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Abstract

In this paper, we explore the 256 elementary cellular automata rules by

a Walsh transform in order to find out correlation-immune rules for gener-

ating good pseudo-random sequences. We prove that, except the 8 linear

rules, there is no correlation-immune rule among the 256 rules. Thus, Wol-

fram cellular automata cannot be used as a cryptographic pseudo-random

generator since the generated pseudo-random sequences are susceptible

of correlation attacks. We conclude with some remarks on cryptography

with cellular automata.
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Introduction

In his seminal paper [15], Wolfram proposed to use cellular automata (CA for
short) to build a pseudo-random generator. He suggested that pseudo-random
sequences generated by rule 30 could be used for cryptographic purposes as keys
for a Vernam-type cipher when run on an initial configuration of 127 cells ar-
ranged on a ring. More recently, B. Preneel in [9] quantifies the security of this
pseudo-random generator and claims that it is insecure for an initial configura-
tion of size smaller than 1000. Actually, the pseudo-random sequence generated
passed all classical statistical tests, suggesting a good pseudo-random quality.
Unfortunately, a few years later, Meier and Staffelbach [7] proved that the Wol-
fram pseudo-random generator is in fact very weak. The reason why their attack
was successful comes from the fact that there are correlations between the in-
puts and the output of rule 30. This correlation is used in the attack to recover
an initial configuration leading to the same pseudo-random sequence.
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In this paper, we propose to use a discrete transform, the Walsh transform,
to explore the set of all the 256 elementary CA rules. The Walsh transform is a
well-known tool in the field of cryptology for studying the correlation-immunity
of Boolean functions: Xiao and Massey [18] have characterized the notion of
correlation-immunity with the Walsh transform. We apply this technique to
the pseudo-random sequences generated by all of the 256 binary rules and we
provide evidence that there does not exist a non-linear rule which generates a
correlation-immune pseudo-random sequence.

The paper is organized as follows: in section 1, we recall the definition of
CA and how they are used by Wolfram to generate pseudo-random sequences;
we also define the Walsh transform and its relation with correlation-immunity.
Section 2 applies the Walsh transform to the set of the 256 binary rules and
shows firstly that the choice of rule 30 was the best choice Wolfram could make
and, secondly, that this choice does not provide a correlation-immune function.
Finally, in section 3, we make final remarks on the generation of pseudo-random
sequences with cellular automata and their use in cryptography. We assume the
reader familiar with basic concepts of cryptology for which a good introduction
is [12, 6].

1 Definitions and notation

In this section, we briefly recall the definition of cellular automata and we focus
on the so called elementary rules (or Wolfram rules). We also define a discrete
transform, the Walsh-Hadamard transform which allows to quickly study the
space of the rules in order to find rules with low correlation.

1.1 Cellular automata

A cellular automaton is generally a bi-infinite array of identical cells which evolve
synchronously according to a local transition function and communicate with
their nearest neighbors. Here, we consider a ring of N cells which are indexed
by ZN . All the cells are identical finite state machines with a finite number of
states and a transition function which gives the new state of a cell according to
its current state and the current states of its nearest neighbors.

Definition 1 A cellular automaton is a finite array of identical cells indexed

by ZN . Each cell is a finite state machine C = (Q, f) where Q is a finite set of

states and f a mapping f : Q × Q × Q → Q.

The mapping f , called local transition function, has the following meaning: the
state of cell i at time t+1 (denoted by xt+1

i ) depends upon the state of cells i−1,
i and i + 1 at time t. We have the following equality: xt+1

i = f(xt
i−1, x

t
i, x

t
i+1).

For a fixed t, the sequence of all the values xi for i ∈ ZN , is the configuration

at time t. It is a mapping c : ZN → Q which assigns a state of Q to each cell of
the cellular automaton.
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We will restrict ourselves to the case where the set of states Q = F2 and f

is a Boolean predicate with 3 variables, also called an elementary rule. These
cellular automata have been considered by Wolfram in [17]: he considers the
256 different binary cellular automata and associates a natural number to each
rule as follows:

(xt
i−1x

t
ix

t
i+1) 111 110 101 100 011 010 001 000

xt+1

i 0 1 0 1 1 0 1 0

The top line gives all possible preimages for f while the bottom line gives the
images by f of the three binary values. Thus, f is fully specified by the 8-bit
number written on the bottom line (01011010 in our example) which can be
translated in basis 10 (as rule number 90 in our example). Equivalently, this
rule can be considered as a Boolean function with (at most) 3 variables. Taking
rule 90 again, the corresponding Boolean function is xt+1

i = xt
i−1 ⊕xt

i+1 with ⊕
denoting the Boolean XOR function.

More specifically in [15, 16], Wolfram uses a one-dimensional cellular au-
tomaton for pseudo-random bit generation by selecting the values taken by a
single cell when iterating the computation of rule 30 from an initial finite con-
figuration where the cells are arranged on a ring of N cells. Mathematically,
Wolfram claims the sequence {xt

i}t≥0 is pseudo-random for a given i. Wolfram
studied this particular rule extensively, demonstrating its suitability as a high
performance randomizer which can be efficiently implemented in parallel; in-
deed, this is one of the pseudo-random generators which was shipped with the
connection machine CM2.

Since we are dealing with pseudo-random generators, some rules are equiv-
alent from this point of view by three transformations. To define the transfor-
mations, just recall that a transition is f(x) = y with x ∈ F

3
2 and y ∈ F2. In the

sequel, we denote by w̃ the mirror image of word w = w1 . . . wn, w̃ = wn . . . w1

and by w the word obtained from w by exchanging the 0’s by 1’s (and con-
versely) w = w1 . . . wn. The first is the conjunctive transformation which takes
as an input rule r written in binary and returns r̃. For instance, the conjunctive
transformation turns rule 30 into rule 135. The second transformation, called
reflexive just changes the order of the x’s by: yi = f(x̃i) for i ∈ [[0, 7]]. As an
example, with reflexive transformation, rule 30 is changed into rule 86. The last

transformation combines both and is called conjunctive-reflexive: yi = f(x̃i) for
i ∈ [[0, 7]] and it changes rule 30 into rule 149. All these transformations keep
the spectral values of the cellular automata dynamics and are thus statistically
equivalent.

1.2 Walsh transform

Walsh transform allows to compute the correlation between the inputs and the
outputs of the iterations of a cellular automaton. One of the great advantages
of the Walsh transform is that its computation is even faster than computing a
FFT (see [3] for instance).
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Let us denote by f(x) the value of function f at x = (x0, x1, x2, . . . , xn−1) ∈

F
n
2 or, equivalently, f(x), the value of f at x =

∑n−1

i=0
xi.2

i, the decimal value
corresponding to x. Analogously, let ω = (ω0, . . . , ωn−1) ∈ F

n
2 and ω its corre-

sponding decimal value. The Walsh transform of f is defined by:

Sf (ω) =

2
n−1∑

x=0

f(x) × (−1)x·ω

with x · ω =
∑n−1

i=0
xi.ωi denoting the Cartesian product of the two binary

vectors. From the spectral values of the Walsh transform, one can recover the
function f with the inverse Walsh transform:

f(x) = 2−n

2
n−1∑

ω=0

Sf (ω) × (−1)x·ω

The Walsh transform has some interesting statistical properties. For instance,
the value of the transform at point 0 equals the mean value of the function:
Sf (0) = E[f(x)] = 2n−1. This property permits to test whether f is balanced

(the number of 0 equals the number of 1 in the image domain of f). In addi-
tion, Walsh transform is the main tool to study the correlation-immunity of a
function.

Definition 2 A function f : F
n
2 → F2 is k-th order correlation-immune if,

given n independent binary random variables X0, X1, · · · , Xn−1 such that P [Xi =
0] = P [Xi = 1] = 1

2
for i ∈ [[0, n − 1]], then the random variable Z =

f(X0, X1, . . . , Xn−1) is independent from any random vector (Xi1 , Xi2 , . . . , Xik
),

0 ≤ i1 < · · · < ik < n.

In [18], Xiao and Massey have characterized (k-th order) correlation-immunity
with the Walsh transform. We recall this result in Theorem 1 in which the
Hamming weight just counts the number of non-zero values in a vector.

Theorem 1 A function f : F
n
2 → F2 is k-th order correlation-immune if and

only if Sf (ω) = 0 for all ω = (ω0, ω2, · · · , ωn−1) 6= 0 whose Hamming weight is

at most k.

For readers interested in a readable proof of theorem 1, one can refer to [20].
Actually, the idea of using Walsh transform to test pseudo-random genera-

tors comes from [19]. In this paper, Yuen observed that a truly random sequence
has an asymptotically flat Walsh power spectrum. This observation was used
to devise a new test for randomness of the output of pseudo-random generators.
It was an improvement of the tests described in Knuth [5] who does not deal
with cryptographic pseudo-random generation.

2 A correlation study of Wolfram rules

We use a Walsh transform to study all the 256 elementary CA rules in order
to find the best (non-linear) rules for generating pseudo-random sequences. To
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t 1 2 3 4 5 conj refl c.r.

rule cfg val cfg val cfg val cfg val cfg val

30 4 2 16 4 64 16 256 40 1024 80 135 86 149

60 0 0 0 0 0 0 0 0 0 0 195 102 153

86 1 2 1 4 1 16 1 40 1 80 149 30 135

90 0 0 0 0 0 0 0 0 0 0 165 90 165

102 0 0 0 0 0 0 0 0 0 0 153 60 195

105 0 0 0 0 0 0 0 0 0 0 105 105 105

135 4 2 16 4 64 16 256 40 1024 80 30 149 86

149 1 2 1 4 1 16 1 40 1 80 86 135 30

150 0 0 0 0 0 0 0 0 0 0 150 150 150

153 0 0 0 0 0 0 0 0 0 0 102 195 60

165 0 0 0 0 0 0 0 0 0 0 90 165 90

195 0 0 0 0 0 0 0 0 0 0 60 153 102

Table 1: “Good” rules after selection and their equivalent rules.

check the rules, we use the fast Walsh transform algorithm proposed in [3] whose
time complexity is O(n log n). We proceed step by step.

We first remove all non-balanced rules by computing their Walsh transform;
we only select rules f for which Sf (0) = 4; there are only 70 remaining balanced
rules.

Among the 70 balanced rules fi, we compute the maximum absolute value
of the Walsh transform of the tth-iterate of fi at all the points ω of Hamming
weight 1 and we select the rules with a minimum spectral value. That is, we
select rules fi such that:

min
fi

max
ω=2ℓ

|S
f
(t)
i

(ω)|

where t denotes the iteration number and ω is the binary expansion of 2ℓ for
ℓ ∈ [[0, 2t + 1]], all the t bit vectors of Hamming weight one. Equivalently, we
just test if, among the 70 balanced rules, there are some which are first order
correlation-immune.

After this, there are only the 12 remaining rules listed in table 1 still contain-
ing linear rules which we recall in table 2. In table 2, the binary value encoding
Wolfram’s rule is written with the most signifiant bit on the rightmost part.

Finally, if we remove the 8 linear rules, the best remaining rules are 30, 135,
86 and 149 which are all equivalent by conjunctive, reflexive and conjunctive-
reflexive transformations. None of them is first order correlation-immune nor
correlation-immune as well. Thus, we can state that:

Theorem 2 There is no non-linear correlation-immune elementary cellular au-

tomaton.

That is the reason why pseudo-random sequences generated in this way can
be reversed by a correlation attack like the one proposed in [7], although pseudo-
random sequences generated by rule 30 (or, equivalently by rules 86, 135 and
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Boolean function binary decimal
xi ⊕ xi+1 00111100 60
xi−1 ⊕ xi 01100110 102

xi−1 ⊕ xi+1 01011010 90
xi−1 ⊕ xi ⊕ xi+1 01101001 150

xi−1 ⊕ xi 10011001 153
xi ⊕ xi+1 11000011 195

xi−1 ⊕ xi+1 10100101 165
xi−1 ⊕ xi ⊕ xi+1 10010110 105

Table 2: Linear rules and their corresponding Boolean functions.

149) pass classical statistical tests like the ones proposed in [5]. The attack
proposed by Meier and Staffelbach in [7] is simple. It suffices to write the way
to obtain the sequence generated by rule 30:

xt+1

i = xt
i−1 ⊕ (xt

i ∨ xt
i+1) (1)

and to use the partial linearity to rewrite equation 1 as:

xt
i−1 = xt+1

i ⊕ (xt
i ∨ xt

i+1) (2)

From equation 1, the site values corresponding to the pseudo-random sequence
are build from a triangle in the time-space diagram. And, from equation 2, one
can guess the values of the leftmost part of the triangle (or equivalent partial
configurations) and then find an initial configuration for generating the pseudo-
random sequence, exploiting the correlation.

3 Conclusion

So, does theorem 2 destroy any hope to design a good pseudo-random generator
by the means of cellular automata? Not necessarily. For instance, in [11] it was
proposed to use co-evolving non-uniform cellular automata for that purpose. In
this model, each cell may contain a different rule obtained by an evolutionary
approach (genetic algorithm), usually 2-3 rules for the cellular automaton. A
series of tests (including χ2 test, serial correlation coefficient, entropy and Monte
Carlo, but no correlation-immunity analysis) was made with good results, show-
ing that co-evolving generators are at least as good as the best available CA
randomizer. The drawback here is that the authors also use Wolfram-like rules
which we proved to be not correlation-immune. This approach was further inves-
tigated more recently in [10]. In this paper, the authors generalize the former
approach by considering also rules of radius 1 and 2 for non-uniform cellular
automata. They find a new set of rules that were tested by a number of sta-
tistical tests required by the FIPS 140-2 standard [13] and the Marsaglia tests
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implemented in the Diehard program but no correlation-immunity analysis was
made. And, for both approaches, it is recalled in [20] that it can be dangerous
to combine “bad rules”.

Last but not least, there is currently a great challenge in the use of a good
pseudo-random generators; not only for use as a key for a Vernam-type cipher
but also for computing a cryptographic hash function. Actually, from the colli-
sion attacks on MD5 and other hash functions (see [4] and [14]), one could use
the improvements proposed by [1] and later by [8] of the hash function based on
cellular automata which was originally suggested by Damg̊ard in [2]. And, in
order to design a secure cryptographic hash function, we need to have a robust
pseudo-random generator.
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