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Abstract

The first aim of the present paper, is to establish strong approximations of the uni-
form non-overlapping k-spacings process extending the results of Aly et al. (1984).
Our methods rely on the invariance principle in Mason and van Zwet (1987). The
second goal, is to generalize the Dindar (1997) results for the increments of the
spacings quantile process to the uniforme non-overlapping k-spacings quantile pro-
cess. We apply the last result to characterize the limit laws of functionals of the
increments k-spacings quantile process.

Keywords: Stochastic processes; Strong approximations; Gaussian processes; Func-
tional laws of the iterated logarithm, Quantile processes.
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1 Introduction

Let Uy, Us, ..., be independent and identically distributed (i.i.d-) uniform [0, 1] random
variables (r.v.’s) defined on the same probability space (€2, A, P). Denote by 0 =: Up,, <
Up < < U1y < U,y =1, the order statistics of Uy, Us, ..., U,_1, and 0,1. The
corresponding non-overlapping k-spacings are then defined by

Dfﬁn = Uim,n - U(i—l)m,na for 1 < <N — ]_’

1.1
D?\Qn = 1_Uv(N—l)m,nu ( )

where N = |n/k], with |u| < u < |u] + 1 denoting the integer part of u. When k = 1,
i.e., N = n, the k-spacings reduce to the usual 1-spacings (or simple spacings) defined by

1 .
D;, =Uin—Ui1y, for i=1,...,n
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Simple spacings have received a great deal of attention in the literature. We refer
to Deheuvels (1986), Pyke (1965, 1972), Shorack (1972), Rao and Sethuraman (1975),
Beirlant (1984) and Beirlant et al. (1991) for details. Throughout the sequel, &k > 1
will denote a fixed integer. In applications it is more convenient to use the normalized
non-overlapping k-spacings {k:Dfn 1 <i < N} Forafixed B > 1, as n — oo, the
distribution function of kD, (which is independent of the index 7 with 1 <i < N —1)
converges to the distribution function Fy(-), of a standard gamma random variable with
expectation k, given by

1 t t
F(t) = ——— [ 2" e de = [ Fy(t)dt, for t>0, (1.2)
(k=1 Jo 0
where et
F.(t) = = 1) and Fi(t) =0, for t<0. (1.3)

For each choice of k > 1, the empirical k-spacings process is defined by
() = N2 (ﬁn(x) — Fk(:p)) , for >0, (1.4)

where ﬁn() is the empirical distribution function of {kD}, : 1 < i < N}, defined for
n > m, by

~

N
1
F.(z) = N Z]l{kDiinS:v}’ for x € R, (1.5)
i=1

with 14 denoting the indicator function of the event A. We will need the following
additional notation and definitions. Let My, < MY < ... < ML be the order
statistics of {Dfn : 1 <i < N}. The quantile k-spacings function is given by

~ kME if Sl <t< Loi=1,2,...,N,
Quteyi={ (M T

— N
0, if ¢ =0.

Let us introduce

Qr(t) =inf{x > 0: Fy(x) > t}, (1.6)
and
d
fult) = S Fu(e).

The quantile k-spacings process {7,(t) : 0 <t < 1} is then defined by

() i= N2 (Qu() (Qu(t) = Qu(t)) , for 0 <1, (1.7)

In Deheuvels (1985), more than 60 references are given on this subject, with statistical
applications such as testing uniformity or goodness-of-fit tests. Weak convergence results
for the process {a,(x) : 0 < & < oco,n > 1} were obtained by Pyke (1965), Shorack
(1972), Rao and Sethuraman (1975), Aly (1983) and Beirlant (1984). Further, Durbin
(1975) obtained tables for the limiting distribution of the Kolmogorov-Smirnov (K-S)
statistic based on {a,(x) : 0 < z < oo,n > 1}. Here, we mention that Pyke (1965) was
the first to suggest the use of the K-S and Cramér-von Mises functionals of {a,(x) : 0 <
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x < o0o,n > 1}. del Pino (1979) consider the k-spacings as in (1.1) and characterized the
limiting distribution of the statistics

Walg, k) = N™2> "(g(NkDEy) — a),

i=1

where ¢(-) is a smooth function, k is fixed and a = E[g(Y)], Y is a r.v. with a density func-
tion fx(y). These statistics W, (g, k) can be used for testing goodness-of-fit to a uniform
distribution. For application of the spacing in statistical tests and others we may refer to
Ekstrom (2013, 2008), Tung and Jammalamadaka (2012), Tung and Rao Jammalamadaka
(2012), Deheuvels and Derzko (2006) and Baryshnikov et al. (2009). It is worth notic-
ing that simple spacings have received a great deal of attention in the literature, we
may refer to Deheuvels (2011) and Alvarez-Andrade and Bouzebda (2017) for details. In
Deheuvels (2011), the author obtain an explicit description of the limiting Gaussian pro-
cess generated by the sample spacings from a non-uniform distribution. Aly et al. (1984)
obtained strong approximations results for the empirical process and the quantile process
based on non-overlapping k-spacings and also the weak convergence of these processes in
||/q||-metrics, refer to the last reference for definition.

The aim in this paper is to obtain a refinement of the strong approximation results for
{an,(z):0 <z <oo,n>1}and {y,(f) : 0 <t <1,n>1} obtained by Aly et al. (1984).
Their main tool is the well known (KMT') invariance principle introduced in Komlés et al.
(1975). In our approach we shall make use the refinement of the KMT inequality for the
Brownian bridge approximation of uniform empirical and quantile processes presented
respectively in Mason and van Zwet (1987). This approach is based on the approximation
of the k-spacings process in the interval [0, a], with a < 1. In order to prove the invariance
principle, we use the same method developed in Aly et al. (1984), which is based on
the following representation of simple spacings given by Pyke (1965). In the sequel of
this section, we use a notation similar to that used in Aly et al. (1984) including some
changes absolutely necessary for our setting. Let E;, Es, ... denote an 7.i.d. sequence of
exponential r.v.’s with mean 1 and set

Then, for each n > 1, we have the distributional identity

E.
{Ui,n—Ui_l,nﬂgign}i{S—l:1§z’§n}. (1.8)

n

where £ denote the distributional equality. Consequently we obtain the following repre-
sentation of the non-overlapping k-spacings
{Df, 1<i<N-1D},}

a (”’ﬁ)/sn,lzl,m,...,qgj_1)k+1, > B /s 0)

(=k| 2|41



In particular, if n = Nk is an integer multiple of %, then

{DF, 1<i < N}E{Vi/Ty,1<i< N}, (1.10)
where
ik
Yii= > B, fori=12,...N, (1.11)
0=(i—1)k+1

is a sequence of i.i.d. r.v.’s with distribution function Fj(-) and

N
Ty = ZY
=1

Now, we denote by Gy (-) the empirical distribution function and by Ky (-) the empirical
quantile function of the sequence Y7, ..., Yy, respectively, defined by

N
1
Gy(z) = N z; Liy,<a}, for z € RT, (1.12)
and
Kn(t) :=inf{z : Gy(z) > t}, for 0 <t < 1. (1.13)

Let {fn(z) : 0 <z < oo, N > 1} and {kn(t) : 1 <t <1,N > 1} be the corresponding
empirical and quantile processes, respectively, defined by

By (z) := VN (Gn(z) — Fi(x)), for =€ R*, (1.14)
and
kn(t) == VN fi (Qr(1) (Qr(t) — Kn(t)), for 0<t<1. (1.15)
By (1.10), we have the following representation
{ank(2),0 <z < oo} il {Oz}v(az) = Oy (:c]j\;—]};) +Ry(z),0 <z < oo} , (1.16)

where

Ry(z) = N2 <Fk G%) — Fk(:c)) :

In the same way, by (1.10), and the definition of the empirical quantile function Ky(-),
we have the following representation for the process {yni(t) : 0 <t <1, N > 1}

P :0<t <1} 2 {v}vm -2k (mt) LNV (]Tv—f; - 1) ¢>k<t>) 0<t< 1} ,
(1.17)
where

Or(t) = fe(Qr(t))Qr(t).

The methodology in the proof of the results of Aly et al. (1984) will be essential to obtain
our main theorems. In the present work, in the derivation of our asymptotic results we
give a rigorous proof with all mathematical details and give some constants explicitly.
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The rest of the paper is organized as follows. We establish local strong approximations
of the uniform non-overlapping k-spacings process in the forthcoming section. In Section
3, we establish the functional limit laws for the increments of the quantile process of non-
overlapping k-spacings processes. We provide an application concerning the limit laws of
functionals of the k-spacings process. To avoid interrupting the flow of the presentation,
all mathematical developments are relegated to Section 4.

2 Local Strong Approximation

2.1 Preliminaries

Let us begin by introducing some Gaussian processes playing a central role in strong
approximations theory. Let W = {W(s) : s > 0} and B = {B(u) : u € [0,1]} be the
standard Wiener process and Brownian bridge, that is, the centered Gaussian processes
with continuous sample paths, and covariance functions

E(W(s)W(t) =sAt, for s,t>0

and
E(B(u)B(v)) =uAv—uv, for wu,ve]|0,1].

The interested reader may refer to Csérgé and Révész (1981) for details on the Gaussian
processes mentioned above. In the sequel, the underlying probability space (02, A,P)
is assumed to be rich enough, in the sense that an independent sequence of Gaussian
processes, which is independent of the originally given i.i.d. sequence of random vectors,
can be constructed on this probability space. This is a technical requirement which
allows for the construction of the Gaussian processes in our following Theorems. Since
one can expand the underlying probability space, this assumption is not restrictive, refer
to de Acosta (1982), (Berkes and Philipp, 1979, Lemma A1) and Komlés et al. (1975)
for further details. Throughout the paper we set log, (u) = log(u V e), for u € R. Let us
recall the following theorem which is a weak version of the result in Mason and van Zwet

(1987).

Theorem 2.1. (Mason and van Zwet (1987)). There exists a sequence of empirical pro-
cesses By based on Yi,..., Yy and a sequence of Brownian bridges {B](\})(t) 0<t<1}
such that, for alle >0 and 0 < a < 1, we have

P < sup  |Bn(z) — BY (Fi(z))| > AN"*(log aN)> < BN~ (2.1)

0<z<Q(a)
where A and B are positive constants depending on € and a.

A similar result is needed for the quantile process {x,(t) : 0 <t < 1,n > 1}. For
this, we consider deviations between the quantile process {ky(t) : 0 <t <1, N > 1} and
the approximating Brownian bridges {B](Vl)(t), 0 <t <1} on [0,a], instead of [0,1]. We
formulate this idea in the following theorem.



Theorem 2.2. Let {B](Vl)(t), 0 <t <1} be asin of Theorem 2.1. Then for all ¢ > 0 and
n > m, we have

P ( sup |kn(t) — BY ()] > AL N"Y4(log aN)3/4) < BN, (2.2)

0<t<a

for all 0 < a < 1, where Ay and By are positive constants.

The proof of Theorem 2.2 is postponed until Section 4.

2.2 Main results

Our next theorem describes the strong approximations of the process {yy(t) : 0 <t < 1}.

Theorem 2.3. There exists a sequence {Wyy(t) : 0 <t < 1,> 1} of Gaussian processes,
such that the following properties hold. We have

EWwi(t) = 0, and EWxp(t)Wan(s) = min(t, s) — ts — %(bk(t)(bk(s),

and
Or(t) = fiu (Qr(t)) Qr(t).

Moreover, for each € > 0, there exists constants Ay > 0 and By > 0, such that, for all
n >k and a € [0, 1] we have

P ( sup |[yne(t) — Wai(t)| > A,N~"Y4(log aN)3/4) < ByN~°.

0<t<a

The proof of Theorem 2.3 is postponed until Section 4.
Our next theorem describes the strong approximations of the process {a,(z) : 0 < z <
o0}

Theorem 2.4. There exists a sequence of Gaussian processes {V,(z) : 0 <z < oo,n >
1}, such that the following properties hold. We have

EV,(z) =0, (2.3)

and
EV,(2)V(y) = min (Fy(2), Fi(y)) — Fi(z) Fi(y) — %:ﬁyFk(x)Fk(y)- (2.4)

Moreover, for all e >0 and a € [0, 1] we have

0<z<Q(a)

P ( sup () = Vo(z)| > A3N1/4(logaN)> < B3N~*,

where A3 > 0 and B3 > 0 are positive constants.



The proof of Theorem 2.4 is postponed until Section 4.

Immediate consequences of Theorems 2.3 and 2.4 are upper bounds for the convergence
of distributions of smooth functionals of {yng(t) : 0 <t < 1,N > 1} and {a,(z) : 0 <
x < oo,n > 1}. Notice that the following corollary is the analogous of the Corollary
of Komlés et al. (1975) page 113. Let D(A) be the space of right-continuous real-valued
functions defined on A which have left-hand limits, equipped with the Skorohod topology;
refer to Billingsley (1968) for further details.

Corollay 2.5. Let ®(-) be a functional defined on the space D(R), satisfying a Lipschitz
condition
|®(v) — ®(w)| < Lsup|v(t) —w(t)|.

teR

Assume further that the distribution of the r.v. ®(Wyk(F(+))) has a bounded density.
Then, as n — oo,

sup IP{® (i) < 2} —P{®(Wyi())) <z} =0 (N~ (logaN)**). (2.5)

Assume further that the distribution of the r.v. ®(V,(F(-))) has a bounded density. Then,
as n — oo,

sup [P{®(a, (")) <z} —P{®(V,(")) < z}| = O (N"*(logaN)**). (2.6)

zeR

The proof of Corollary 2.5 is postponed until Section 4.

Remark 2.6. By the Borel-Cantelli Lemma and Theorem 2.3 we have

sup. [e(f) — Wan(B]20 (N4 (log al)*) (27)

0<t<a

Applying the Borel-Cantelli Lemma and Theorem 2.4 we have

sup  |an(z) — Vi (z)|20 (N_1/4(log aN)3/4) . (2.8)

0<z<Qy(a)
For a = 1, our results reduce to the results of Aly et al. (1984).

Theorem 2.7 (Aly et al. (1984)). Given the process {an(x) : 0 < x < 0o} constructed
from a sequence Uy, Us, ... of i.i.d random variables of uniform low on [0,1] and defined

on a space of probability eventually enlarged version of (Q, A,P), there exists a sequence
of Brownian bridges By, Bs, ..., defined on (2, A,P) such that, for all 0 < s < oo, if,

Vo(x) = By(Fp(x)) — %xfk(x) /OO By (Fi(u))du, (2.9)
0
then with probability 1,

sup |ap(z) —Tn(z)] =0 (n’l/‘l(logn)?’/‘l) , as m — oQ. (2.10)

0<z<0c0



Notice that the approximating Gaussian processes, for k = 1, is given by

T, (z) = By(z) + (1 — x)log(1 _x)/ By (u)

0 —Uu

du.

A similar approximation is obtained for the process of quantiles {yy(t) : 0 <t <1, N >
1}, in the special case where N = n/k. This approximation is the following one.

Theorem 2.8 (Aly et al. (1984)). given the process {yn(t) : 0 <t < 1,N > 1} con-
structed from a sequence Uy, Us, ... of i.i.d random variables of uniform low on [0, 1] and
defined on a space of probability eventually enlarged version of (2, A,P), there exists a
sequence of Brownian bridges By, Ba, ..., defined on (S, A, P) such that, for all0 <t <1,

if,

1
Wanlt) = Bx(t) = TQUOA(QuD) [ Bulu)auta). (211)
then with probability 1,
sup |yn(t) — War(t)] = O (N (log N)**) | as n — cc. (2.12)
0<t<1

3 Functional limit laws for the increments of the
quantile process of non-overlapping k-spacings pro-
cesses

Hereafter, our study of the process of quantile of k-spacings {yn(t) : 0 < ¢ < 1}, will
be restricted to the particular case where N = n/k. The increments of the process
{vn(t) : 0 <t < 1} are defined in the following way: for all 0 < h < 1 and n > k

nn(h,t;s) = yn(t + sh) —yn(t), for 0 <t <1 and s € R. (3.1)

In this section, we are interested in the study of the fluctuations of the process of quan-
tile. We are going to give a functional law of the iterated logarithm for the increments
{nn(h,t;s) : 0 <t <1 —o0 < s < oo}. Dindar (1997) established the functional law
of the iterated logarithm for the increments of the processes associated to the uniform
spacing. Our aim, is to provide analogous results for the k-spacing quantile process. In
particular, we are going to prove that the results obtained by Dindar (1997) for the pro-
cess of quantile of the uniform spacings, are still valid in the general case of the uniform
non-overlapping k-spacings by preserving the same hypotheses.

In the sequel, we fix the following notation: Let B|0, 1] denote the set of bounded functions
defined on [0, 1]. B[0, 1] is endowed with the topology induced by the norm sup

[hal =0s<gl<>1|f(8)\-

Let AC[0,1] be the set of all absolutely continuous function on [0, 1], and f(s) = df(s)/ds
the Lebesgue derivative of f(-) € ACI0,1]. For any ¢ > 0, we denote by

s.={reacon s =oe [ Fois<c]
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the Strassen set (see e.g., Strassen (1964)). For any subset A C ACI0,1] and £ > 0, let
A = {f(-) € BI0,1]: 3g() € A||f — gl < £},
The Hausdorff distance between the sets A and B is defined to be
A(A,B) =inf{e >0: AC B and B C A°}.
Consider a sequence of constants {hy : N > 1} satisfying the following assumptions
(H.1) hy L 0 and Nhy 1 0o where N 1 oo and 0 < hy < 1,
(H.2) log(1/hy)/logy N — ¢ € [0, 00], where N — oo,

(H.3) (1/hy) = o(N'?(log, N)/(log N)*?), where N — cc.

Let = denotes equality in probability. Let

By = (ZhN{ log(1/hy) + log, N})_l/Q, for N > 3.
The following theorem constitute our main results of this section.

Theorem 3.1. Assume that {hx :n > 1} fulfills the limiting conditions,(H.1), (H.2),
(H.3). Then we have

Jvli_rgoAGBNnN(hN,t; s) 0<t<1 —hN},S?cJ 2. (3.2)

The proof of Theorem 3.1 is postponed until Section 4.

3.1 Limit laws of functional of the k-spacings process
Let @ : By[0,1] — R be a functional defined on a subset B0, 1] of B[0, 1] such that
(1) Bunn(hn,t;-) € Bol0,1] V 0 <t <1—hy,

(ii) S.C By[0,1] V ¢ >0,

(iii) @ is continuous for the norm sup in By[0, 1].
For f(-) € Bo[0, 1], examples of such functional are given by the following

o O(f) =[f(1)],
o Oy(f) = SUPg<s<1 |f(s)],

o O3(f) = j:fol f(u)dv(u), where we suppose that v(-) has bounded variation with
v(1) =0.



Remark 3.2. We notice that ®3(f) is not defined for all f(-) € B[0, 1], which justify the
introduction of By|0, 1].

Let us consider the process defined by {®(Snny(hn,t;-)) : 0 <t <1—hy}. We have
the following results.

Corollay 3.3. Assume that {hy : N > 1} fulfills the limiting conditions,(H.1), (H.2),
(H.3). Then we have

lim  sup  (Byin(hy. b)) = sup B(f). (3.3)
=00 0<t<1—hy feS ¢,
The proof of Corollary 3.3 is postponed until Section 4.
By applying Corollary 3.3 to the functionals ® given above in example, we obtain the
following corollary.

Corollay 3.4. Assume that {hy : N > 1} fulfills the limiting conditions, (H.1), (H.2),
(H.3). Then we have

- 1/2
c
li t+hy) — @] = , 3.4
t | s vt ) -] 2 () (3.0
1 5 o\ 12
i | s sup b hws) w0l £ (Z5) (5.5)
n—00 | 0<t<1—hy 0<s<1 | c+1
1 1 c 1 1/2
lim[ sup :i:/ Bnnn (b, t;s)do(s)| = ( /UQ(S)dS) . (3.6)
n—=00 | 0<t<l—hy 0 ] c+1 )/,

The proof of Corollary 3.4 is postponed until Section 4.

Remark 3.5. The results given above for the increments of the process of quantile of the
disjoint k-spacings, and the results achieved in Dindar (1997) for the empirical process of
the uniform spacings, remain valid for the increments of the empirical process {a,(z) :
0<z<oo,n>1}.

4 Proof

This section is devoted to the proofs of our results. The previously defined notation
continues to be used in the following.

Proof of Theorem 2.2.

Consider the sequence & = Fi(Y;),i = 1,2,..., of i.i.d. UJ[0,1] r.v’s and construct the
corresponding uniform quantile process defined by

Un(t) = NY2(t — Fy(Kn(1))), (4.1)

10



where Y; and Ky(-) are defined by (1.11) and (1.13) successively. A simple application
of Theorem 1.1 of Csorgs et al. (1986) with a = d/n and z = eA\"*logaN, we can find a

sequence of Brownian bridges {B](\?) (t) : 0 <t < 1}, such that for all € > 0 we have
P ( sup |Un(t) — BP ()] = AuN~2(log aN)) < ByN~, (4.2)
0<t<a

where Ay, B4 are positive constants depending on ¢ and a. Furthermore, we have for all
0<a<l,

P ( sup |B](\?)(t)| > x) <2e % 1>0. (4.3)

0<t<a

The last inequality together with (4.2) implies that
1 1/2
P ( sup |Un(t)| > <§5(logaN)) +A4N1/2(logaN)> <24+ By)N°.  (4.4)
0<t<a
We will prove in the next lemma that {Uy(t) : 0 < ¢ < 1, N > 1}, as defined in (4.1),

can be approximated by {B](\})(t) 0<t<1,N >1} as well.

Lemma 4.1. There exists a sequence of Gaussian processes {B](\})(t) 0<t<1,N>1},
such that, for all e > 0, we have

P ( sup |Un(t) — BY ()] = AsN~?(log aN)3/4> < BsN~%, (4.5)

0<t<a
where As and By are positive constants.

Proof of Lemma 4.1. Let & w,...,{nn denote the order statistics of &§;,...,{n. By
Theorem 2.1 and the fact that

l

Bn(Qr(&in)) = Un (N) ,

we have, for each 0 < a <1,

i - —e
P <0£§§N UN <N) — B](\}) (fi,N) > AN 1/2 (10g CLN)) < BN~<. (46)

On the other hand, from (4.4) we have

1/2
> N2 (%(log aN)) + AN (log aN)) < (24 BN,
(4.7)

An application of Lemma 1.2.1 in connection with Lemma 1.4.1 of Csorgé and Révész

(1981) allow us to write
1 7 1 7

> AgN "4 (logaN)**) < BgN ¢,

7
N &N

P|{ max
0<i<aN

P ( sup sup

0<i<N—N/2(logaN) 0<s<N~1/2(logaN)

11



This, when combined with (4.7), implies that

1 7 1 _ —€
P (o?}é‘fN'Bf(V) <N) —BY (&n)| > AN 1/4(1ogaN)3/4) < B;N~*. (4.8)
Lemma 4.1 follows from the fact that
) 1 —1 7
Un(t) — Uy (N)' < N7Y2 for <t< (4.9)
[ |

We return now to the proof of Theorem 2.2. Following Aly et al. (1984), we have

Ogngm)(l—Fk@))% < (4.10)

together with

lim F (1)(1 - Fk(t))% ~1, (4.11)
lim 5 (£) (1 - Fk(t))% ~1, (4.12)
e v =(k) <oc.
By the mean value theorem, we readily obtain
kn(t) — Un(t) = Un(t) (% - 1) , (4.13)

for some 6, y such that
|0y —t] < N_1/2|UN(t)|.

In Theorem 1.5.1 in Csérg6 (1983), it is proved that

fe@i(®)
F (cﬁstlﬁlll)c fk(Qk(et,N)) ke 5)

< 4([7] + 1){exp(—Nch((1 4 §)"/*01HDy)
+ exp(—Nch((1 + §)~ /20Dy (4.14)

forall 9 > 0,0 <c<1and N > 1, where
h(z) =z +log(1/x) — 1, for z > 0.

Moreover, there exist a dy > 0 such that

h((1 4 6)FY2OIHDY > Z([y] 4 1)%62, for 0 < 6 < dp. (4.15)

ol =

Let
Sn = (82)2 ([7] + 1) ' NV (logaN)

12



and "
1 _

By the above inequality and (4.14) we obtain that, for N sufficiently large, that

p sup Je(Qr(1))

TN 0\ 1) N—¢ .
cW<ic1—o® | Te(@r(0rn)) 1 >6on | <8(y]+1) (4.16)

Combining (4.13), (4.4) and (4.16), we obtain that, for N sufficiently large,
P sup  |rn(t) = Un(t)] > AsN V4 (logaN)¥* | < BgN~=. (4.17)

cy <t<a—c

To complete the proof of Theorem 2.2, we replace log NV in the proof of the Theorem B
of Aly et al. (1984) by (logaN). We omit the details, which essentially repeats, more or
the less verbatim, the same arguments. [ |
The following technical Lemmas 4.2 and 4.3 will be instrumental in the proof of Theorem
2.3.

Lemma 4.2. We have, for each € > 0, and all n > m sufficiently large

T 1 [~
P (‘NW (—N - 1) — E/ tdB) (Fk(t))‘ > AgN 2 (log aN)Q) < ByN7°. (4.18)
0

where Ay = Ag(e) = 4(1/2 +¢)A and By = 82 + B denote positive constants.

Proof of Lemma 4.2.

It is readily checked that,

N
Tn 1 1 [~ o
— = — Y, =— tdGy(t d tdFy(t) = k. 4.19
R ORE TURR A0 (419)
From which we obtain readily that

N'/2 (TWN — k;) = /OOO tdBy(t) = — /OOO B (t)dt. (4.20)

Let Ax be a sequence of positive numbers. Making use of the triangle inequality, we infer
that

/OOO By (t)dt — /OOO BJ(Vl)(Fk(t))dt‘ < /OAN ‘51\/(75) — BO(F(1))| dt

T / T 1BO (R ()t

AN

T / B ().

N

13



Let us recall the following well known properties

E(Bv(®) = E(BY(F®)) =0, (4.21)
Var (By(t)) = E[(Br())2] = Fu(t)(1 — Fu(t)), (4.22)

and
Var (BY (Fi(t)) = E [(BS’(FN))Q] = F(t)(1 - Fu(t)). (4.23)

Making use of the Fubini theorem’s, in combination with Cauchy-Schwartz inequality
implies that

E / " Bnlde = / " BBy (1))t

N AN

< /OO(Fk(t)(l — Fi(t))"dt, (4.24)

AN

and similarly

E / T IBOFEW) | = / T EIBY (Fi(t))dt

)\N )\N

< [ (B0 - AE) P (4.25)

AN

By Aly et al. (1984), there exists t, > 0 such that
t
1— Fr(t) < 2exp (—5) , if > t. (4.26)

Hence, provided that Ay > to, by (4.26) and the fact that
Fp(t) <1 forall t>0, (4.27)

the left hand sides of (4.24) and (4.25) are bounded above by 4v/2 exp(—Ay/4). Indeed,
we have

(Fu(t)(1 — Fi(1))
V2exp(—t/4),

=

g

sy

Sc

=
=

IN A

and by using (4.25), we infer that

e ( /:|B§&><Fk<t>>|dt) < V2 [ enttja

= 4V2exp(—Ay/4).

By using similar arguments shows likewise that

E (/Oo |6N(t)|dt> < 4v2exp(—Ay/4).

AN

14



By choosing Ay = 4(3 + ¢)(log aN), and applying Markov inequality, we infer that

P / By (t)|dt > a~V/2HEINY2 ) < 42N, (4.28)
4(%+5)(logaN)
and
P / | BV (Fi(t)|dt > a= V> ON-V2 ) < 4y/2N2. (4.29)
4(3+¢)(logaN)

An application of Theorem 2.1 shows that,
AN
P ( / ‘ Bu(t) — B](V”(Fk(t))) dt > Ay AN"V2(log aN)) < BN~ (4.30)
0
More precisely, we have the inequality
1 A
(0~ BY ()| [ ae
0

Bu(t) = BY (Fu(1)|.

[ - mo|a < e

0<z<Q(a)

= Ay sup
0<z<Q(a)

Making use of Theorem 2.1, we obtain

([

< IP’()\N sup

Bu(t) — B}&’(Fk(t))) dt > Ay AN"2(log aN))

0<z<Q(a)

Bu(t) — B](;’(Fk@))) > AvAN(log aN))

=P sup |fn(t) — B](\})(Fk(t))’ > AN"Y2(logaN)
0<z<Qy(a)
< BN
Let
Al _ 2a7(1/2+6)N71/2’
and

Ay = ANAN"Y2(logaN) = 4(1/2 4 &) AN"*(log aN)?.

From this we infer that we have
A4 Ay =4(1/2 + ) AN 2 (logaN)? (1 + o(1)).

Lemma 4.2 now follows by combining the above three inequalities (4.24), (4.25) and

15



(4.30). We have

#(
< P ( /0A (B ()~ BY(E) ) de
+P ( /A h (B](V”(Fk(t))) dt
+P < /:o (Bw (1)) dt| > a<1/2+€>N1/2)

< 4V2N"F +4V2N"° + B.

By choosing Ag = Ag(g) = 4(1/2 + €).A and By = 8v/2 + B, the proof of Lemma 4.2 is
completed. [ |

| (vt - B a

> A1 —|—A2)

> 4(1/2 + ) AN (log, aN)Q)

- a(1/2+€)N1/2)

Lemma 4.3. For each € > 0 and n > k, we have, uniformly over 0 < a <1

T
B( s (50 (5 (o)) - BV
0<2<Qx(a) Nk

> ANV (logaN)**) < BN %,

where Aig and By are positive constants.

Proof of lemma 4.3. The random variable [;° B](\})(Fk(t))dt has a normal distribution,
with expectation 0 and finite variance, given by

o? = h O (F 0. .
E{(/O B (t))dt)2}< (4.31)

Hence, we have the inequality

1
P (_
01

This inequality and Lemma 4.2 imply that

/ B](Vl)(Fk(t))dt‘ > (25logaN)1/2) < 2N~ (4.32)
0

T,
P ( N—]\/; — 1‘ > A N"2(log aN)l/Q) < B N°°, (4.33)

where
AH - All(f) - (2k_20%€)1/2 and BH =2 + Bg.

More precisely, we have
AgN~2(log aN)V? + (2k20%clogaN)? = (2k~202¢)?(log aN)Y2(1 + o(1)).

So the probability (4.33) is the same as

Tn _ _
P (‘NW (N—k — 1) ‘ > AgN 12 (logaN)Y? + (2k202¢ log aN)l/Q) .

16



By combination of Lemma 4.2 and inequality (4.32), it follows that

(e ()

< P (‘NW (T—N - 1) - —/ B}V”(Fk(t))dt‘ > AgN~(log aN)l/Q)
Nk k Jo

1 o0
+P (‘E/ B (Fi(t))dt
0
T 1 [~
= P (‘NW (N—JZ — 1) - E/ B}V”(Fk(t))dt‘ > AgN~12(log aN)l/Q)

+P < 1 / h BY (Fi(t))dt
< (Bg+2)N"°.

> AgN "2 (logaN)"? + (2k 202 log aN)1/2>

> (2k20%clog aN)l/Q)

> (2¢ logaN)l/z)
01 0

By Taylor expansions, we readily obtain

T T
2 (a;N—fZ) — Fi(z)| = zfu(zn) N—JZ — 1‘ , (4.34)
where .
N
I =
ey — x| <z NE 1’
Let 0 < § < 1 and define Ay(d) by
Tn
= = — < . .
An(9) {w NE ' < 5} (4.35)

Now, by choosing N sufficiently large so that A;; N~/2?(logaN)"/? < §, and using (4.33)
we get that
P(AY(0)) < BiyN~*.

In addition, we have for each xy € Ay(0),

(L+0)™" & s

which is bounded on [0, 00). Now, we let
1 k—1
A = Ay sup %xke*(lf‘s)x. (4.37)

0<z<Q(a) F(k)
Recall the following elementary fact

P(A) <P(B°)+P(AN B),

17



then, for large enough N, we infer that we have

N
P sup | Fy < ) — Fi(x)
<O<x<Qk(a) NE

> AlgN_l/Q (lOg aN)1/2>

< P(AY(0
TN 1/ 1/2
+P and sup a:— — Fi(z)| > A;aN~/“(logaN)
0<z<Q(a) Nk
< P45
Ty 1/2 1/2
+P and sup  zFi(ay) |—= — 1| > A;aN"/*(logaN)
O<x<Qk(a Nk:
< BN 4P ( ~(0) and{’— — 1| > Ay N"2(log aN)l/Z})
< BN - (4.38)

Now, (4.38) when combined with Lemma 1.1.1 of Csorgé and Révész (1981) implies that

P sup
0<z<Q(a)
T
= P sup |BY (Fk( )+Fk( N) —Fk(az)) — BY (Fi(2))
0<2<Qk(a) Nk

> A10N71/4(1Og aN)3/4)

T
B (B () - B§¢><Fk<x>>\ > AN "V4(log aN>3/4>

< P sup sup BV (t+s) — B](\})(t)’
0<t<1-A1aN—1/2(logaN)1/2 0<s<A12N~1/2(logaN)1/2
Ao 1/2 ~1/2 1/2\1/2 -
> (log aN)'/% (A;,N~V2(logaN)Y + B N°@
o ( )
< BjyN*. (4.39)
This completes the proof of Lemma 4.3. [ |

Proof of Theorem 2.3.

By the representation (1.10) we get

{yni(),0 <t <1} = {VN 0<t<1}. (4.40)

Recall that our aim is to prove the inequality

P ( sup [vh(t) — Wi(t)| > A,N~Y4(log aN)3/4) < ByN ¢, (4.41)
0<t<a
where . -
Wi (t) .= BY(t) — ¢’“T() /0 BV (F(t))dt. (4.42)

18



First, we observe that

- (800 - 52 [T o)

+or(t) N2 ((%) — 1) ((%) s 1)
- (ka(t) ( N2 (k _ %V) _ /0 h B](\})(Fk(t))dt) . (4.43)

Now, by Theorem 2.2 we infer that

P ( sup |kn(t) — BY ()] > AN Y4(log aN)3/4) < BN (4.44)
0<t<a
Noting that
sup ¢x(t) = sup xfi(z) < oco. (4.45)
0<t<a 0<e<Q(a)

Let
Az =Ag sup zfip(x).

0<z<Q(a)

By combining Lemma 4.2 with (4.45), we get

TN > 1
P (G 0 (1 o= 550 [ i

0

> A13N~Y2 (log aN)Q)
< ByN—5(4.46)

By using the following elementary fact

<l—1):—(u—1)+l(u—1)2,

u u

we obtain the following relation

()" )omr=() - - () ) o
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We have the inequalities

Qi&% (( ) ) <>\ > (AN~ (log al)'2)

1 1/2
( 55 (log aN

< IP’ ' (—) 1)‘ (AllN_l/Q(logaN)l/Q))
+P (féli?a |k (t) (Gg(log aN)) v + Ay N"Y4(log aN)3/4> )

(((35) ) tom

4P ( sup ‘/@N — By (t )‘ > (A1N1/4(logaN)3/4))

0<t<a
1 1/2
+P ( sup B](Vl)(t)’ > (—5(logaN)> )
0<t<a 2

BuN°+ BN +2N*
BuN"*. (4.48)

+ Ay N~Y4(log aN)3/4> )

IN
=

IAIA

By the law of large numbers, Ty /N converges to k, as n tends to infinity. Then Ty /Nk
tends to one when n tends to infinity. On the other hand, we remark, if Tyy/Nk > 1/2,
then Nk/Ty < 2. We can see that

Tn > Nk
P N q) 2E
EN(CHRDERT

1/2
X ((%e(loga]\f)) +A1N1/4(logaN)3/4>>

< BuN"". (4.49)

> (247, N (logaN))

Using (4.48) and (4.49), we obtain

P < sup
0<t<a

Moreover we have

o (5) ) (5 )
= —ou()N'? <<%) - 1)2 + O (t) N2 ((%) - 1)3 %

Now, on Ax(9), we have

> AN~V (log aN)3/4> < BuN~*. (4.50)

sup ¢r(t) = M < oc.

0<t<a

20



Taking A5 = A3, M and applying similar techniques used in line 2 of (4.38) we get, by

(4.33), that
((F)-1)

Let Ay = 2A3, M. By using the same arguments, it follows

()

—_— > A16N71<10g QN)3/2> S BlleE. (452)
From (4.51) and (4.52), we obtain

In
(oo (B))(E) ) e

> A;zN"2(logaN)) < BN =
Now, by combining (4.43), (4.44), (4.46), (4.50) and (4.53), we obtain

P (s '

0<t<a

> A;sN~V2(log aN)> < BN (4.51)

P ( sup ¢p(H) N2

0<t<a

(s a0 - (800 - 2 [7 50 o)
0<t<a k 0
> A, N4 (log aN)3/4) < B,N~*. (4.54)

By Lemma 4.4.4 of Csorgé and Révész (1981) and (1.17), we can define a sequence of
Gaussian processes {Wx(t) : 0 <t < 1}, N = 1,2,... such that for each N, we have

{vnk (), War(s) 1 0 < t,8 < 1L {8 (8), Wi(t) : 0 < t,s < 1}. (4.55)
This completes the proof of Theorem 2.3. |

Proof of Theorem 2.4.

We are going to give the main steps of the proof. The details are the same as in Theorem
2.3. Assume first that n = Nk. Keep in mind the representation (1.16) for the empirical
process of k-spacings. We are aimed to prove the following

P ( sup  |an(z) = Vi(z)| > AsN~Y4(log aN)) < BsN™¢, (4.56)
0<z<Qy(a)
where . -
Vi) = BY(Fu(w) - afils) [ BY (B, (457
0

By second order Taylor expansion in the second term of (1.16), we get

ay(z) = Vi(z) = By <f’f%) ~ By <F’“ ("T%»

+80 (e (o ) ) = BY G + 8 (T2 = 1) 24 ow)
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where

ey — x| <z

T
N
Nk ’

Making use of Lemmas 4.2 and 4.3, together with Theorem 2.1 we obtain (4.56). Hence
together with Lemma 4.4.4 of Csorgé and Révész (1981), we can define a sequence of
Gaussian processes {Vyg(z) : 0 <z < oo}, N =1,2,..., such that for each N we have

{ank(z), Var(y) : 0 < z,y < oo}i{a}v(x), Vi(y): 0 <zy<oo}. (4.58)

This completes the proof Theorem (2.4) for the case where n = Nk. Now, we prove the
general case where k(N — 1) < n < Nk. It follows from (1.9) that

{ap(z) : 0 < x < o0}

4 {N1/2 (GM( Jik) Fi(x )) 0<z< oo}, (4.59)

GNk Z H{Y <o} T H{Zz (N=1)k+1 Eé<m} (4'60)

where

Notice that we have the following fact

Sn S, 1 1
- < = - .
0<r<Gr(@ GNk( Nk‘) G (xNk:)’ N+N(N—1)’ (4.61)
and
p(|on - N > AN~ (logaN) | < BigN™* (4.62)
Nk k(N -1) 18 & S Dig : .
Set
P=P su (G ( S) F())—V* ()
Oﬁmsgk(a) NE\ T NE BT N-1
> AN~ (logaN )3/4> ~ (4.63)

By the use of (4.56) in connection with (4.61), we infer that

5, (xTi 1) R)

* Sn *
Vi1 (xT—) — Vy_1(z)

N-1

P < IP’( sup N2

0<z<Qy(a)

> AQQN_l/Q(IOg aN))

+IP’< sup N2

0<z<Qx(a)
+BsN~°. (4.64)

> A21N_1/2(10g (lN))

Once more, by a first order the Taylor expansion, we have

F, (:c Sh ) — Fi(2) Sn— T
Tn_q

N1/2
TN

= .T}fk(ﬂfN) N1/2

, (4.65)
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where
Sy — TN

TN
By combining Lemma 4.2 with (4.62), it follows that

ey — x| <=z

P (|
T

N-1

L 1‘ > A22N71<10g (IN)) S BQQNie. (466)

By arguing in a similar way as in the proof (4.38), we obtain that

7 (:cTi" 1) ~ F(x)

Now, by definitions (4.57), (4.67), and through a similar argument as that used in the
end of the proof of Lemma 4.3, we get

IP’( sup N2

0<z<Q(a)

> Ay N"2(log aN)> < ByyN™°. (4.67)

IP’( sup N2

* Sn *
Vaoa (xT—> —Vi_i()

> AglN_l/Q(lOg (lN)) < BglN_a.

0<2<Qx(a) N-1
(4.68)
Then, making use of the equations (4.64),(4.67) and (4.68), we obtain
1/2 Sn *
P sup |N Gnk T )~ Fi(z) ) — Va_(2) (4.69)
0<z<Q(a)
> Ay N~Y4 (log aN)3/4> < BoyN=. (4.70)

Again, by Lemma 4.4.4 of Csorgé and Révész (1981) and (4.59), we can get a sequence
of Gaussian processes {V,,(z) : 0 <z < oo}, k(N —1) <n < Nk,N =1,2..., such that
for each N we have

{an(z), Valy) : 0 < 2,y < oo}
4 {NW (GM <x;—2) — Fk(x)) Vi (y):0<z,y< oo} .

This completes the proof of Theorem 2.4. |

Proof of Corollary 2.5

The functional ® being Lipschitz, there exists a positive constant L such that, for any
functions v, w,
B(v) — B(w)] < Lsupu(t) — w(t)]. (4.71)

teR

Let us choose for v, w the processes
Yo i=nk(-) and Wy = Wii(:).
Applying the elementary inequality
[P(A) — P(B)| < P(A\B) + P(B\A) = P((A\B) U (B\A))
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to the events A = {®(v,) <z} and B = {®(W,,) < z} provides, for any x € R and any
n € N,

[P{P(7,) < a} = P{®(W,) <} <P{®(7) <z < B(W,) or ®(W,) <a < d(V,)}

Now, applying to the elementary fact that [a < x < borb < x < aimplies |b—zx| < [b—al]
to the numbers a = ®(v,,) and b = &(W,,)

P{®(vn) <2 < ®(Wy)} < P{®(Wy) — 2| < [®(Wn) — ()]},

from which, due to (4.71), we deduce that
[B(8() < o) ~ P{8(W,) < )| < B{jo(¥7,) ~ o] < Louwp () = a0l . (172
€
We obtain the estimate below valid for large enough n, for €, = ¢(N~/4(logaN)>/*)

P{sup |7 (t) — W, ()] > en} <o (N’1/4(log aN)**) (4.73)

teR

Now, by (4.72), we write
[P{®(1,) < 2} — P{®(W,,) < a1}

< P{sup (t) = W (0)] < e |9(W,) — 2] < Lsup () — Wn<t>|}

teR teR

+P{supm<t> ~W0)] > e [BO,) — 1] < Lo a0 —Wn<t>|}

teR

< PO, — 1] < Le) + Bsup alt) - Wa(0)] 2 e . (4.74)
teR
Noticing that the distribution of Wy, does not depend on n, which entails the equality
P{|®(Wy,) — 2| < Len} = P{{®(W) — 2| < Le, }

where W is a gaussian process with the same distribution as Wyy. and recalling the
assumption that the r.v. ®(W) admits a density function bounded by M say, we get
that, for any = € R and any n € N*

P{|B(W,) — 2| < Le,} < 2LMe,,. (4.75)

Finally, putting (4.73) and (4.75) into (4.74) leads to (2.6), which completes the proof of
Corollary 2.5. An alternative proof of a similar result may be found in Shorack and Wellner
(1986) pp. 502-503. |

Proof of the Theorem 3.1

The proof of this result is based on the Theorem 2.8 and the Lemma 4.4 below. Let us
consider the restriction on the interval [0, 1] of a standard Wiener process {W (t) : t > 0}.
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Lemma 4.4. Assume that {hy : N > 1} verify (H.1) and (H.2). Then

lim A ({6N(W(t )~ W) 0<t<1— hN},SCil) 2o, (4.76)

Proof of Lemma 4.4 . For ¢ < oo, the proof of this lemma is due to the joint use of
a result of Deheuvels and Révész (1993) and the scaling property. Notice that the result
of Deheuvels and Révész (1993) is obtained with our the hypothesis of monotonically
decreasing (resp. increasing) when hy — 0 (resp. Nhy — o0), we may refer also to
Deheuvels and Révész (1987). For the case of a non bounded arbitrary ¢, the proof of
Deheuvels and Révész (1993) could still be used. We just notice that the quantity dr
defined in their article tends again to 0. Then, the replacement of their Theorem 1.1
initially used, by the Theorem 1.2 appearing in their article in connection with the use
of the property of scaling leads to the expected result. [ |

Now, we are equipped to prove Theorem 3.1.

Proof of Theorem 3.1.
For all 0 <t <1 — hy, we define the quantity,
wy (b, t;) =W(t+ hy-) — W(t). (4.77)

Through (4.76), the triangle inequality applied on the Hausdorff distance bring our proof
to show that, as n — oo,

A({ﬁNnN(hN,t; ):i0<t<1— hN}, {ﬁNwN(hN,t; )i0<t<T, - hN}) 0,

By (3.1) and (2.11), it is easy to remark that, for all £ > 0, there exists a constant C. such
that the following inequality takes place for all n large enough, with probability greater
than 1 — ¢,

HﬁNﬁN(hN,t; ) = Byvwn (b, t; )H
< ByCon™ V4 (logm)¥'t + | Bn(D(t + hve) = Ty () = Breow (o, )| (4.78)
The hypotheses (H.2) and (H.3) implies that, as n — oo,
Byn Y4 (logn)¥* — 0,
Let us consider now the Brownian bridge
B(u) =W(u) —uW(1),0 <u<1.
Recall the definition (2.11) of Iy, we infer that we have
HﬁN N(t+ hne) = Ty (1) —5NwN(hN,t;')H

< bW O]+ ] f0x(0) ~ outt 4 he) [ B (470
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where we recall

64(1) = T Qu0)u(Qult),

and
sup ¢(t) < oo,
0<t<1
which implies that
BNH{@@) — ot + hN-)}H —o(1) x Op(1) B0 as n — oo, (4.80)

It follows from (H.1) that Sxyhy — 0 as n — oo. By (4.79) and (4.80) and making use
of Tchebychev’s inequality, we obtain readily that, as n — oo,

| B (o ) = B (o, )| 550 (4.81)

Hence, we finally obtain, as n — oo

A({BNnN(hN,t; ):0<t<1— hN}, {BNwN(hN,t; ):0<t<1— hN}) 5 0,

The proof of Theorem 3.1 is therefore completed. |

Proof of Corollary 3.3.

As S;/(c+1) Is a compact and connected set of By[0, 1] equipped with the uniform topology,
the continuity of the functional ® implies that image set ®(S./(41)) is also a compact
and connected set of R of the form [lg, L], where

lg = inf O(f) and Le = sup O(f).
fesc/(c+1) fesc/(c+1)

By making use of Theorem 3.1 and the continuity of the functional ®, we obtain
lim A({/BNT/N(hN,t7 ) -0 S t S 1-— hN}, [l.:p,Lq;.]) E 0.
n—oo

which readily imply that

lim  sup  ®(Byny(hw,ti-) = L.

n—=00 0<t<l—hy

Hence the proof of Corollary 3.3 is complete. |

Proof of Corollary 3.4.

For any f(-) € S¢/(c+1), the Schwarz inequality shows that, for each 0 < s <1,

/Osf(u)du < (s/ol f2(u)du)1/2 < (Cil)m.
26

[f(s)] =




Therefore, by choosing f(-) in such a way that

o\ 12
f(s)= (c—i—l) s, for 0 < s <1,

gives, after a simple calculation, that

1/2
() € Sejer1y and @1(f) = o f) = <Cj 1) :

Thus, an application of Corollary 3.3 implies, in turn, that, (3.4) and (3.5) hold. More-
over, for all f(-) € S¢/(c41), using Schwarz’ inequality implies readily that

:Ffolv(u)f(u)du < (le /Ova(u)du)

The function f(-) of derivative,

for =7 (o l)m (/ 1v2<u>du)l/2v<s>,

belongs to S¢/(c41). Furthermore,

o (c59) " ([ o) "

An application of Corollary 3.3 implies that (3.6) hods.. [ |

1/2

References

Alvarez-Andrade, S. and Bouzebda, S. (2017). On the hybrids of k-spacing empirical and
partial sum processes. Rev. Mat. Complut., 30(1), 185-216.

Aly, E-E. A. A. (1983). Some limit theorems for uniform and exponential spacings.
Canad. J. Statist., 11(3), 211-219.

Aly, E-E. A. A., Beirlant, J., and Horvath, L. (1984). Strong and weak approximations
of k-spacings processes. Z. Wahrsch. Verw. Gebiete, 66(3), 461-484.

Baryshnikov, Y., Penrose, M. D., and Yukich, J. E. (2009). Gaussian limits for generalized
spacings. Ann. Appl. Probab., 19(1), 158-185.

Beirlant, J. (1984). Strong approximations of the empirical and quantile processes of
uniform spacings. In Limit theorems in probability and statistics, Vol. I, II (Veszprém,
1982), volume 36 of Collog. Math. Soc. Janos Bolyai, pages 77-89. North-Holland,
Amsterdam.

Beirlant, J., Deheuvels, P., Einmahl, J. H. J., and Mason, D. M. (1991). Bahadur-Kiefer
theorems for uniform spacings processes. Teor. Veroyatnost. i Primenen., 36(4), 724—
743.

27



Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly
dependent random vectors. Ann. Probab., 7(1), 29-54.

Billingsley, P. (1968). Convergence of probability measures. John Wiley & Sons, Inc.,
New York-London-Sydney.

Csorgd, M. (1983). Quantile processes with statistical applications, volume 42 of CBMS-
NSF' Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (STAM), Philadelphia, PA.

Csorgd, M. and Révész, P. (1981). Strong approzimations in probability and statistics.
Probability and Mathematical Statistics. Academic Press Inc. [Harcourt Brace Jo-
vanovich Publishers|, New York.

Csorgd, M., Csorgé, S., Horvath, L., and Mason, D. M. (1986). Weighted empirical and
quantile processes. Ann. Probab., 14(1), 31-85.

de Acosta, A. (1982). Invariance principles in probability for triangular arrays of B-valued
random vectors and some applications. Ann. Probab., 10(2), 346-373.

Deheuvels, P. (1985). Spacings and applications. In Probability and statistical decision
theory, Vol. A (Bad Tatzmannsdorf, 1983), pages 1-30. Reidel, Dordrecht.

Deheuvels, P. (1986). Spacings and applications. In Proceedings of 4th Pannonian Sym-
posium on Mathemat. Statist., pages 1-30. Reidel, Dordrecht.

Deheuvels, P. (2011). Non-uniform spacings processes. Stat. Inference Stoch. Process.,
14(2), 141-175.

Deheuvels, P. and Derzko, G. (2006). Tests of fit based on products of spacings. In
Probability, statistics and modelling in public health, pages 119-135. Springer, New
York.

Deheuvels, P. and Révész, P. (1987). Weak laws for the increments of Wiener processes,
Brownian bridges, empirical processes and partial sums of i.i.d. r.v.’s. In Mathemati-
cal statistics and probability theory, Vol. A (Bad Tatzmannsdorf, 1986), pages 69-88.
Reidel, Dordrecht.

Deheuvels, P. and Révész, P. (1993). On the coverage of Strassen-type sets by sequences
of Wiener processes. J. Theoret. Probab., 6(3), 427-449.

del Pino, G. E. (1979). On the asymptotic distribution of k-spacings with applications
to goodness-of-fit tests. Ann. Statist., 7(5), 1058-1065.

Dindar, Z. (1997). Loi fonctionnelle du logarithme itéré pour les incréments du processus
des espacements. C. R. Acad. Sci. Paris Sér. I Math., 324(6), 679-684.

Durbin, J. (1975). Kolmogorov-Smirnov tests when parameters are estimated with ap-
plications to tests of exponentiality and tests on spacings. Biometrika, 62, 5-22.

28



Ekstrom, M. (2008). Alternatives to maximum likelihood estimation based on spacings
and the Kullback-Leibler divergence. J. Statist. Plann. Inference, 138(6), 1778-1791.

Ekstrom, M. (2013). Powerful parametric tests based on sum-functions of spacings. Scand.

J. Stat., 40(4), 886-898.

Komlés, J., Major, P., and Tusnddy, G. (1975). An approximation of partial sums of
independent RV’s and the sample DF. 1. Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete, 32, 111-131.

Mason, D. M. and van Zwet, W. R. (1987). A refinement of the KMT inequality for the
uniform empirical process. Ann. Probab., 15(3), 871-884.

Pyke, R. (1965). Spacings. (With discussion.). J. Roy. Statist. Soc. Ser. B, 27, 395-449.

Pyke, R. (1972). Spacings revisited. In Proceedings of the Sizth Berkeley Sympo-
sium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif.,
1970/1971), Vol. I: Theory of statistics, pages 417-427, Berkeley, Calif. Univ. Califor-
nia Press.

Rao, J. S. and Sethuraman, J. (1975). Weak convergence of empirical distribution func-
tions of random variables subject to perturbations and scale factors. Ann. Statist., 3,
299-313.

Shorack, G. R. (1972). Convergence of quantile and spacings processes with applications.
Ann. Math. Statist., 43, 1400-1411.

Shorack, G. R. and Wellner, J. A. (1986). Empirical processes with applications to statis-
tics. Wiley Series in Probability and Mathematical Statistics: Probability and Math-
ematical Statistics. John Wiley & Sons Inc., New York.

Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 3, 211-226 (1964).

Tung, D. D. and Jammalamadaka, S. R. (2012). U-statistics based on higher-order
spacings. In Nonparametric statistical methods and related topics, pages 151-169. World
Sci. Publ., Hackensack, NJ.

Tung, D. D. and Rao Jammalamadaka, S. (2012). U-statistics based on spacings. J.
Statist. Plann. Inference, 142(3), 673-684.

29



	Introduction
	Local Strong Approximation 
	Preliminaries
	Main results

	Functional limit laws for the increments of the quantile process of non-overlapping k-spacings processes
	Limit laws of functional of the k-spacings process

	Proof

