z(90) where Z(i) denotes the i−th order

statistic, this means that it conducted us to remove the 67 largest observations to estimate θ0

(but not to estimate Kaplan-Meier weights, which were computed using the whole data set).

Adaptive bandwidth was 1.7 for θ̂∞, and 1.3 for θ̂τ . The estimated value of the mean-squared

error was Ê2
∞ = 0.1089375 and Ê2

τ̂ = 0.01212701 for θ̂∞ and θ̂τ respectively.

Estimator of θ0,2 = β2/β1

Miller and Halpern -0.01588785

Wei et al. 63.75

Stute et al. -0.01367034

θ̂1 (without adaptive choice of τ) -0.07351351

θ̂2 (with adaptive choice of τ) -0.0421508

Our estimators seem relatively close to the ones obtained by Miller and Halpern (1982)
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and Stute et al. (2000) using respectively the Buckley-James method and the Kaplan-Meier

integrals method for the linear regression model.

5 Proof of Main Lemma

First, the same arguments as in Delecroix et al. (2006) apply to replace Ĵ0 by J0. Define

Jθ(x, c) = 1fθ′X(θ′x)≥c. From Assumption 3 on the density of θ′x, deduce that, on shrinking

neighbourhoods of θ0, J0(x, c) can be replaced by Jθ(x, c/2). Using a Taylor expansion, write

Lτ
n(θ, f̂h,τ , J0) − Lτ

n(θ, f τ , J0) =

n
∑

i=1

δiWin1Zi∈Aτ log

(

f̂h,τ
θ (Zi, θ

′Xi)

f τ
θ (Zi, θ′Xi)

)

J0(Xi, c)

=

n
∑

i=1

δiWin1Zi∈Aτ

(

f̂h,τ
θ (Zi, θ

′Xi) − f τ
θ (Zi, θ

′Xi)
)

J0(Xi, c)

f τ
θ (Zi, θ′Xi)

−
n
∑

i=1

δiWin1Zi∈Aτ

[

f̂h,τ
θ (Zi, θ

′Xi) − f τ
θ (Zi, θ

′Xi)
]2
J0(Xi, c)

φ(f τ
θ (Zi, θ′Xi), f̂

h,τ
θ (Zi, θ′Xi))2

= Aτ
1n(θ, f̂h,τ ) −Bτ

1n(θ, f̂h,τ )

where φ(f τ
θ (Zi, θ

′Xi), f̂
h,τ
θ (Zi, θ

′Xi)) is between f̂h,τ
θ (Zi, θ

′Xi) and f τ
θ (Zi, θ

′Xi).

Step 1. We first study A1n. A Taylor expansion leads to the following decomposition,

Aτ
1n = (θ − θ0)

′
n
∑

i=1

δiWin1Zi∈Aτ

(

∇θf̂
h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi)
)

Jθ(Xi, c/2)

f τ
θ (Zi, θ′Xi)

+ (θ − θ0)
′

[

n
∑

i=1

δiWin1Zi∈Aτ

(

∇2
θ f̂

h,τ

θ̃
(Zi,Xi) −∇2

θf
τ
θ̃
(Zi,Xi)

)

Jθ(Xi, c/2)

2f τ
θ (Zi, θ′Xi)

]

(θ − θ0)

+
1

n

n
∑

i=1

δiWin1Zi∈Aτ

(

f̂h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi)

)

f τ
θ (Zi, θ′Xi)f τ

θ0
(Zi, θ′0Xi)

× (f τ
θ0

(Zi, θ
′
0Xi) − f τ

θ (Zi, θ
′Xi))J0(Xi, c)Jθ(Xi, c/2) +Aτ

1n(θ0, f̂
h,τ )

= Aτ
1n(θ0, f̂

h,τ ) + (θ − θ0)
′Aτ

2n(θ0, f̂
h,τ ) + (θ − θ0)

′Aτ
3n(θ̃, f̂h,τ )(θ − θ0) +Aτ

4n(θ, f̂h,τ),

for some θ̃ between θ and θ0. Observe that, using the uniform consistency of ∇2
θf̂

h,τ
θ (deduced

from Proposition 6 and Lemma 7), we obtain supθ̃∈Θn,τ≤τ0,h∈Hn
Aτ

3n(θ̃, f̂h,τ ) = oP (1). We now

study Aτ
2n(θ0, f̂

h,τ ). Using the expression (3) of the jumps of Kaplan-Meier estimator, observe
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that

Aτ
2n(θ, f̂h,τ )

=

n
∑

i=1

W ∗
i 1Zi∈Aτ

(

∇θf̂
h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi)
)

Jθ(Xi, c/2)

f τ
θ (Zi, θ′Xi)

+
1

n

n
∑

i=1

W ∗
i ZG(Zi−)

δi1Zi∈Aτ

(

∇θf̂
h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi)
)

Jθ(Xi, c/2)

f τ
θ (Zi, θ′Xi)

= Aτ
21n(θ, f̂h,τ) +Aτ

22n(θ, f̂h,τ ),

where

ZG(t) =
Ĝ(t) −G(t)

1 − Ĝ(t)
.

The term Aτ
22n can be bounded using (21), (22) and Lemma 7, by

sup
τ≤τ0

|A22n(θ, f̂h,τ )| ≤ oP (n−1/2) × n−1
n
∑

i=1

δi[1 −G(Ti−)]−1,

and the last term is OP (1) since it has finite expectation. Now for Aτ
21n, first replace θ at the

denominator by θ0. We have

Aτ
21n(θ, f̂h,τ ) =

n
∑

i=1

W ∗
i 1Zi∈Aτ (∇θ f̂

h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi))J0(Xi, c/4)

f τ
θ0

(Zi, θ′0Xi)

+Rτ
n(θ, h)(θ − θ0),

with supθ∈Θn,τ≤τ0,h∈Hn
|Rτ

n(θ, h)| = oP (1) from Assumption 3 and the uniform consistency of

∇θf̂
h,τ
θ0

deduced from Proposition 6 and Lemma 7. Then use Assumption 7 and Proposition

9. Using the equicontinuity property of Donsker classes (see e.g. Van der Vaart and Wellner

(1996) or Van der Vaart (1998)), we obtain that

Aτ
2n(θ, f̂h,τ ) =

∫∫

[

∇θf̂
h,τ
θ0

(y, x) −∇θf
τ
θ0

(y, x)
]1y∈AτJ0(x, c/4)dP(y, x|θ′0x)dPθ′

0
x(u)

f τ
θ0

(y, u)

+ oP (n−1/2),

where the oP−rate does not depend on θ, h, nor τ. From classical kernel arguments, the bias

term is supy,x,τ |
∫

∇θf
∗h,τ
θ0

(y, x) − ∇θf
τ
θ0

(y, x)dP(y, x|θ′0x)|1y∈Aτ = O(h4) = o(n−1/2), since

nh8 → 0. Then, Lemma 8 concludes the proof for Aτ
2n(θ, f̂h,τ ).
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Step 2. Bτ
1n can be rewritten as

Bτ
1n(θ, f̂h,τ )

=

n
∑

i=1

δiWin1Zi∈AτJθ(Xi, c/2)
{(θ − θ0)

′[∇θf̂
h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi)]}2

φ(f τ
θ (Zi, θ′Xi), f̂

h,τ
θ (Zi, θ′Xi))2

+ 2
n
∑

i=1

δiWinJθ(Xi, c/2)1Zi∈Aτ [f̂h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi)]

× (θ − θ0)
′[∇θf̂

h,τ

θ̃
(Zi,Xi) −∇θf

τ
θ̃
(Zi,Xi)][φ(f τ

θ (Zi, θ
′Xi), f̂

h,τ
θ (Zi, θ

′Xi))
2]−1

+Bτ
4n(θ0, f̂

h,τ ) + oP (‖θ − θ0‖2)

= (θ − θ0)
′Bτ

2n(θ0, f̂
h,τ )(θ − θ0) + (θ − θ0)

′Bτ
3n(θ, f̂h,τ ) +Bτ

4n(θ0, f̂
h,τ ) + oP (‖θ − θ0‖2)

for some θ̃ between θ and θ0. The third term does not depend on θ. For Bτ
2n, use the uniform

consistency of ∇θ0
f̂h,τ

θ0
(Proposition 6 and Lemma 7) to obtain supτ≤τ0,h∈Hn

|Bτ
2n(θ, f̂h,τ )| =

oP (n−1/2). Finally, for Bτ
3n(θ, f̂h,τ ), from a Taylor expansion,

Bτ
3n(θ, f̂h,τ ) = 2

n
∑

i=1

δiWin1Zi∈AτJθ(Xi, c/2)

φ(f τ
θ (Zi, θ′Xi), f̂

h,τ
θ (Zi, θ′Xi))2

× [f̂h,τ
θ0

(Zi, θ
′
0Xi) − f τ

θ0
(Zi, θ

′
0Xi)][∇θ f̂

h,τ
θ0

(Zi,Xi) −∇θf
τ
θ0

(Zi,Xi)]

+ (θ − θ0)
′Rτ

n(θ, f̂h,τ ),

with supθ∈Θn,τ≤τ0,h∈Hn
Rτ

n(θ, f̂h,τ) = oP (1), from Proposition 6 and Lemma 7. For the main

term, the product of the uniform convergence rates of f̂h,τ
θ0

and ∇θf̂
h,τ
θ0

obtained from Proposition

6 and Lemma 7 is oP (n−1/2) for h ∈ Hn.

6 Conclusion

We proposed a new estimation procedure of a conditional density under a single-index assump-

tion and random censoring. This procedure is an extension of the approach of Delecroix et

al. (2003) in the case of a censored response. One of the advantage of this model is that it

relies on fewer assumptions as a Cox regression model, in the case where the random variables

of the model are absolutely continuous. By showing that estimating in this semiparametric

model is asymptotically equivalent to estimating in a parametric one (unknown in practice),

we obtain a n−1/2−rate for the estimator of the index. This estimator can then be used to

estimate the conditional density or the conditional distribution function by using traditional

nonparametric estimator under censoring. A new feature of our procedure, is that it provides an
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adaptively driven choice of the bandwidth involved in the kernel estimators we used, and that

it also provides an adaptive choice of a truncation parameter needed to avoid problems caused

by the bad behavior of Kaplan-Meier estimators in the tail of the distribution. In this specific

problem, this truncation does not introduce some additional bias in the procedure, and seems,

according to our simulations, to increase the quality of the estimator, especially in the case

where the proportion of censored responses is important. Our way of choosing τ was motivated

by minimizing the MSE in the estimation of θ̂. However, our method could be easily adapted

to other kinds of criteria which, for example more focus on the error in estimating one specific

direction, or on the error in the estimation of the conditional density itself.

7 Appendix

7.1 Kaplan-Meier integrals for the parametric case

We first recall a classical asymptotic representation of integrals with respect to F̂ . See Stute

(1995), Stute (1996) and Sánchez Sellero et al. (2005).

Theorem 4. Let F be a V C−class of functions with envelope Φ such as

Φ(x, y) = 0, for all y ≥ τ0, (15)

where τ0 ≤ τH . We have the following asymptotic i.i.d. representation, for all φ ∈ F ,
∫

φ(x, y)dF̂ (x, y) =
1

n

n
∑

i=1

ψ(Zi, δi,Xi;φ) +R(φ),

where supφ∈F |R(φ)| = Oa.s.([log n]3n−1), and

ψ(Zi, δi,Xi;φ) =
δφ(Xi, Zi)

1 −G(Zi−)
+

∫

∫ τ0
y

∫

X φ(x, t)dF (x, t)dMG
i (y)

1 −H(y)
,

where MG
i (y) = (1 − δi)1Zi≤y −

∫ y
−∞ 1Zi≥t[1 − G(t−)]−1dG(t) is a martingale with respect to

the filtration Gy = {(Zi, δi,Xi)1Zi≤y}. Define ∆(φ) = V ar(ψ(Z, δ,X;φ)). Then it follows that

√
n

∫

φ(x, y)d[F̂ − F ](x, y) =⇒ N (0,∆(φ)).

Initially, the result of Stute was derived for a single function φ. Furthermore, Theorem 1.1 in

Stute (1996) gives a convergence rate which is only oP (n−1/2) for the remainder term, however

an higher convergence rate is obtained in his proof of Theorem 1.1 for functions satisfying (15),

which is the only case considered in our work. To obtain uniformity on a V C−class of functions,
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see Sánchez Sellero et al. (2005) who provided a more general representation that extends the

one of Stute in the case where Y is right-censored and left-truncated. Their result is really

useful since it provides, as a corollary, uniform law of large numbers results and uniform central

limit theorem. The representation we present in our Theorem 4 is a simple rewriting of Stute’s

representation. Theorem 4 is then a key ingredient to prove Lemma 2.

Proof of Lemma 2. We directly show the second part of the Lemma, since the first can be

studied from similar techniques. From a Taylor expansion,

Lτ
n(θ, f τ , J0) = (θ − θ0)

′
n
∑

i=1

δiWinJ0(Xi, c)1Zi∈Aτ

∇θf
τ
θ0

(Zi,Xi)

f τ
θ0

(Zi, θ
′
0Xi)

+
1

2
(θ − θ0)

′
n
∑

i=1

δiWinJ0(Xi, c)1Zi∈Aτ∇2
θ[log f

τ
θ̃
](Zi,Xi)(θ − θ0)

+ T5n(θ0), (16)

for some θ̃ between θ0 and θ. Theorem 4 provides an i.i.d. representation for the first term

(which corresponds to Wn,τ in Lemma 2), while, from Assumption 6, the family of functions

∇2
θ[log f

τ
θ̃
](y, x)1y∈Aτ is a V C−class of functions satisfying (15). Hence the sum in the second

term of (16) tends to V almost surely using an uniform law of large numbers property.

7.2 The gradient of f

In the following for any function ϕ we will denote by ϕ
(n)
h (·) the expression h−nϕ(n)(·/h) such

as, for example K ′
h(·) = h−1K ′

(

·
h

)

.

Proposition 5. Let

f ′τ (y, u) = ∂uf
τ
θ0

(y, u).

We have

∇θfθ0
(y′, θ′0x) = xf1,y,τ (y

′, θ′0x) + f2,y,τ (y
′, θ′0x),

with

f1,τ (y, θ
′
0x) = f ′τ (y, θ

′
0x),

f2,τ (y, θ
′
0x) = −f ′τ (y, θ′0x)E

[

X|θ′0X
]

.

In particular, E[∇θf
τ
θ0

(Y, θ′0X)|θ′0X] = 0.

Proof. Direct adaptation of Lemma 5A in Dominitz and Sherman (2005).
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7.3 Convergence properties of f ∗h,τ

We first recall some classical properties on kernel estimators. Consider the class of functions K
introduced in Assumption 1. Let N(ε,K, dQ) be the minimal number of balls {g : dQ(g, g′) < ε}
of dQ-radius ε needed to cover K. For ε > 0, let N(ε,K) = supQN(κε,K, dQ), where the

supremum is taken over all probability measures Q on (Rd,B), dQ is the L2(Q)-metric. From

Nolan and Pollard (1987), it can easily be seen that, using a kernel K satisfying Assumption 1,

for some C > 0 and ν > 0, N(ε,K) ≤ Cε−ν , 0 < ε < 1.

Proposition 6. Under assumption 1 we have, for some c > 0

sup
x,y,h,τ

∣

∣

∣f
∗h,τ
θ0

(y, θ′0x) − f τ
θ0

(y, θ′0x)
∣

∣

∣1y∈AτJ0(x, c) = OP

(

n−1/2h−1[log n]1/2
)

, (17)

sup
x,y,h,τ

∣

∣

∣
∇θf

∗h,τ
θ0

(y, x) −∇θf
τ
θ0

(y, x)
∣

∣

∣
1y∈AτJ0(x, c) = OP

(

n−1/2h−2[log n]1/2
)

, (18)

sup
x,y,h,τ,θ

∣

∣

∣∇2
θf

∗h,τ
θ (y, x) −∇2

θf
τ
θ (y, x)

∣

∣

∣1y∈AτJθ(x, c) = OP

(

n−1/2h−3[log n]1/2
)

. (19)

Proof. (17) is a direct application of Theorems 1 and 4 in Einmahl and Mason (2005). For (18),

we only show the convergence for the term

r̂h,τ
θ0

(x, y) :=
1

h

n
∑

i=1

δiW
∗
i 1Zi∈AτJ0(x, c)(Xi − x)K ′

h(X ′
iθ0 − x′θ0)Kh(Zi − y).

Define

r̄h,τ
θ0

(x, y) =
1

h
E
[1Y ≤τJ0(x, c)(X − x)K ′

h(X ′θ0 − x′θ0)Kh(Y − y)
]

and

rτ
θ0

(x, y) =
∂

∂u

{

E
[

(X − x)|θ′0X = u, Y = y
]1y∈AτJ0(x, c)fθ′

0
X,Y (u, y)

}

∣

∣

∣

∣

u=θ′
0
x

.

Note that, from our assumptions rθ0
is a finite quantity. Next, Theorem 4 in Einmahl and

Mason (2005) yields :

sup
x,y,h,τ

∣

∣

∣r̂
h,τ
θ0

(x, y) − r̄h,τ
θ0

(x, y)
∣

∣

∣1y∈Aτ = OP (n−1/2h−2[log n]1/2).

For the bias term, supx,y,h,τ

∣

∣

∣r̄
h,τ
θ0

(x, y) − rτ
θ0

(x, y)
∣

∣

∣1y∈Aτ = OP (h4) = oP (n−1/2), (see e.g. Bosq

and Lecoutre (1997)). As a consequence,

sup
x,y,h,τ

∣

∣

∣r̂
h,τ
θ0

(x, y) − rτ
θ0

(x, y)
∣

∣

∣1y∈Aτ = OP (n−1/2h−2[log n]1/2).

For (19), we also need an uniformity with respect to θ. The result can be deduced from the

uniform convergence (with respect to θ, x, u) of quantities such as

Sh,τ
n (θ, x, y, β) =

1

h2

n
∑

i=1

δiW
∗
i φ(Zi,Xi, θ)∇β

θK

(

θ′Xi − θ′x

h

)

K

(

Zi − y

h

)

, (20)
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where ∇β
θK([θ′Xi − θ′x]h−1) for β = 1 (resp. for β = 2) denotes the gradient vector of function

K([θ′Xi − θ′x]/h) (resp. Hessian matrix) with respect to θ and evaluated at θ, and where φ

is a bounded function with respect to θ and x. The function φ we consider is φ(Z,X, θ) =

fθ′X(θ′X)−11Z∈AτJ0(x, c) with the convention 0/0 = 0. (20) can be studied using the same

method as Einmahl and Mason (2005). For this, observe that the family of functions {(X,Z) →
∇β

θK([θ′X − θ′x]h−1)K([Z − y]h−1), θ ∈ Θ, x, y} satisfies the Assumptions of Proposition 1 in

Einmahl and Mason (2005) (see Lemma 22 (ii) in Nolan and Pollard (1987)). Hence, apply

Talagrand’s inequality (Talagrand (1994), see also Einmahl and Mason (2005)) to obtain that

sup
θ,x,y,h,τ

|Sh,τ
n (θ, x, y, α) − E[Sh,τ

n (θ, x, y, α)]|1y∈Aτ = OP (n−1/2[log n]1/2h−1−β).

Again, the bias term converges uniformly at rate O(h4).

7.4 The difference between f ∗ and f̂

7.4.1 Convergence rate of f̂

In this section, we show that replacing f∗h,τ by f̂h,τ (which is the estimator used in practice)

does not modify the rate of convergence. To give the intuition of this results, observe that f∗h,τ

was obtained from f̂h,τ by replacing Ĝ by G. Let us recall some convergence properties of Ĝ.

We have

sup
t≤τ0

|Ĝ(t) −G(t)| = OP (n−1/2), (21)

sup
t≤τ0

1 −G(t)

1 − Ĝ(t)
= OP (1). (22)

See Gill (1983) for (21) and Zhou (1992) for (22). From (21), we see that the convergence rate

of Ĝ is faster than the convergence rate of f∗h,τ , which explains the asymptotic equivalence

of f̂h,τ and f∗h,τ . Lemma 7 makes things more precise and also gives a representation of the

difference between ∇θf
∗h,τ and ∇θf̂

h,τ which is needed in the proof of Main Lemma. Also

required to prove our Main Lemma, Lemma 8 below gives a technical result on the integral of

this difference.

Lemma 7. Under the Assumption of Lemma 2, we have for some c > 0

sup
x,y,h,τ

∣

∣

∣
f̂h,τ

θ (y, θ′x) − f∗h,τ
θ (y, θ′x)

∣

∣

∣
1y∈AτJ0(x, c) = OP (n−1/2), (23)

sup
x,y,h,τ

∣

∣

∣
∇θf̂

h,τ
θ (y, x) −∇θf

∗h,τ
θ (y, x)

∣

∣

∣
1y∈AτJ0(x, c) = OP (n−1/2h−1), (24)

sup
x,y,h,τ,θ

∣

∣

∣∇2
θ f̂

h,τ
θ (y, x) −∇2

θf
∗h,τ
θ (y, x)

∣

∣

∣1y∈AτJθ(x, c) = OP (n−1/2h−2). (25)

24



Furthermore,

(

∇θf̂
h,τ
θ (y, x) −∇θf

∗h,τ
θ (y, x)

)1y∈Aτ =

∫

∫

X

∫ τ
y g

h
f,x,y(x2, y2)dP(x2, y2)dM̄

G(y)

1 −H(y)

+Rn(τ, h, x, y), (26)

where M̄G =
∑n

i=1M
G
i (y), MG

i is defined in Theorem 4, supx,y,τ,h |Rn(τ, h, x, y)| =

Op.s.((log n)1/2n−1h−3) and gh
f,x,y is defined by

gh
f,x1,y1

(x2, y2) =
1

h

(x1 − x2)K
′
h(θ′0x1 − θ′0x2)Kh(y1 − y2)

fθ′
0
X(θ′0x1)

−
Kh(θ′0x1 − θ′0x2)Kh(y1 − y2)f

′
θ′
0
X(θ′0x1)

fθ′
0
X(θ′0x1)2

,

where f ′θ′
0
X denotes the derivative of u→ fθ′

0
X(u).

Lemma 8. Under the Assumptions of Lemma 2
∫

[∇θf
∗h,τ
θ0

(y, x) −∇θf̂
h,τ
θ0

(y, x)]1y∈AτJ0(x, c/4)dP(x, y)

f τ
θ0

(y, θ′0x)
= oP (n−1/2).

Proof of Lemma 7. To prove (23-25), we only prove (25) since the others are similar. To prove

(25), we only consider the terms in which the second derivative is involved, the others being

studied analogously. Consider

1

h

n
∑

i=1

δiWinJθ(Xi, c)(Xi − x)K ′′
h(θ′Xi − θ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ fθ′X(θ′x)−1

=
1

h

n
∑

i=1

δiW
∗
i Jθ(Xi, c)(Xi − x)K ′′

h(θ′Xi − θ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ fθ′X(θ′x)−1

+
1

h

n
∑

i=1

δiW
∗
i Jθ(Xi, c)ZG(Zi−)(Xi − x)K ′′

h(θ′Xi − θ′x)Kh(Zi − y)(Xi − x)′1Zi∈Aτ fθ′X(θ′x)−1,

where the first term is contained in ∇θf
∗h, while the second can be bounded by

OP (n−1/2h−2)

[

1

nh2

n
∑

i=1

δi1Zi≤τ0 |K ′′|
(

θ′Xi − θ′x

h

)

|K|
(

Zi − y

h

)

]

.

Using the results of Sherman (1994), the term inside the brackets is OP (1) uniformly in x, y

and h.

Now, for the representation (26), observe that

∇θ[f̂
h,τ
θ − f∗h,τ

θ ](y, x) (27)

= h−1
n
∑

i=1

δiW
∗
i ZG(Zi−)Jθ(Xi, c)(Xi − x)K ′

h(θ′0Xi − θ′0x)Kh(Zi − y)fθ′
0
X(θ′0x)

−11Zi∈Aτ

−
n
∑

i=1

δiW
∗
i ZG(Zi−)Jθ(Xi, c)K(θ′0Xi − θ′0x)Kh(Zi − y)f ′θ′

0
X(θ′0x)fθ′

0
X(θ′0x)

−21Zi∈Aτ

+R′
n(τ, h, x, y). (28)
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with supx,y,h,τ |R′
n(τ, h, x, y)| = OP

(

n−1h−3/2[log n]1/2
)

, from the convergence rate of ZG (see

(21) and (22)) and the convergence rate of (f̂θ′
0
X−fθ′

0
X) and (f̂ ′θ′

0
X−f ′θ′

0
X) (which are of uniform

rate OP

(

n−1/2h−1/2[log n]1/2
)

and OP

(

n−1/2h−3/2[log n]1/2
)

from arguments similar as for the

proofs of (17)-(19) and (23)-(25)). An i.i.d. representation of the main term in (28) can be

deduced from Theorem 4 since the class {gh
f,x,y, x, y, h} is a VC-class from Nolan and Pollard

(1987).

Proof of Lemma 8. Observe that, from classical kernel arguments

sup
x,y

∣

∣

∣

∣

∫

x2,y≤y2≤τ0

gh
f,x,y(x2, y2)dP(x2, y2) − E[∇θf

τ
θ0,y(y, x)]

∣

∣

∣

∣

= O(h4),

since K is of order 4. From the representation (26) in Lemma 7,

∫

[∇θf
∗h,τ
θ0

(y, x) −∇θf̂
h,τ
θ0

(y, x)]1y∈AτJ0(x, c/4)dP(x, y)

=

∫∫

[1 −H(y)]−1E[∇θf
τ
θ0

(Y,X)J0(X, c/4)]dM̄
G(y)dP(x, y)

+

∫∫

[1 −H(y)]−1

[∫

x2,y≤y2≤τ0

gh
f,x,y(x2, y2)J0(x, c/4)dP(x2, y2)

− E[∇θf
τ
θ0

(Y,X)J0(X, c/4)]

]

dM̄G(y)dP(x, y)

+

∫

Rn(τ, h, x, y)dP(x, y) (29)

where the last term is oP (n−1/2) uniformly in x, y, τ and h. The first one is zero from Proposition

5 and since J0 only depends on θ′0X.

For the second, let φn(x, y, h, τ) =

[1−H(y)]−1{
∫

x2,y≤y2≤τ0
gh
f,x,y(x2, y2)J0(x, c/4)dP(x2, y2)−E[∇θf

τ
θ0

(Y,X)J0(X, c/4)]}. Using the

fact that Hn is of cardinality kn, we have, for the second term in (29),

P

(

sup
h∈Hn

∣

∣

∣

∣

∫

φn(x, y, h, τ)dM̄G(y)

∣

∣

∣

∣

≥ ε

)

≤ kn sup
h∈Hn

P

(∫

|φn(x, y, h, τ)| dM̄G(y) ≥ ε

)

.

Now apply Lenglart’s inequality (see Lenglart (1977) or Theorem 3.4.1 in Fleming and Har-

rington, (1991)). This shows that, for all ε > 0 and all η > 0,

P

(

sup
τ≤t≤τ0

{∫ t

0
φn(x, y, h, τ)dM̄G(y)

}2

≥ ε2

)

≤ η

ε2
+ P

(

n−1

∫ τ

0
sup

h∈Hn,τ
φ2

n(x, y, h, τ)
[1 − Ĥ(y)]dG(y)

1 −G(y)
≥ η

)

. (30)

As mentioned before, suph∈Hn,τ |φn(x, y, h, τ)|2 = O(h4). From (30) and condition on kn in

Assumption 1, the Lemma follows.
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7.4.2 Donsker classes

As stated in Assumption 7, to obtain a n−1/2−convergence of θ̂, we need the regression function

(and its gradient) to be sufficiently regular. In the Lemma below, we first show that the classes

of functions defined in Assumption 7 are Donsker, and that f̂ also belongs to the same regular

class as f with probability tending to one.

Proposition 9. Consider the classes H1 and H2 defined in Assumption 7. H1 and H2 are

Donsker classes. Furthermore, f̂h,τ
θ0

and ∇θf̂
h,τ
θ0

belong respectively to H1 and H2 with probability

tending to one for some constant M sufficiently large.

Proof. The class H1 is Donsker from Corollary 2.7.4 in Van der Vaart and Wellner (1996). The

class H2 is Donsker from a permanence property of Donsker classes, see Examples 2.10.10 and

2.10.7 in Van der Vaart and Wellner (1996). We only show the proof for ∇θf̂
h,τ
θ0
, since the one

for f̂h,τ
θ0

is similar. Write

∇θf̂
h,τ
θ0

(z, x)

=
1

nh

n
∑

i=1

δi1Zi∈Aτ (Xi − x)K ′
h(θ′0Xi − θ′0x)Kh(Zi − z)

[1 − Ĝ(Zi−)]fθ′
0
X(θ′0x)

J0(Xi, c/2)

+
1

nh

n
∑

i=1

δi1Zi∈Aτ (Xi − x)K ′
h(θ′0Xi − θ′0x)Kh(Zi − z)[f̂θ′

0
X(θ′0x) − fθ′

0
X(θ′0x)]

[1 − Ĝ(Zi−)]f̂θ′
0
X(θ′0x)fθ′

0
X(θ′0x)

J0(Xi, c/2)

−
[

1

nh

n
∑

i=1

(Xi − x)K ′
h(θ′0Xi − θ′0x)J0(Xi, c/2)

f2
θ′
0
X

(θ′0x)

]

×
[

1

n

n
∑

i=1

δiKh(θ′0Xi − θ′0x)Kh(Zi − z)1Zi∈Aτ

[1 − Ĝ(Zi−)]

]

+





1

nh

n
∑

i=1

(Xi − x)K ′
h(θ′0Xi − θ′0x)[f̂

2
θ′
0
X(θ′0x) − f2

θ′
0
X(θ′0x)]J0(Xi, c/2)

f̂2
θ′
0
X

(θ′0x)f
2
θ′
0
X

(θ′0x)





×
[

1

n

n
∑

i=1

δi1Zi∈AτKh(θ′0Xi − θ′0x)Kh(Zi − z)

[1 −G(Zi−)]

]

.

From this expression, we clearly see that ∇θf̂
h,τ
θ0

(y, x) = xφ1(x
′θ0, y) + φ2(x

′θ0, y). Now we

must check that φ1 and φ2 are in H1 with probability tending to one. Since the functions are

twice continuously differentiable (from the assumptions on K), we only have to check their

boundedness. From Lemma 7, this can be done at first by replacing f̂h,τ by f∗h,τ (i.e. Ĝ by

the true function G). Among the several terms in the decomposition of ∇θf
∗h,τ , we will only

study

φ(u, y) =
1

nh

n
∑

i=1

δi1Zi∈AτXiK
′
h(θ′0Xi − u)Kh(Zi − z)J0(Xi, c/2)

[1 −G(Zi−)]fθ′
0
X(u)

,
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since the others are similar. We will show that the derivatives of order 0, 1 and 1 + δ of this

function are uniformly bounded by some constant M with probability tending to one.

Now a centered version of φ converges to zero at rate OP ([log n]1/2n−1/2h−1) (see Einmahl

and Mason (2005)), which tends to zero as long as nh2 → ∞. Furthermore, E[φ] is uniformly

bounded from our Assumption 7 on the regression function. For the derivative,

∂uφ(u, y) = − 1

nh

n
∑

i=1

δi1Zi∈AτXiK
′′
h(θ′0Xi − u)Kh(Zi − z)J0(Xi, c/4)

[1 −G(Zi−)]fθ′
0
X(u)

− 1

nh

n
∑

i=1

δi1Zi∈AτXiK
′
h(θ′0Xi − u)Kh(Zi − z)J0(Xi, c/4)f

′
θ′
0
X(u)

[1 −G(Zi−)]f2
θ′
0
X

(u)
.

Again, E[∂uφ] is uniformly bounded from our Assumption 7. Now using the results of Ein-

mahl and Mason (2005), the centered version of ∂uφ tends to zero provided that nh6 →
∞. The same arguments apply for ∂yφ. Hence, with fi(u, y) = E(φi(u, y)) we proved that

supu,y |∂j
u∂k

yφi(u, y) − ∂j
u∂k

yfi(u, y)| tends to zero in probability for i = 1, 2, k + j ≤ 1. Now we

have to show that ∂uφj and ∂yφj are δ− Hlder for j = 1, 2 with an Hölderian constant bounded

by some M with probability tending to one. We only prove the result for ∂uφ1. We have

sup
u′,y′,x,y

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ
= max

(

sup
|u−u′|≥n−1,y,y′

|∂uφ1(u, y) − ∂uφ2(u
′, y′)|

‖(u, y) − (u′, y′)‖δ
,

sup
|u−u′|≤n−1,y,y′

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ

)

= max(S1, S2).

We have

S1 ≤ sup
u,y,u′,y′

|∂uf1(u
′, y′) − ∂uf1(u, y)|

‖(u′, y′) − (u, y)‖δ

+ 2nδ sup
u,y,u′,y′

|∂uφ1(u, y) − ∂uf1(u, y)|.

From our Assumptions, the first supremum is bounded, while the last is

OP (n−1/2+δ[log n]1/2h−3) from the convergence rate of ∂uφ2. It tends to zero provided that

nh6+δ → ∞. For S2, since K is C3 with bounded derivatives, for some positive constant M,

sup
‖(u,y)−(u′,y′)‖≤n−1,y,y′

|∂uφ1(u, y) − ∂uφ1(u
′, y′)|

‖(u, y) − (u′, y′)‖δ
≤M ×OP (1)‖

3
∑

i=1

|K(i)|‖∞

× sup
‖(u,y)−(u′,y′)‖≤n−1

‖(u, y) − (u′, y′)‖1−δh−1 1

nh4

n
∑

i=1

δi
1 −G(Zi−)

.

The last supremum is bounded by OP (1)×n−1+δh−5, and it tends to zero when nh6 → ∞ (and

the OP (1) term does not depend on u, y).
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