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Generation of pseudo-random binary sequences by one-dimensional cellular automata is surveyed using both uniform and hybrid automata. The updating function is a Boolean function that must satisfy criteria of resilience and nonlinearity for the sequence they generate to be secure for a stream cipher application.

Introduction

Cellular automata (CA) are models of finite state machines used in many applications of computer science. In particular, they are is employed for the generation of binary pseudo-random sequences in cryptography. In the present work, we survey methods to generate binary pseudo-random sequences with cellular automata. We particularly focus on the search for good updating functions.

Section 1 presents the different cellular automata for sequence generation and a surveys their cryptographic applications. Section 2 concentrates on uniform cellular automata, particularly on the properties required for the updating function. An exhaustive list of rules satisfying the properties is given. Section 3 surveys the generation of pseudo-random sequences by hybrid cellular automata and proposes the generation of classical sequences by CA synthesis. At last, cryptographic applications of hybrid cellular automata are sketched.

Cellular automata and pseudo-random generation

Uniform cellular automata

One-dimensional binary cellular automata consist of a line of cells with binary values. For practical implementations, the number of cells is finite. There are two cases: a CA is boundary if the cells are arranged in a circular register and it is null-boundary when both extremal cells are fed with zeroes. All the cells are finite state machines with an updating function which gives the new state of the cell according to its current state and the current state of its nearest neighbors.

S. Wolfram proposes in [START_REF] Wolfram | Random sequence generation by cellular automata[END_REF] to use cellular automata to produce pseudo-random sequences. He considers one-dimensional binary cellular automata with ℓ cells with ℓ = 2N + 1. All the cells are identical finite state machines with binary states. For an uniform CA, the values of the cells at time t are updated synchronously with a Boolean function f with n = r 1 + r 2 + 1 variables by the rule x i (t + 1) = f (x i-r 1 (t), . . . , x i (t), . . . , x i+r 2 (t)) .

For a fixed t, the sequence of the values x i for 1

≤ i ≤ 2N + 1, is the configuration at time t. It is a mapping c : [[1, 2N + 1]] → F 2
which assigns a state of F 2 to each cell of the cellular automaton. The initial configuration (at time 0) x 1 (0), . . . , x ℓ (0) is the seed of the generator, the sequence (x N (t)) t is the output sequence and, when r 1 = r 2 = r, the number r denotes the radius of the rule. For example, let us consider the following updating function f :

f (x i-1 , x i , x i+1 ) = x i-1 XOR (x i OR x i+1 ).
The truth table of the Boolean function f is

x 3 0 1 0 1 0 1 0 1 x 2 0 0 1 1 0 0 1 1 x 1 0 0 0 0 1 1 1 1 f (x 1 , x 2 , x 3 ) 0 1 1 1 1 0 0 0 J-F. Michon, P. Valarcher, J-B. Yunès (Eds.): BFCA'08
The binary sequence 00011110 is the binary representation of the natural number 30 and allows to give a numbering of the rules (rule [START_REF] Wolfram | Cryptography with cellular automata[END_REF] in this case). In this paper, this notation is kept to describe a Boolean function. In the rest of this paper the additions of integers in Z will be denoted by + and Σ and additions in F 2 will be denoted by ⊕ and . For simplicity and when there will be no ambiguity, we shall denote by + the addition of binary vectors. 

f (x) = u∈F n 2 a u ( n i=1 x u i i ).
If we consider rule (30) again, its ANF is the polynomial

x 1 ⊕ x 2 ⊕ x 3 ⊕ x 2 x 3 .
The degree of the ANF denoted by d • f is called the algebraic degree of the function. This makes sense thanks to the existence and uniqueness of the ANF. The Hamming weight w

H (f ) of f is the number of vectors x in F n 2 such that f (x) = 1. A function is balanced if w H (f ) = w H (1⊕f ), i.e. w H (f ) = 2 n-1 . The Hamming distance between f and g is d H (f, g) = w H (f ⊕ g).

Hybrid cellular automata

When the rules are not identical for all the cells, the automaton is called non uniform, (or hybrid ) and is denoted HCA. Moreover if the rules are linear, the automaton is called linear hybrid cellular automata (LHCA).

In [START_REF] Cattell | Synthesis of one-dimensional linear hybrid cellular automata[END_REF][START_REF] Serra | The analysis of one dimensional cellular automata and their aliasing properties[END_REF], Muzio et al. consider linear hybrid cellular automata using two different linear rules. They assume the CA null-boundary and the linear updating rules are (90) and (150). A similarity transform between LHCA and linear feedback shift register is proposed in [START_REF] Cattell | An explicit similarity transform between CA and LFSR matrices[END_REF] and was recently improved in [START_REF] Kagaris | A similarity transform for linear finite state machines[END_REF].

Cellular programming approach

Tomassini and Sipper [START_REF] Sipper | Co-evolving parallel random number generators[END_REF] proposed to use hybrid cellular automata for generating better pseudo-random sequences. In this model, the rules are obtained by an evolutionary approach (a genetic algorithm). They have designed a cellular programming algorithm for cellular automata to perform computations, and have applied it to the evolution of pseudo-random sequence generators. Their approach uses Koza's entropy E h = -k h j=1 p h j log 2 p h j where k denotes the number of possible values per sequence position, h a subsequence length and p h j is a measured probability of occurrence of a sequence h j in a pseudo-random sequence.

Tomassini and Sipper have selected four rules of radius r = 1 for use in non-uniform cellular automata. The best rules selected by the genetic algorithm were rules 90, 105, 150 and 165 (all linear).

A series of tests (including χ 2 test, serial correlation coefficient, entropy and Monte Carlo, but no correlation-immunity analysis) were made with good results, showing that co-evolving generators are at least as good as the best available CA randomizer. The authors also use elementary rules which were proved to be not correlation-immune. This was further investigated in [START_REF] Seredynski | Cellular automata computations and secret key cryptography[END_REF].

Following the same kind of approach, Seredynski et al. in [START_REF] Seredynski | Cellular automata computations and secret key cryptography[END_REF] have generalized the selection process to radius 2 rules. They use then both radius 1 and radius 2 rules in hybrid cellular automata. The rules selected by their genetic algorithm were 30, 86, 101 and 869020563, 1047380370, 1436194405, 1436965290, 1705400746, 1815843780, 2084275140 and 2592765285.

Their new set of rules was tested by a number of statistical tests required by the FIPS 140-2 standard [START_REF]Security requirements for cryptographic modules[END_REF] and the Marsaglia tests implemented in the Diehard program but no correlation-immunity analysis was made either.

Moreover, the entropy calculation used in cellular programming approach reduces the efficiency of the algorithm.

Cryptographic applications

In [START_REF] Wolfram | Cryptography with cellular automata[END_REF] Wolfram proposed to use cellular automata for a stream cipher application. In this case, it must be hard to find the current state (and the seed in particular) from the output sequence (known plaintext attack). An exhaustive search can be done over the 2 ℓ possible initial states, but for large ℓ, exhaustive search becomes impossible. In [START_REF] Wolfram | Cryptography with cellular automata[END_REF], the cellular automaton is a simple one-dimensional uniform cellular automaton with a 3-variable updating rule.

Next, cellular automata are used in many area in cryptography. In symmetric cryptography, a block cipher proposed in [START_REF] Kar | Theory and applications of cellular automata in cryptography[END_REF] has been broken in [START_REF] Blackburn | Comments on "theory and applications of cellular automata in cryptography[END_REF], using the linearity of the updating function and the block cipher of [START_REF] Sen | Cellular automata based cryptosystem (CAC)[END_REF] using linear and non linear rules has been successfully cryptanalysed in [START_REF] Bao | Cryptanalysis of a new cellular automata cryptosystem[END_REF]. Other propositions of block ciphers are [START_REF] Mukhopadhyay | Cellular automata : an ideal candidate for a block cipher[END_REF] and [START_REF] Joshi | Design and analysis of a robust and efficient block cipher using cellular automata[END_REF]. Some hash functions are proposed in [START_REF] Damgard | Design principle for hash functions[END_REF] (broken in [START_REF] Daemen | A framework for the design of one-way hash functions including cryptanalysis of damgard's one-way function based on a cellular automaton[END_REF]) and [START_REF] Mihaljevic | A cellular automaton based fast one-way hash function suitable for hardware implementation[END_REF] and stream cipher in [START_REF] Mihaljevic | An improved key stream generator based on the programmable cellular automata[END_REF] [START_REF] Mihaljevic | A fast and secure stream cipher based on cellular automata over GF(q)[END_REF].

For the design of cryptographic cellular automata, updating rules should have an adapted radius and desired properties. In all cases, the choice of the updating rules in the cellular automaton is a fundamental criterion for the security of the crypto-system.

Uniform cellular automata

3-variable updating function and rule (30)

The investigation of S. Wolfram [START_REF] Wolfram | Cryptography with cellular automata[END_REF] is concentrated on updating functions f with 3 variables, i.e. r 1 = r 2 = 1. In particular, he considered rule (30) defined by

f (x i-1 , x i , x i+1 ) = x i-1 XOR (x i OR x i+1 ), or equivalently f (x i-1 , x i , x i+1 ) = x i-1 + x i + x i+1 + x i x i+1 mod 2.
S. Wolfram claims the sequence (x t i ) t≥0 is pseudo-random for a given i. He extensively studied this particular rule, demonstrating its suitability as a high performance randomizer which can be efficiently implemented in parallel; this is one of the pseudo-random generators which was shipped with the connection machine CM2 and which is currently used in the Mathematica software.

Attack of Meier and Staffelbach

The first attack on this pseudo-random generator is proposed by W. Meier and O. Staffelbach in [START_REF] Meier | Analysis of pseudo random sequences generated by cellular automata[END_REF]. The output sequence (x N (t)) t is known for t = 0, . . . , N . The sequence (x N +1 (t)) t is called right adjacent sequence. The principle is that if the right adjacent sequence is known for t = 0, . . . , N -1, then half of the seed x 0 (0), . . . , x N -1 (0) is known, using the partial linearity of f :

x i-1 (t) = x i (t + 1) XOR (x i (t) OR x i+1 (t)).
This attack is successfull if the right adjacent sequence is easily constructed. Statistical experiments show that there are only few possibilities for the right adjacent sequence. As noted in [START_REF] Martin | A Walsh exploration of elementary CA rules[END_REF], this phenomenon comes from the correlation between the inputs and the outputs of rule [START_REF] Wolfram | Cryptography with cellular automata[END_REF]. Indeed, we have

P r (x i (t + 1) = 1 ⊕ x i-1 (t)) = 3 4 .
In order to counter this attack, the updating function must be resilient. This concept is introduced by T. Siegenthaler, in relation with correlation attacks on stream ciphers [START_REF] Siegenthaler | Correlation-immunity of nonlinear combining functions for cryptographic applications[END_REF].

Definition 2.1 (Resilient functions). A Boolean function f mapping F n

2 to F 2 is t-resilient if for any coordinates i 1 , . . . i t , for any binary constant c 1 , . . . , c t and for all y ∈ F 2 ,

P r(f (x) = y | x i 1 = c 1 , . . . , x it = c t ) = 1 2 ,
where x i with i / ∈ {i 1 , . . . , i t } verifies P r(x i = 1) = P r(x i = 0) = 0.5.

For a Boolean function f with n variables, the Walsh transform

f of f is defined over F n 2 by f (u) = x∈F n 2 (-1) f (x)⊕u•x .
The Walsh transform of f is related to the Hamming weight of the function f ⊕ l b (where

l b (x) = b • x) via the relation: f (b) = 2 n -2w H (f ⊕ l b ). It satisfies Parseval's relation: b∈F n 2 f 2 (b) = 2 2n . (1) 
G.Z. Xiao and J.L. Massey give a spectral characterization of resilient functions [START_REF] Xiao | A spectral characterization of correlationimmune combining functions[END_REF] Theorem 2.2. A Boolean function in n variables is t-resilient iff for all u whose Hamming weight verifies 0 ≤ w H (u) ≤ t, we have f (u) = 0.
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Theorem 2.3. For a t-resilient (0 ≤ t < n -1) Boolean function with n variables, there is an upper bound for its algebraic degree

d: d ≤ n -t -1 if t < n -1 and d = 1 if t = n -1.
Theorem 2.3 shows that the algebraic degree of a 1-resilient function with 3 variables is at most 1, i.e. the Boolean function is linear. B. Martin has explored all the Boolean functions in 3 variables and concludes that there is no non linear function in 3 variables which is 1-resilient [START_REF] Martin | A Walsh exploration of elementary CA rules[END_REF] which is also a consequence of the Siegenthaler bound [START_REF] Siegenthaler | Correlation-immunity of nonlinear combining functions for cryptographic applications[END_REF].

Attack of Koç and Apohan

The second attack against rule (30) is proposed by C.K. Koç and A.M. Apohan [START_REF] Apohan | Inversion of cellular automata iterations[END_REF].

The algorithm is based on the linear approximation of the updating function. The resistance to this attack depends on the distance between the updating function and the set of all linear functions. Let l be the best linear approximation of the updating function f with n variables and A the number of points such that f (x) = l(x). Let α = A/2 n be the probability than f (x) = l(x). Then the algorithm requires at most 2 (n-1)(1-α)l trials for arbitrary nonlinear functions and seed. Under these conditions, the number α must be small. Definition 2.4 (Nonlinearity). Let f be a Boolean function mapping F n 2 to F 2 . The nonlinearity N f of f is defined by

N f = min (a 0 ,...,an)∈{0,1} n+1 d H (f (x), a 0 ⊕ a 1 x 1 ⊕ • • • ⊕ a n x n ) .
The relation between Walsh transform and nonlinearity comes from W. Meier and O. Staffelbach [START_REF] Meier | Nonlinearity criteria for cryptographic functions[END_REF].

Theorem 2.5. Let f be a function mapping F n 2 to F 2 . Then

N f = 2 n-1 - 1 2 max u∈F n 2 | f (u)| ,
and

N f ≤ 2 n-1 -2 n 2 -1 . (2) 
A cellular automaton resists the attack of [START_REF] Apohan | Inversion of cellular automata iterations[END_REF] if the nonlinearity of its updating function is high. Boolean functions where nonlinearity meet the bound (2) are called bent functions. Bent functions in an even number of variables exist but are never balanced. Moreover, there is a tradeoff between resilience order and nonlinearity [START_REF] Sarkar | Nonlinearity bounds and constructions of resilient boolean functions[END_REF] : Theorem 2.6. Let f be a Boolean function t-resilient over F n 2 . Then there is an upper bound on the nonlinearity of f :

N f ≤ 2 n-1 -2 t+1 .
By [START_REF] Yuriy | On resilient Boolean functions with maximal possible nonlinearity[END_REF] this bound is tight for t ≥ 0.6n.

4-variable updating functions

In this section, we investigate the 2 16 = 65536 elementary CA rules with 4 variables and give a complete classification of the functions which have good resilience and nonlinearity properties. These functions are used to get cellular automata for generating cryptographic pseudorandom sequences.

An exhaustive search by the Walsh transform of all Boolean functions with 4 variables is realized, to find a list of 1-resilient functions, with high nonlinearity.

There are exactly 200 non linear balanced functions which are 1-resilient and all are quadratics (cubics balanced functions are not resilient by Siegenthaler bound (Theorem 2.3)).

A Boolean function in 4 variables is defined by an integer between 0 and 65536, keeping Wolfram's notation for CA rules with 3 variables. For example, the function (34680), with binary representation 100001110111000 corresponds to the following truth table:

x 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x 2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x 3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 f (x 1 , x 2 , x 3 , x 4 ) 0 0 0 1 1 1 1 0 1 1 1 0 0 0 0 1
For classifying the functions, we use their algebraic normal form (ANF). For instance the ANF of rule (280) (=100011000 in binary) corresponds to the polynomial

f (x 1 , x 2 , x 3 , x 4 ) = x 1 x 2 ⊕ x 3 ⊕ x 4 .
(3)
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For the classification of these functions, let σ denote a 4 by 4 permutation matrix. Two Boolean functions f and g are equivalent if there exists a permutation σ such that f (x) = g(σ(x)) or g(σ(x)) + 1.

The following table gives the set of all 1-resilient function, with a representant of each class f , its corresponding ANF and the cardinal of each class:

f ANF ANF card. 34680 280 x 1 x 2 ⊕ x 3 ⊕ x 4 12 6120 360 x 4 ⊕ x 1 x 2 ⊕ x 1 x 3 ⊕ x 2 x 3 8 7140 300 x 2 ⊕ x 4 ⊕ x 1 x 2 ⊕ x 1 x 3 48 11730 282 x 1 ⊕ x 3 ⊕ x 4 ⊕ x 1 x 2 24 34740 1308 x 2 ⊕ x 3 ⊕ x 4 ⊕ x 1 x 2 ⊕ x 4 x 2 48 39318 4374 x 1 ⊕ x 2 ⊕ x 3 ⊕ x 4 ⊕ x 3 x 4 12 7128 5432 x 3 ⊕ x 4 ⊕ x 1 x 2 ⊕ x 3 x 1 ⊕ x 4 x 2 ⊕ x 4 x 3 24 11220 380 x 2 ⊕ x 3 ⊕ x 1 x 2 ⊕ x 3 x 1 ⊕ x 4 x 2 24 
The nonlinearity of these functions is computed for an evaluation of the resistance against the attack of [START_REF] Apohan | Inversion of cellular automata iterations[END_REF]. The 200 1-resilient Boolean functions with 4 variables have a nonlinearity equal to 4. There exist some Boolean function with 4 variables with nonlinearity 6, but they are not resilient, according Theorem 2.6.

Two classes of functions are more interesting because these functions can be inplemented with only 3 logical gates. These functions are (34680) and (39318) or equivalently

f (x 1 , x 2 , x 3 , x 4 ) = x 1 ⊕ x 2 ⊕ (x 3 OR x 4 )
In this case, the two CA are described by the updating function

x i (t + 1) = x i-1 (t) XOR x i (t) XOR (x i+1 (t) AND x i+2 (t)) , and 
x i (t + 1) = x i-1 (t) XOR x i (t) XOR (x i+1 (t) OR x i+2 (t)) .
If the resilience order of the updating function must be greater than 1 (for example with a generalization of [START_REF] Meier | Analysis of pseudo random sequences generated by cellular automata[END_REF]), then Boolean functions with 5 variables should be used.

Hybrid Cellular automata

Linear hybrid cellular automata

In the context of sequence generation, several authors consider the case where different cells of the CA use different rules. This model is called hybrid cellular automata. In [START_REF] Cattell | Synthesis of one-dimensional linear hybrid cellular automata[END_REF][START_REF] Serra | The analysis of one dimensional cellular automata and their aliasing properties[END_REF], Muzio et al. consider linear hybrid cellular automata using two different linear rules. The automata are null-boundary and the linear updating rules are (90) and (150). In [START_REF] Cattell | An explicit similarity transform between CA and LFSR matrices[END_REF], LHCA are proved equivalent to linear feedback shift registers.

Let D = [d 0 , . . . , d ℓ-1 ] be a binary vector with the following properties : if d i = 0 then cell i uses rule (90), else cell i uses rule (150). In other terms,

x i (t + 1) = x i-1 (t) + d i .x i (t) + x i+1 (t) mod 2 .
Using this rule, it is possible to a matrix representation of the transition between two consecutive states. Let the current state be s(t) = (x 0 (t), . . . , x ℓ-1 (t)), then

s(t + 1) = A.s(t) , (4) 
where the binary matrix A, called transition matrix, is defined by

        d 0 1 0 . . . 0 1 d 1 1 . . . . . . 0 1 d 2 . . . . . . . . . . . . . . . 1 0 . . . 0 1 d l-1        
Let ∆ be the characteristic polynomial of A, that is ∆ = |xId -A|. A polynomial is said to be a HCA polynomial if it is the characteristic polynomial of some HCA. The following theorem gives a property on HCA polynomial [START_REF] Cattell | Synthesis of one-dimensional linear hybrid cellular automata[END_REF][START_REF] Cho | New synthesis of one-dimensional 90/150 linear hybrid group CA[END_REF] :

Theorem 3.1. Let p ∈ F 2 [X]
of degree n and p ′ its formal derivative. Then p is a HCA polynomial if and only if for some solution q for y of the congruence

y 2 + (x 2 + x)p ′ y + 1 ≡ 0 mod p , (5) 
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Euclid's greatest division algorithm on p and q results in n degree one quotients.

If the polynomial p is irreducible, then equation ( 5) has exactly two solutions, both of which result in n degree one quotient : Theorem 3.2. Let p ∈ F 2 [X] be an irreducible polynomial. Then p has exactly two HCA realizations with one being reversal of the other.

Given a polynomial, the construction of the corresponding HCA is called the synthesis approach. A detailed method is described in [START_REF] Cattell | Synthesis of one-dimensional linear hybrid cellular automata[END_REF] using this theorem to find HCA polynomial. Moreover, given p and q two irreducible polynomials with corresponding transition matrix P and Q, the transition matrix corresponding to p.q is given by P 0 0 Q . This operation corresponds to concatenation of two LHCA [START_REF] Cattell | Onedimensional LHCA: their synthesis, properties and applications in VLSI testing[END_REF].

Synthesis of classical sequences by LHCA

A semi-bent functions is a Boolean functions in an odd number n of variables, the Walsh transform of which takes only three values 0, ±2 (n+1)/2 . Some of these are traces of AB vectorial functions [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like cryptosystems[END_REF] in the form f (x) = T r(ax + bx s ), where a, b are scalars of the extension field F 2 n and T r the trace function from F 2 n down to F 2 . For monomial AB functions, the exponents s are in the list of Gold, Kasami, Welch, Niho (see Table 1).

Name s Conditions Gold 2 i + 1 i ∧ n = 1, 1 ≤ i ≤ n/2 Kasami 2 2i -2 i + 1 i ∧ n = 1, 1 ≤ i ≤ n/2 Welch 2 (n-1)/2 + 3 Niho 2 2r + 2 r -1 r = t/2 for t even r = (3t + 1)/2 for t odd with 1 ≤ r ≤ n = 2t + 1 Table 1.

Exponents of Almost Bent monomials

In all cases, for α a primitive element on F 2 n and m α the minimal polynomial of α, the polynomial m α m α s , is used to synthesize HCA. Using these polynomials, sequences with good correlation properties can be synthesized by linear hybrid cellular automata.

Cryptography with LHCA

Linear HCA cannot serve directly as pseudo-random sequence generators for cryptography. Equation ( 4) is used to describe any current state of the CA in terms of the initial state by the relation

s(t) = A .s(0) . (6) 
Let N be the index of the cell which gives the output sequence (s N (t)) t of the CA. Then

s N (t) = a N (t).s(0) , (7) 
where a N (t) denotes the ℓ-bit vector corresponding to the row N of the matrix A t . In this case, the initial state is known by the inversion of the binary linear system according to [START_REF] Cattell | Onedimensional LHCA: their synthesis, properties and applications in VLSI testing[END_REF].

In these conditions, the binary vector D = [d 0 , . . . , d ℓ-1 ] must be non constant. If the vector D changes in function of s(t), e.g.

d i (t) = s i+2 (t), then s i (t + 1) = s i-1 (t) ⊕ s i (t) ⊕ d i (t).s i+1 (t) . (8) 
In this case, we get the non linear Boolean function (280) of section 2 again. In fact, if d i (t) is a linear combination of bits of the current state s(t), then the updating function corresponds to a quadratic Boolean function.

An other possibility is to consider the vector [d 0 , ..d n-1 ] = [y 0 (t), .., y n-1 (t)], where the bits y i (t) are the internal state of an other CA. Generalizing this system, a cascade of n CA is constructed, where the state of the nth CA corresponds to the vector D of the n + 1th CA. This cascade provides high quality pseudo random sequence and a possibility for larger cycles.

We illustrate our previous proposition by an example: let CA 1 be a uniform CA using rule (39318) of length ℓ. The internal state of CA 1 corresponds to the binary vector D = [d 0 , . . . , d ℓ-1 ] and the rule of the second automaton CA 2 is described by equation [START_REF] Cho | New synthesis of one-dimensional 90/150 linear hybrid group CA[END_REF].

The output sequence of this generator is given by the sequence (s N (t)) t where s is the internal state of CA 2 and ℓ = 2N + 1.

In this case, the cryptanalysis of the pseudo random generator of proposed in [START_REF] Blackburn | Comments on "theory and applications of cellular automata in cryptography[END_REF] is not possible because rules are non linear and the output of the generator consists in just one bit.

As proposed in [START_REF] Mihaljevic | An improved key stream generator based on the programmable cellular automata[END_REF], it is suitable that the output sequence is not directly one (or several) bit of the current state. In this case the output sequence is filtered by a Boolean function. This scheme is a variant of the classical filtered linear shift register. The Boolean function must have the same properties as high nonlinearity or resilience order.

Conclusion

We have used the synthesis approach to give an effective CArealization of classical sequences with good correlation properties. We have also presented good and bad ways to construct pseudorandom binary sequences for cryptographic applications with cellular automata.

The main interest of this work concerns the hardware implementation. The target hardware model of CAs is the Field Programmable Gate Arrays (known as FPGAs).These devices consist of an array of uncommitted logic gates whose function and interconnection is determined by downloading information to the device. When the programming configuration is held in static RAM, the logic function implemented by those FPGAs can be dynamically reconfigured in fractions of a second by rewriting the configuration memory contents. Thus, the use of FPGAs can speed up the computation done by the cellular automata.

These results can be extended in many directions. If the number of variables of the Boolean function must be increased, the research of good updating rules is a classical problem in symmetric cryptography. Other applications of CA than pseudo random generation (e.g. hash functions) can also be investigated.

  If x and b are two binary vectors, we denote by x • b their usual inner product x • b = n i=1 x i b i . We also recall the definition of the algebraic normal form as an alternative representation of Boolean functions. Definition 1.1. A Boolean function f with n variables is represented by a binary polynomial in n variables, called algebraic normal form (ANF):
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