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L.S.T.A., Université de Paris 6. 175, rue du Chevaleret,68étage, batiment A,
75013 PARIS FRANCE.

Abstract.
In this paper we establish strong approximations of theaunifnon-overlapping:-spacings process ex-
tending the results of (1). Our methods rely on the (9) iravaze principle.

AMS Subiject Classificationprimary 60F05, 60F17; secondary 62G07, 62G10.
Keywords Invariance principles in-spacings ; Asymptotic theory; Empirical process; Browrigidge; Best
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1 Introduction and Main Result

Let Uy, Us,. .., be independent and identically distributgd.d.) uniform [0, 1] random variableér.v:s) de-
fined on the same probability spa@@, A, P). Denote by0 =: Up,, < U1 < -+ < Up—1n < Uppp =1,
the order statistics df,, Us, ..., U,_1, and0, 1.

The corresponding non-overlappingspacings are then defined by

Dl(ﬂ;) = Uim,n - U(ifl)m,nv 1<i<N-1,

1
DE\;n'r)L = 1- U(N—l)m,n; ( )

whereN = |n/m], with |u] < u < |u] + 1 denoting the integer part af

Whenm = 1i.e N = n, them-spacings reduce to the the ustiapacings (or simple spacings) defined by
Dflg =U,n—U;__1,, ©=1,...,n. Simple spacings have received a great deal of attentidreiliterature.
We refer to (7), (10; 11), (13), (12), (2) and (3).

It is well known (see, e.g., (10)) that, for amy > 1, the simple spacing@Dg}g : 1 <4 < n}forman
exchangeable set of random variables such that, for eaahtfixed, uniformly overl <i < n,

n—1
PO <0 =PwDt, <0=1-(1-1) 1otz @)
’ ’ n

asn tends to infinity. Then the normalized spacings have the eaptial one distribution function.

Throughout the sequelp > 1 will denote a fixed integer. In applications it is more cores to use the
normalized non-overlappingz-spacings{mNDgZ) : 1 < i < N} Forafixedm > 1, asn — oo, the
distribution function omeDETZ) (which is independent of the indéxwith 1 < ¢ < N — 1) converges to the
distribution functionF (™), of a standard gamma random variable with expectatipgiven by

1 t t
(m)(4) .= m=1l,—aq,. — (m) >
FU(t) = 1)!/0 ™ e Y dr /0 U (t)de for t >0, 3)
with
tm—le—t
Fm(t) = T and F"™) (1) = 0 for t < 0. (4)
m — .
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For each choice af: > 1, the empiricaln-spacings process is defined by
an(z) = N2 (Fn(x) _ Fm (ac)) x>0, )

whereF,,(-) is the empirical distribution function c{meDng) :1 <4 < N}, defined for > m, by

1 N
Fn(x) = N E ]]-{mNDETYT;)SI}, z € R, (6)
=1

with 1(A) denoting the indicator function of the event A.

We will need the following additional notations and defioits. Let

M < Mg <o < MU, )

be the order statistics ({’rDEfZ) : 1 <14 < N}. The quantilen-spacings function is given by

(m) e i .
On(t) = mNM,; ", !le<t§N, i=1,2,...,N,
0, if t =0.
Let
QUM(t) =inf {w>0: F"™ (x) >t} -

andf(™(t) = £ F(™)(t). The quantilen-spacings process, is then defined by

lt) = N2F0 (QU(1) (QU)(1) = Qu(t)) 0 <t < 1. (©)

The aim in this paper is to obtain a refinement of the strong@apmation results fory,, and~,, obtained by
(2). Their main tool is the well known (KMT) invariance pripte introduced in (8) by Komlds, Major and
Tusnady. In our approach we shall make use the refinemenedfMT inequality for the Brownian bridge
approximation of uniform empirical and quantile procegsesented respectively in (9) and (6). This approach
is based on the approximation of thespacings process df, a), with a < 1.

In order to prove the invariance principle, we use the samihodedeveloped in (1), which is based on the
following representation of simple spacings given by (10).

Let E4, E», ... denote an.i.d. sequence of exponentiak’ s with meanl and setS,, := Y. | E;. Then for
eachn > 1, we have the distributional identity

{UmU“_,n:1§z'§n}d{?:1gign}. (10)

Consequently we obtain the following representation ofrtbie-overlappingn-spacings

i+m—1
{D§jj?,1 <i< NA,D%?}I} 4 {( > Ee) /S,

=i
. n -
z1,m+1,...,(bJ1)m+1,( 3 Eg)/Sn}. (11)
l=m|t|+1
|z] <2 < |x] 4 1. In particular, ifn. = mN is an integer multiple ofn, then
{D§j’;>,1gigN}i{Yi/TNJgigN}, (12)
where _
Yii= > Eni=12,... N, (13)
=(i—1)m+1



is a sequence of independent identically distributed with distribution functionF (™ andTy = Zf.vzl Y;.

Now, we denote by~ the empirical distribution function and by the empirical quantile function of the
sequencéy, ..., Yy, respectively, defined by

N
1
Gn(z) == NZH{Y@}, forall z € RT, (14)

i=1
and
Kn(t) :==inf{z : Gy (z) > t}, forall ¢t € [0, 1]. (15)

Let By andky be the corresponding empirical and quantile processgsctgely, defined by

By (z) == VN (GN(:C) _ p(m) (ac)) ,forallz € RY, (16)
and
K (t) = VN f (Q<m>(t)) (Q(m)(t) - KN(t)) ,forall € [0,1]. (17)
By (12) we have the following representation
{amn(2),0 < 7 < 00} 2 {QN()6N<:E%)+'RN()O§$<OO}, (18)
where
Ry (z) = N2 (F<m> (5‘5%) — F(m)(x)) :
In fact:

{amn(x),0 <z < oo}

N
{NUQ (%Zﬂ{gqu} F(m)(x)> 0<z< oo}

=1

1 N
= {Nl/2 <N21]1{Yi<:_%z}—F(m)(x)>,0§$<oo}.

By adding and subtracting™ (Zz), in the right side, we obtain
1 N
{Nm (N 2 Vriezya) - F“’”(@) 0<a< oo}
NY/2 Z]l — Fm) T—NJ: +Rn(2),0 <z <00
N {YisTha) mN =
= {N'/2 Z]l T _pom (In, +Ry(z),z €R
N f <F(m)( TN )} mN ) -+

o (2 (25 e () ) o)
{ah@ =y (r) + R0 <7 < o0}

In the same way, by (12), and definition of the empirical gilafinction K, we have the following repre-
sentation fory,, .

Il

Gmv(0.0 <0< 132 {aki) = T (kw04 V2 (25 < 1) on(0) 0t <1} a9)

and

b (t) = FU(QU™ (£)Q™ ().
3



In fact:
{Ymn (1),0 <t < 1}
= {N1/2f<m> (Q(’”) <t>) (Q<m><t> A N) 0<t< 1}
TN
{N1/2f<m> (Q<m>(t)) (Q(m)(t) - MKN(zf)) 0<t< 1}.
TN
By added and subtracte®™ Q™) (t), in the right side, we obtain

{yv(®),0<t <1}

= B i + 8725 (@) (@0 - 2Ry ) o< <1

= {5 (v 32 (@) (™o - @) ) o< <1
= {5 (v 32 (@) o) (o 1) ) 0 <t <1

= {5 (s (S -1) 1 (@) @) o< o<

2 Preéliminaries

In the sequel, we will assume, without loss of generalitat tthe original probability space, on which are
definedU, Us, . . ., a sequence of independent unifof® 1) random variables anB,, B, . .. a sequence of
Brownian bridges. This important assumption is used to @iovariance principles.

Throughout the paper we denotedyB, A;, B;,i = 1,2, ... which are appropriate positive constants, and by

log the functionu — log, (u) = log(u V e),V u € R. Let us recall the following theorem.

Theorem 2.1 ((9)). There exists a sequence of empirical proceggebased ony, ..., Yy and a sequence
of Brownian bridges{BJ(\})(t), 0 <t <1} suchthat, foralke > 0and0 < a < 1, we have

P < sup  |Bn(x) — BOFM ()] > AN~2(log aN)) < BN~¢, (20)
0<z<Q(™) (a)

where A and B are positive constants dependingoanda.

A similar result is needed for the quantile process For this, we consider deviations between the quantile
process<y and the approximating Brownian bridg@BS\})(t),O < t < 1} on |0, a], instead of[0, 1]. We
formulate this idea in the following theorem.

Theorem 2.2 Let{BE\})(t), 0 <t <1} beasinof Theorem 2.1. Then for alt- 0 andn > m, we have

P < sup |y (t) — BY (1) > A, N~V4(log aN)3/4) < BIN"F, (21)

0<t<a

forall 0 < a < 1,whereA; and B; are positive constants.
We give now, some technical Lemma which we will use to proveresults bellow.

Theorem 2.3 (The Borel-Cantelli lemma) For any sequencéA,, : n > 1} C A of measurable events, we
have

iP(An) <o = P(A, i0)=0 < P(4, fo)=1 (22)
i=1
zn:P(An):oo = P(4, i0)=1 < P(A4, fo)=0. (23)
i=1

Wherei.o. andf.o. designed respectively, infinitely often and finitely often.
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Lemma2.4 (lemma1.2.1(4)) For anye > 0 there exists a constait = C'(¢) > 0 such that the inequality

CT _ .2
Te_ 2+e 5 (24)

P( sup  sup [W(s+t)—W(s)| = v\/ﬁ) <

0<s<T—h0<t<h
holds for every positive, 7" and0 < h < T.
Lemma 25 (lemmal.4.1(4) Let{W(¢);0 <t < 1} be a Wiener process. Then
B(t)=W(t)—tW(l) (0<t<1), (25)
is a Brownian bridge.

Lemma2.6 (lemma4.4.4(4)) Letu(-) be a probability measure defined on the Borel sets of the Basgace
D(0,1) x D(0,1), and let¢ (res.n) be D(0, 1) valuedr.v defined on(§y, Ay, Py) (res. (Q2, Az, P2)) with
Pi{€€ A} = u(A x D(0,1)) res. Pa{n € A} = u(D(0,1) x A), (26)
for any Borel setd of D(0, 1). There exists a probability measufedefined on(€2; x 2, A; X As) such that
P{(w1,w2) € Q1 x Q¢ (§(w1),n(w2)) € B} = u(B), (27)
for any Borel setB of D(0, 1) x D(0, 1).

3 Local Strong Approximation

We state now our main theorems.
Theorem 3.1 There exist a sequengéV,,,y,0 < ¢t < 1} 5, of Gaussian processes, such that
EW,n(t) =0,

EWpn () Win(s) = min(t, s) — ts — %(bm(t)gbm(s),
and
bu(t) = 1 () QU ().
Moreover, for eaclr > 0, there exists constant$, > 0 and B2 > 0, such that, for alln > m anda € [0, 1]
we have
p ( Sup | Ymn(t) — Winn (t)| > A2 N7 (log aN)3/4> < BN~

0<t<a
Theorem 3.2 There exist a sequence of Gaussian proce§bgér), 0 < x < oo}, such that
EV,(z) =0, (28)
and )
BV, (@)Va(y) = min (F) (@), FO (y)) = FO @) F0 (y) = —ay ) @) (). (29)
Moreover, for alle > 0 anda € [0, 1] we have
P < sup  |an(2) — Vi(z)] > A3N_1/2(1ogaN)> < B3N~*,
0<e<Q(™ (a)

whereAs > 0 and B3 > 0 are positive constants.

Remark 1 By Borel-Cantelli Lemma and Theorem 2.2 we have

SUD [ (£) = Won (8)] 20 (N4 (10g aN)*/*) (30)
0<t<a
Applying Borel-Cantelli Lemma and Theorem 3.2 we have
sup  |an(@) — Vi(z)20 (N*1/4(1og aN)3/4) . (31)
0<z<Q™ (a)

For a = 1, our results reduce to the results of (1).



4 Proof

4.1 Proof of Theorem 2.2.

Consider the sequenée = F(™)(Y;),i = 1,2,..., of i.i.d. U[0,1] r.v’s and construct the corresponding
uniform quantile process defined by

Un(t) = N'2(t — FO (K (t))), (32)

whereY; and Ky (t) are defined by (13) and (15) successively. A simple apptioatf theorem(1.1) of (6)
with @ = d/n andz = eA~! logaN, we can find a sequence of Brownian bridgg\f)(t), 0 <t< 1}, such
that for alle > 0 we have

P ( sup |Un(t) — BO(t)| > AuN~2(log aN)) < B,N~®, (33)

0<t<a

whereA,, B, are positive constants dependingsoanda. Furthermore, we have fordll< a < 1,

r ( sup |B§5)(t)| > x) <272 £ >0. (34)

0<t<a

The last inequality together with (33) implies that
1 1/2
P< sup |Un(t)] > <§€(loga1\7)> +A4N_1/2(1ogaN)> <(2+By)N". (35)
0<t<a

We will prove in the next lemma thafy (¢), as defined in (32), can be approximated&b%}) as well.

Lemma4.1 Forall £ > 0 we have

P ( sup |Un(t) — BP(£)] > AsN~2(log aN)3/4> < BsN~°, (36)

0<t<a

where Ay and By are positive constants.

Proof of Lemma 4.1. Let&; ,...,En,~ denote the order statistics 6f, . ..,&y. By Theorem 2.1 and the
fact thatBy (Q™ (&,n)) = Un(+), we have, foreach < a < 1

i - —€
P{OQ%N ‘UN (N) ~ B (@,N)‘ > AN"1/2 (logaN)} < BNE. (37)

On the other hand, from (35) we have

i 12 (€ Yz -1 —
P{OgilgziN‘N fz,N‘ZN (2(10gaN)) + AsN" (logaN) ¢ < (2+ BN, (38)

Now, Lemmal.2.1 and Lemmal .4.1 of (4) allow us to write

P sup sup ‘B](\}) (i + s) — BJ(\}) <i>'
0<i<N—N/2(logaN) 0<s<N—1/2(logaN) N N

> AgN~Y4(log aN)3/4} < BgN~—,

This, combined with (38), implies that

(1 1 _ _
P{oé?éﬁN'BEV) (N) ~BW (&n)| > ArN 1/4(10gaN)3/4} < B;N~*. (39)
Lemma 4.1 follows from the fact that
7 7 —1 7
- — )< N1/2 -— —.
‘UN(t) Un (N)‘ <N for v <t< N (40)
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We return now to the proof of Theorem 2.2. Following (1), weéa

(m))' (1)]
sup FUM ()1 — FM (¢ ) @ , 41
S PO gy <0 )
together with
(m)y’
o (m) ey ey () @)
(m)y’
(m) )y [T @
for somey = y(m) < .
By the mean value theorem, we obtain
FrmQ™ (1))
t)—Un(t) =Un(t -1 44
for somed; x such thatd; y — t| < N=/2|Ux(t)|. In Theoreml.5.1in (5), it is proved that
Frm@Q™(#)) ’ )
P —1/>6
(cgilguf—c FE QUM (0r,x))
< 4(Iy] + D{exp(=Neh((1+ ) /201HD))
+exp(=Neh((1 +6) /), (45)
forall§ > 0,0 <c<landN > 1,whereh(x) =« +log(1/z) — 1,z > 0.
Moreover, there exist & > 0 such that
1
h((1 + 6)F/200+1D) > g(01+ 1)26%, 0 <6 < do. (46)
Letsy := (82)1/2([y] + 1)~ N~Y4(log aN)/2, andC®) := ) := N-1/2,
By the above inequality and (45) we obtain that, Msufficiently large, that
Frm@Qm™ (1)) ‘ -
P su —1|>n ) <8(7]+1)N"=. 47
(C}J)<t<11)c§\}> FOAQU™ (0:.n)) " (b0 “n
Combining (44), (35) and (47), we obtain that, férsufficiently large
P sup lkn(t) — Un(t)| > AsN V4 (logaN)*/* | < BsN~=. (48)
cP<t<a—cP

To complete the proof of Theorem 2.2, we replégeN in the proof of the Theorem B of (1) bjfogaN). B

To prove Theorems 3.1 and 3.2, we will make use of Lemma 4.2Z&hdellow.

Lemma 4.2 We have, for each > 0, and alln > m sufficiently large

T 1 [
P (‘Nl/Q (—x — 1) — —/ tdB\) (F(m)(t))’ > AgN~Y/?2 (1ogaN)2) < BgN~°.  (49)
0

m m
whereAg = Ag(e) = 4(1/2 + ¢).A and By = 8v/2 + B denote positive constants.

Proof of Lemma 4.2.

We have,

N o o
TN 1 1
- - Y, = — ) (1) = m.

I ;:1 g /0 tdGy(t) and /0 td t)y=m (50)
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Hence

v () =

Let Ay be a sequence of positive numbers and consider the follosdngmposition

T A B (F (1)t
+ / B (1) .

BBy (1) = E (BY (F™ @) =0,
Var (By (1) = E [(By(1)*] = F™ @)1 = F (@),

We know that

and

Var (B<N1>(F<m> (t)) - E [(BE&)(F(’") (t))Q] = FI™(£)(1 — FI™(¢)).

By Fubini theorem’s and Cauchy-Schwartz inequality we iobta
B[ ioxne = [ iyl
AN )\N
< [ Em@a- )
AN

and

(1) _ (1)
E/AN'B (FO (1))|dt = /ANE'B (B0 (1))t

< [C@Eaa - Fr) .

By (1), there exist$y > 0 such that

1—FM™(t) < 2exp (—%) L if > 1.
Hence, provided thaty > to, by (57) and the fact that

F™(t) <1 forall t >0,

the left hand sides of (55) and (56) are bounded aboveBexp(— Ay /4).
Indeed,
(F™(8)(1 — FO™ (1))
V2exp(—t/4),

E (1B (F @)

IN

A

and by using (56), we have

A

V2 [ exp(—t/4)dt

E(/AN'B(”( ") < 2:

4V2exp(—An/4).

In the same way

E (/: |BN(t)|dt) < VB exp(— A /4).

8

00 00 AN
/ B (t)dt — / B§V1>(F<m>(t)>dt‘ < / By (6) = BY (P (1)) at
0 0 0

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)



By choosing\y = 4(3 + ¢)(log alN), Markov inequality gives

P / |Bn ()|dt > a=/2HEINTY2 ) < 42N~ (59)
4(%+e)(logaN)
and
P / IBO(FU (4)]dt > a=V/PHIN-2) < 42N, (60)
4(1+42)(logaN)
By Theorem (2.1) we can prove that
AN
P ( / }ﬁN(t) — BY(rm (t))} dt > AN AN~Y?(log aN)> < BN~ (61)
0
In fact:
AN 1 L AN
/ By - BYFE™@)|at < s |aw(t) - BYF™ ) / dt
0 0<z<QU™ (a) 0

= AN sup
0<z<Q(™ (a)

Bu(t) = B (F )]

By the theorem (2.1), we have

P (/OAN ‘ﬂN(t) - By (F™ (t))\ dt > Ay AN~?(log aN))

IN

P ()\N sup

Bn(t) — B (F™ (t))\ dt > Ay AN~?(log aN))
0<2<Q(™ ()

- P < sup  |Bn(t) — BY (F™ (t))‘ dt > AN~/?(log aN)>
0<z<Q(™ (a)
< BN
LetA; = 2a~ (/24 N~1/2 andAy = ANAN Y2 (logaN) = 4(1/2 + &) AN~/2(logaN)?. Then
Ap+ Ay =4(1/2+ ) AN"Y2(logaN)? (1 4+ 0(1)) .

Lemma 4.2 now follows by combining the above three ineqiesli{55), (56) and (61).
o
A
< P ( / (Bx () = BY (@) ) at
0
+P < / (B§V1>(F<m>(t))) dt‘ > a(1/2+6)N1/2>
A

+P (’/Oo (Bn (1)) dt‘ > a<1/2+€>N1/2)
A

< 4V2N~F +4V2N~° +B.

/OOO (ﬂN(t) — BY (Fm (t))) dt‘ > Ay + Ag)

>4(1/2 + E)AN_1/2(10g+ aN)2>

If we posedg = Ag(c) = 4(1/2 + ¢).A andBy = 8v/2 + B, and the proof of lemma 4.2 is now completll

Lemma4.3 For eache > 0 andn > m, we have, uniformly over < a < 1

Tn (1)
P sup BY (F(m) (w—)) — BV (F™)(z))
<09scz<m><a> N mN v

> A10N71/4(1Og aN)3/4) S BloNig,

whereA;y and By are positive constants.



Proof of lemma 4.3. The random variablgfooo BE\})(F(””(t)) dt has a normal distribution, with expectation
and finite variance, given by
o] 2
0o2=F { (/ B (Fm (t))dt> } < o0. (62)
0

[ B0 e 0y > @eogany ) <2 (63)
0

Hence
1
P (_
g1

This inequality and Lemma 4.2 imply that

P ('T—J]\([ — 1' > A11N1/2(logaN)1/2) < BuN"*. (64)
m

WhereA;; = A1 (e) = (2m*20fs)1/2 andBi; = 2 + By. In fact:
AgN~12(logaN)2 + (2m~20%clogaN)"? = (2m™202¢) /2 (log aN)/2(1 + 0(1)).

So the probability (64) is the same as

T

P ( N/? (—]X[ — )’ > AgN ™2 (logaN)'/? + (2m20f€10gaN)1/2) .
m

By Lemma 4.2 and inequality (63), it was

T
P ( N1/? (—]]VV — 1)’ > AgN~Y2(logaN)'/? + (2m_205510gaN)1/2)

m

T 1 [
< P[NVE[E ——/ BY (FU™ (t))dt| > AgN~/?(logaN)'/?
- ( (mN m Jo N( ()) > Ag (Oga )

1 o0
+P < — / B (rtm (t))dt‘ > (zm—%%dogajv)l/?)
m Jo

p(

1 o0
+P ( — [ By &E™ (t))dt’ > (2¢ 1ogaN)1/2)

g1 0
< (By+2)N"*.

=

Tn L (% ), m(m _
1/2 <m—N1> a/0 B (FU™ (t))dt| > AgN 1/2(10gaN)1/2>

By first order Taylor expansion we have

T T
) (2N ) pm) — o flm) N
i (28 ) = P )| =y ™) | T 1], 5)
where|zy — 2| < |Lx — 1|. Let0 < § < 1 and defined y (6) by
T
AN(5){w: #7 ‘35}. (66)

Now, by choosingV sufficiently large so thatl;; N ~1/2(log aN)'/2 < §, and using (64) we get that (A% (0)) <
B N~¢. In addition, we have for eachy € Ay (9),

2 () < %xme—u_m, (67)

which is bounded off), co). Now, if

I
A12 = A11- sup (Lxmef(lﬂi)x

; (68)
0<z<Q(m) (a) F(m)
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then

P sup
0<z<Q (™) (a)

< P(Ax(9))

P| Ax(d) and sup
0<z<Q™ (a)

Fm) (xT_yv) _ R ()

m

> A12N_1/2(10g aN)1/2>

F(m) (zT_N) RO (g

> A12N71/2(10g aN)1/2}>

mN
< P (AY(9)
P (AN(é) and{ sup  zf™(zy) ‘T—N - 1‘ > A12N1/2(10gaN)1/2}>
0<2<QUm) (a) mN
< ByN<+P (AN(é) and{‘% — 1‘ > A11N1/2(1oga1\7)1/2}>
< B;N~¢, forlarge enoughv. (69)

Now, (69) combined with Lemm&.1.1 of (4) implies that
T 1 N)3/4
P sup BJ(\}) (F(m) (w—N )) — BJ(\})(F("L) (x))‘ > Aloi( og al)
0<2<Q(™ () N

m N1/2
T
P sup B](\}) (F(m) (z) + F™) (ac—N) — Fm (x)) — B](\})(F(m) (,7:))’
0<z<Q(™ (a) mN

> AloN_1/2 (10g aN)3/4)

< P sup sup B](\}) (t+s)— BE\})(t)’
0<t<1-A12N-1/2(logaN)1/2 0<s<A12N—1/2(logaN)/2
Ao 1/2 -1/2 1/2 1/2 -
> log aN)Y/ (AlgN /2(log aN)Y/ ) L BN"F
< BiN7%, (70)
This completes the proof of Lemma 4.3. |

4.2 Proof of Theorem 3.1.

By the representation (12) we get

{Ymn(#),0<t <1} = {'yN 0<t<1}. (71)
We want to prove the inequality
P <O§£ vk (£) = Wi (8)| > AaN~4(log aN)3/4) < ByN™¢, (72)
where N
Wi = B0 - o0 [ B o 73)

First we observe that

(m)(g) [o0
() - (B§&><t> i) | e (t))dt)

m

— k() = BOW® + <(%)_1 - 1) wn(t)
e (26))(3) )
*w <N1/2< > /OOOB“) ))dt). (74)
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Now, by Theorem 2.2 we have

p < sup |y (t) — BW (1) > Ay N~V4(log aN)3/4) < BN"*.
0<t<a
Noting that
sup o™ ()= sup zf™(z) < co.
0<t<a 0<z<Q(a)

Let A3 = Agsupy<,<qa) ¢/ "™ (z), by Lemma 4.2 and (76) we get

N1/2 (1 _ T_N) (b(m)(t) _ M /Ooo Bg\}) (F(m)(t)dt)

P(sup N —

0<t<a

> A13N~Y2 (log aN)Q) < ByN~®.

Moreover, we have

First, we have

P( sup
0<t<a

<%) -~ 1> HN(t)} > <A11N71/2(1ogaN)1/2)
1
2

1/2
5(logaN)) +A1N_1/4(logaN)3/4>>

‘((%) - 1)‘ > (AHN—l/2(1ogaN)1/2))

1/2
<sup Ik ()] > ((%s(logaN)) +A1N1/4(logaN)3/4>>

IN
s

IN
Y

IN

BiiN ¢ 4+ BN ¢ 4+2N"°¢
< BuN"°.

(75)

(76)

(77)

(78)

(79)

From the law of large numberg,; /N tends tom, asn tends to infinity. Therf'y /Nm tends to one when

tends to infinity. On the other hand, we remarkl'if /Nm > 1/2, thenNm /Tx < 2. We can see that

Tn 2 mN Yy
f) su E— -1 —K t > 2A» Af 10 aAf
<O<tI<)a ((mN) ) Ty v(t)] > (241 (logaN))

1/2
X <(%5(logaN)) +A1N_1/4(1ogaN)3/4>>

< BuN™°.

Using (79) and (80), we obtain

Pl () -1) e

> AN ~V4(log aN)3/4> < BiyN~c.
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(81)



Moreover we have

oo () ) () )

 om (3) ) o (2

Now, on Ay (8), supg< i<, ™ (t) = M < oco. Taking A5 = A%, M and applying the technique used in line
2 of (69) we get, by (64), that

() 1)

mN
Let A5 = 243, M. Using the same arguments, we see that
(Gx)-)

mN

From (82) and (83), we obtain

(oo () 2) (Z) )

>A17N*1/2(1ogaN)) < BuN~c.

pP ( sup o™ (t)N1/2

0<t<a

> A1sN~12(log aN)) < Bj1N¢. (82)

N
m— > A16N1(1ogaN)3/2> < Blles. (83)

P < sup o™ (t)N1/? T

0<t<a

Now, combining (74), (75), (77), (81) and (84) we get

Ao - (B0 - 220 [ B o)

m 0

P( sup

0<t<a

> A N~V4 (log aN)3/4) < ByN~e. (85)

By Lemmad.4.4 of (4) and (19), we can define a sequence of Gaussian préBéss; (t),0 <t < 1}, N =
1,2,...such that for eaclV, we have

(e (8), Wi (),0 < 8 < 1 { (6), Wi (£),0 < t,s <1} (86)
This completes the proof of Theorem 3.1. |
4.3 Proof of Theorem 3.2.

We are going to give the main steps of the proof. The detaflsher same as in theorem 3.1. Assume first that
n = mN. Representation (18) for the empirical processwe$pacings, our aim is to prove the following

P ( sup |a}v(x) —Vy(x)| > A3N1/2(1ogaN)> < B3N"¢, (87)
0<2<Q(m (a)
where ) -
Vila) = B (FO @)~ af™ (@) [ B E™ )y, (88)
0

By taking the second order Taylor expansion in the secoma ¢$1(18), we get

ok (z) — Vi(z) = Bn (w%) - By (F(m) (“”T_?V))

m

2
I BJ(\}) <F(m) (xT_N)> 7B§\})(F(m)(x)> + N1/2 <T—N — 1> 2210 (xy)

mN

0

13



wherejzy —z| < z }% — 1|. Making use of Lemmas 4.2 and 4.3, together with Theorem 2.ahtain (87).
Hence together with Lemmé4.4 of (4), we can define a sequence of Gaussian procg$ses(z),0 < = <
oo}, N =1,2,...,such that for eactV we have

{omn (@), Vi (1), 0 < 2,y < 00} E{al (2), Vi (9),0 < 7,y < 00} (89)

This completes the proof Theorem (3.2) with= mN. Now, we prove the general case wheteN — 1) <
n < mN. It follows from (11) that

{an(z),0 <z < oo}

< {NW <GN.m <x S > — F‘”“(w)) 0<z< oo} , (90)
’ mN
where
1= 1
GNm(®) = & 2 Livicay + Us iy Beca} (91)
Moreover g g . )
GNm |2—= ) — Gn_ /) <=4 —- 92
e fovn (a5 o () [ < 3+ v 2
and
Y ) > A;gN~'(logaN) ) < BjgN~¢ (93)
mN  m(N —1) 18 & =78 ’
Taking
P=P sup N1/2 (GN_,m <x Sn > — Fm (x)) — Vi i(x) (94)
0<z<Q(™ (a) mN
> Ay N~V4 (log aN)3/4) (95)
From (87) and (92) we have
1/2 | g(m) Sn (m) —1/2
P < P sup N/ |F x—— | — F"(2)| > AyoN (logaN)
0<e<QU™ (a) TN
Sn
+P sup  NY2|\vE o, (x—) — V¥ (x)] > Asy N2 (logaN)
0<z<Q(™ (a) TN
+BsN .
As usual, by a first order the Taylor expansion we get
—Tn_
N1/ | pm) (l‘&) R ()] = ) () N1/2 | S I | (96)
TN,1 TNfl
wherelzy —z| < % . Lemma 4.2 and (93) now imply that
Sn —1 —&
P — 1| > AN (10g aN) < BysN™°. (97)
N-1

By arguing in a similar way as in the proof (69), we obtain that

Folm) (xTS” ) ~ FOm ()

N-1

P sup N1/2
0<z<Q(™ (a)

> AygN "2 (log aN)> < ByyN7%.  (98)

Now, by definitions (88), (98), and through a similar argutresnthat used at the end of the proof of Lemma
4.3, we get

Sy
P sup  NY2|\vE o, (x—) — V¥ (x)] > Aoy N"Y2(logaN) | < BoyyN~5.  (99)
0<2<Q(™ (a) T
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Then, by (98), (99) and (96) we have

P sup N1/? (GN,m (xi) — Fm (m)) —Vy_i(z) (100)
0<z<Q(m) (a) miN
> Ay N~V4 (logaN)*/ 4) < BogN ™= (101)

Again, by Lemma4.4.4 of (4) and (90), we can get a sequence of Gaussian proc¢gsés);0 < = <
oo}, m(N —1) <n<mN,N =1,2...,such that for eactV we have

{an(z),Va(y),0 < 2,y < oo}
{NW (GNM (mn‘j—}’v) - F(m)(x)) Ve 1(y),0 <z y < oo} .

This completes the proof of Theorem 3.2. |

[
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