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On the strong approximation of non-overlappingm-spacings
processes

Salim BOUZEBDA & Nabil NESSIGHA

L.S.T.A., Université de Paris 6. 175, rue du Chevaleret, 8ème étage, bâtiment A,

75013 PARIS FRANCE.

Abstract.

In this paper we establish strong approximations of the uniform non-overlappingm-spacings process ex-

tending the results of (1). Our methods rely on the (9) invariance principle.

AMS Subject Classifications: primary 60F05, 60F17; secondary 62G07, 62G10.
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1 Introduction and Main Result

Let U1, U2, . . ., be independent and identically distributed(i.i.d.) uniform [0, 1] random variables(r.v,s) de-

fined on the same probability space(Ω, A, P ). Denote by0 =: U0,n ≤ U1,n ≤ · · · ≤ Un−1,n ≤ Un,n := 1,

the order statistics ofU1, U2, . . . , Un−1, and0, 1.

The corresponding non-overlappingm-spacings are then defined by

D
(m)
i,n := Uim,n − U(i−1)m,n, 1 ≤ i ≤ N − 1,

D
(m)
N,n := 1 − U(N−1)m,n,

(1)

whereN = ⌊n/m⌋, with ⌊u⌋ ≤ u < ⌊u⌋ + 1 denoting the integer part ofu.

Whenm = 1 i.e N = n, them-spacings reduce to the the usual1-spacings (or simple spacings) defined by

D
(1)
i,n = Ui,n − Ui−1,n, i = 1, . . . , n. Simple spacings have received a great deal of attention in the literature.

We refer to (7), (10; 11), (13), (12), (2) and (3).

It is well known (see, e.g., (10)) that, for anyn ≥ 1, the simple spacings{D(1)
i,n : 1 ≤ i ≤ n} form an

exchangeable set of random variables such that, for each fixed t ≥ 0, uniformly over1 ≤ i ≤ n,

P (nD
(1)
i,n ≤ t) = P (nD1

1,n ≤ t) = 1 −
(

1 − t

n

)n−1

→ 1 − e−t, t ≥ 0, (2)

asn tends to infinity. Then the normalized spacings have the exponential one distribution function.

Throughout the sequel,m ≥ 1 will denote a fixed integer. In applications it is more convenient to use the

normalized non-overlappingm-spacings{mND
(m)
i,n : 1 ≤ i ≤ N}. For a fixedm ≥ 1, asn → ∞, the

distribution function ofmND
(m)
i,n (which is independent of the indexi with 1 ≤ i ≤ N − 1) converges to the

distribution functionF (m), of a standard gamma random variable with expectationm, given by

F (m)(t) :=
1

(m − 1)!

∫ t

0

xm−1e−xdx =

∫ t

0

f (m)(t)dt for t ≥ 0, (3)

with

f (m)(t) =
tm−1e−t

(m − 1)!
and F (m)(t) = 0 for t < 0. (4)
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For each choice ofm ≥ 1, the empiricalm-spacings process is defined by

αn(x) = N1/2
(

F̂n(x) − F (m)(x)
)

, x > 0, (5)

whereF̂n(·) is the empirical distribution function of{mND
(m)
i,n : 1 ≤ i ≤ N}, defined forn ≥ m, by

F̂n(x) =
1

N

N
∑

i=1

1{
mND

(m)
i,n ≤x

} , x ∈ R, (6)

with 1(A) denoting the indicator function of the event A.

We will need the following additional notations and definitions. Let

M
(m)
1:n ≤ M

(m)
2:n ≤ · · · ≤ M

(m)
N :n, (7)

be the order statistics of{D(m)
i,n : 1 ≤ i ≤ N}. The quantilem-spacings function is given by

Q̂n(t) :=

{

mNM
(m)
i,n , if i−1

N < t ≤ i
N , i = 1, 2, . . . , N,

0, if t = 0.

Let

Q(m)(t) = inf
{

x ≥ 0 : F (m)(x) ≥ t
}

, (8)

andf (m)(t) = d
dtF

(m)(t). The quantilem-spacings processγn is then defined by

γn(t) = N1/2f (m)
(

Q(m)(t)
)(

Q(m)(t) − Q̂n(t)
)

, 0 ≤ t ≤ 1. (9)

The aim in this paper is to obtain a refinement of the strong approximation results forαn andγn obtained by

(1). Their main tool is the well known (KMT) invariance principle introduced in (8) by Komlós, Major and

Tusnády. In our approach we shall make use the refinement of the KMT inequality for the Brownian bridge

approximation of uniform empirical and quantile processespresented respectively in (9) and (6). This approach

is based on the approximation of them-spacings process on(0, a), with a ≤ 1.

In order to prove the invariance principle, we use the same method developed in (1), which is based on the

following representation of simple spacings given by (10).

Let E1, E2, . . . denote ani.i.d. sequence of exponentialr.v,s with mean1 and setSn :=
∑n

i=1 Ei. Then for

eachn > 1, we have the distributional identity

{Ui,n − Ui−1,n : 1 ≤ i ≤ n} d
=

{

Ei

Sn
: 1 ≤ i ≤ n

}

. (10)

Consequently we obtain the following representation of thenon-overlappingm-spacings

{

D
(m)
i,n , 1 ≤ i ≤ N − 1, D

(m)
N,n

}

d
=

{(

i+m−1
∑

ℓ=i

Eℓ

)

/

Sn,

i = 1, m + 1, . . . ,
(⌊ n

m

⌋

− 1
)

m + 1,





n
∑

ℓ=m⌊ n
m ⌋+1

Eℓ





/

Sn







. (11)

⌊x⌋ ≤ x ≤ ⌊x⌋ + 1. In particular, ifn = mN is an integer multiple ofm, then
{

D
(m)
i,n , 1 ≤ i ≤ N

}

d
= {Yi/TN , 1 ≤ i ≤ N} , (12)

where

Yi :=
im
∑

ℓ=(i−1)m+1

Eℓ, i = 1, 2, . . . , N, (13)
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is a sequence of independent identically distributedrv,s with distribution functionF (m) andTN =
∑N

i=1 Yi.

Now, we denote byGN the empirical distribution function and byKN the empirical quantile function of the

sequenceY1, . . . , YN , respectively, defined by

GN (x) :=
1

N

N
∑

i=1

1{Yi≤x}, for all x ∈ R
+, (14)

and

KN (t) := inf{x : GN (x) ≥ t}, for all t ∈ [0, 1]. (15)

Let βN andκN be the corresponding empirical and quantile processes, respectively, defined by

βN (x) :=
√

N
(

GN (x) − F (m)(x)
)

, for all x ∈ R
+, (16)

and

κN (t) :=
√

Nf (m)
(

Q(m)(t)
)(

Q(m)(t) − KN(t)
)

, for all t ∈ [0, 1]. (17)

By (12) we have the following representation

{αmN (x), 0 ≤ x < ∞} d
=

{

α1
N (x) = βN

(

x
TN

mN

)

+ RN (x), 0 ≤ x < ∞
}

, (18)

where

RN (x) = N1/2

(

F (m)

(

x
TN

mN

)

− F (m)(x)

)

.

In fact:

{αmN (x), 0 ≤ x < ∞}

d
=

{

N1/2

(

1

N

N
∑

i=1

1{ mN
TN

Yi≤x
} − F (m)(x)

)

, 0 ≤ x < ∞
}

=

{

N1/2

(

1

N

N
∑

i=1

1{
Yi≤

TN
mN x

} − F (m)(x)

)

, 0 ≤ x < ∞
}

.

By adding and subtractingF (m)
(

TN

mN x
)

, in the right side, we obtain

{

N1/2

(

1

N

N
∑

i=1

1{
Yi≤

TN
mN x

} − F (m)(x)

)

, 0 ≤ x < ∞
}

=

{

N1/2

(

1

N

N
∑

i=1

1{
Yi≤

TN
mN x

} − F (m)

(

TN

mN
x

)

)

+ RN (x), 0 ≤ x < ∞
}

=

{

N1/2

(

1

N

N
∑

i=1

1{
ξi≤F (m)

(

TN
mN x

)} − F (m)

(

TN

mN
x

)

)

+ RN (x), x ∈ R+

}

=

{

αN

(

F (m)

(

TN

mN
x

))

+ N1/2

(

F (m)

(

TN

mN
x

)

− F (m)(x)

)

, x ∈ R+

}

=

{

α1
N (x) = βN

(

TN

mN
x

)

+ RN (x), 0 ≤ x < ∞
}

.

In the same way, by (12), and definition of the empirical quantile functionKN , we have the following repre-

sentation forγmN .

{γmN (t), 0 ≤ t < 1} d
=

{

γ1
N (t) =

mN

TN

(

κN(t) + N1/2

(

TN

mN
− 1

)

φm(t)

)

, 0 ≤ t < 1

}

, (19)

and

φm(t) = f (m)(Q(m)(t))Q(m)(t).
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In fact:

{γmN(t), 0 ≤ t < 1}
d
=

{

N1/2f (m)
(

Q(m)(t)
)

(

Q(m)(t) − mN

TN
Yi,N

)

, 0 ≤ t < 1

}

=

{

N1/2f (m)
(

Q(m)(t)
)

(

Q(m)(t) − mN

TN
KN(t)

)

, 0 ≤ t < 1

}

.

By added and subtractedmN
TN

Q(m)(t), in the right side, we obtain

{γN (t), 0 ≤ t < 1}

=

{

mN

TN
κN (t) + N1/2f (m)

(

Q(m)(t)
)

(

Q(m)(t) − mN

TN
Q(m)(t)

)

, 0 ≤ t < 1

}

=

{

mN

TN

(

κN (t) + N1/2f (m)
(

Q(m)(t)
)

(

TN

mN
Q(m)(t) − Q(m)(t)

))

, 0 ≤ t < 1

}

=

{

mN

TN

(

κN (t) + N1/2f (m)
(

Q(m)(t)
)

Q(m)(t)

(

TN

mN
− 1

))

, 0 ≤ t < 1

}

=

{

mN

TN

(

κN (t) + N1/2

(

TN

mN
− 1

)

f (m)
(

Q(m)(t)
)

Q(m)(t)

)

, 0 ≤ t < 1

}

.

2 Preliminaries

In the sequel, we will assume, without loss of generality, that the original probability space, on which are

definedU1, U2, . . . , a sequence of independent uniform(0, 1) random variables andB1, B2, . . . a sequence of

Brownian bridges. This important assumption is used to prove invariance principles.

Throughout the paper we denote byA,B, Ai, Bi, i = 1, 2, . . . which are appropriate positive constants, and by

log the functionu 7→ log+(u) = log(u ∨ e), ∀ u ∈ R. Let us recall the following theorem.

Theorem 2.1 ((9)). There exists a sequence of empirical processesβN based onY1, . . . , YN and a sequence

of Brownian bridges{B(1)
N (t), 0 ≤ t ≤ 1} such that, for allε > 0 and0 ≤ a ≤ 1, we have

P

(

sup
0≤x≤Q(m)(a)

|βN (x) − B
(1)
N (F (m)(x))| ≥ AN−1/2(log aN)

)

≤ BN−ε, (20)

whereA andB are positive constants depending onε anda.

A similar result is needed for the quantile processκn. For this, we consider deviations between the quantile

processκN and the approximating Brownian bridges{B(1)
N (t), 0 ≤ t ≤ 1} on [0, a], instead of[0, 1]. We

formulate this idea in the following theorem.

Theorem 2.2 Let{B(1)
N (t), 0 ≤ t ≤ 1} be as in of Theorem 2.1. Then for allε > 0 andn ≥ m, we have

P

(

sup
0≤t≤a

|κN(t) − B
(1)
N (t)| ≥ A1N

−1/4(log aN)3/4

)

≤ B1N
−ε, (21)

for all 0 ≤ a ≤ 1, whereA1 andB1 are positive constants.

We give now, some technical Lemma which we will use to prove our results bellow.

Theorem 2.3 (The Borel-Cantelli lemma) For any sequence{An : n ≥ 1} ⊆ A of measurable events, we

have
n
∑

i=1

P (An) < ∞ ⇒ P (An i.o.) = 0 ⇔ P (An f.o.) = 1. (22)

n
∑

i=1

P (An) = ∞ ⇒ P (An i.o.) = 1 ⇔ P (An f.o.) = 0. (23)

Wherei.o. and f.o. designed respectively, infinitely often and finitely often.
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Lemma 2.4 (lemma 1.2.1 (4)) For anyε > 0 there exists a constantC = C(ε) > 0 such that the inequality

P

(

sup
0≤s≤T−h

sup
0≤t≤h

|W (s + t) − W (s)| ≥ v
√

h

)

≤ CT

h
e−

v2

2+ε , (24)

holds for every positivev, T and0 < h < T .

Lemma 2.5 (lemma 1.4.1 (4)) Let{W (t); 0 ≤ t ≤ 1} be a Wiener process. Then

B(t) = W (t) − tW (1) (0 ≤ t ≤ 1), (25)

is a Brownian bridge.

Lemma 2.6 (lemma 4.4.4 (4)) Letµ(·) be a probability measure defined on the Borel sets of the Banach space

D(0, 1) × D(0, 1), and letξ (res.η) beD(0, 1) valuedr.v defined on(Ω1, A1, P1) (res.(Ω2, A2, P2)) with

P1{ξ ∈ A} = µ(A × D(0, 1)) res. P2{η ∈ A} = µ(D(0, 1) × A), (26)

for any Borel setA of D(0, 1). There exists a probability measureP defined on(Ω1 ×Ω2, A1 ×A2) such that

P{(ω1, ω2) ∈ Ω1 × Ω2 : (ξ(ω1), η(ω2)) ∈ B} = µ(B), (27)

for any Borel setB of D(0, 1) × D(0, 1).

3 Local Strong Approximation

We state now our main theorems.

Theorem 3.1 There exist a sequence{WmN , 0 ≤ t ≤ 1}N>1 of Gaussian processes, such that

EWmN (t) = 0,

EWmN (t)WmN (s) = min(t, s) − ts − 1

m
φm(t)φm(s),

and

φm(t) = f (m)
(

Q(m)(t)
)

Q(m)(t).

Moreover, for eachε > 0, there exists constantsA2 > 0 andB2 > 0, such that, for alln ≥ m anda ∈ [0, 1]

we have

P

(

sup
0≤t≤a

|γmN(t) − WmN (t)| > A2N
−1/4(log aN)3/4

)

≤ B2N
−ε.

Theorem 3.2 There exist a sequence of Gaussian processes{Vn(x), 0 ≤ x ≤ ∞}, such that

EVn(x) = 0, (28)

and

EVn(x)Vn(y) = min
(

F (m)(x), F (m)(y)
)

− F (m)(x)F (m)(y) − 1

m
xyf (m)(x)f (m)(y). (29)

Moreover, for allε > 0 anda ∈ [0, 1] we have

P

(

sup
0≤x≤Q(m)(a)

|αn(x) − Vn(x)| ≥ A3N
−1/2(log aN)

)

≤ B3N
−ε,

whereA3 > 0 andB3 > 0 are positive constants.

Remark 1 By Borel-Cantelli Lemma and Theorem 2.2 we have

sup
0≤t≤a

|γmN (t) − WmN (t)|a.s.
= O

(

N−1/4(log aN)3/4
)

. (30)

Applying Borel-Cantelli Lemma and Theorem 3.2 we have

sup
0≤x≤Q(m)(a)

|αn(x) − Vn(x)|a.s.
= O

(

N−1/4(log aN)3/4
)

. (31)

For a = 1, our results reduce to the results of (1).
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4 Proof

4.1 Proof of Theorem 2.2.

Consider the sequenceξi = F (m)(Yi), i = 1, 2, . . . , of i.i.d. U [0, 1] r.v,s and construct the corresponding

uniform quantile process defined by

UN (t) = N1/2(t − F (m)(KN (t))), (32)

whereYi andKN (t) are defined by (13) and (15) successively. A simple application of theorem(1.1) of (6)

with a = d/n andx = ελ−1 log aN , we can find a sequence of Brownian bridges{B(2)
N (t), 0 ≤ t ≤ 1}, such

that for allε > 0 we have

P

(

sup
0≤t≤a

|UN (t) − B
(2)
N (t)| ≥ A4N

−1/2(log aN)

)

≤ B4N
−ε, (33)

whereA4, B4 are positive constants depending onε anda. Furthermore, we have for all0 ≤ a ≤ 1,

P

(

sup
0≤t≤a

|B(2)
N (t)| > x

)

≤ 2e−2x2

, x ≥ 0. (34)

The last inequality together with (33) implies that

P

(

sup
0≤t≤a

|UN (t)| ≥
(

1

2
ε(log aN)

)1/2

+ A4N
−1/2(log aN)

)

≤ (2 + B4)N−ε. (35)

We will prove in the next lemma thatUN(t), as defined in (32), can be approximated byB
(1)
N as well.

Lemma 4.1 For all ε > 0 we have

P

(

sup
0≤t≤a

|UN (t) − B
(1)
N (t)| ≥ A5N

−1/2(log aN)3/4

)

≤ B5N
−ε, (36)

whereA5 andB5 are positive constants.

Proof of Lemma 4.1. Let ξ1,N , . . . , ξN,N denote the order statistics ofξ1, . . . , ξN . By Theorem 2.1 and the

fact thatβN (Q(m)(ξi,N )) = UN( i
N ), we have, for each0 < a ≤ 1

P

{

max
0≤i≤aN

∣

∣

∣

∣

UN

(

i

N

)

− B
(1)
N (ξi,N )

∣

∣

∣

∣

> AN−1/2 (log aN)

}

≤ BN−ε. (37)

On the other hand, from (35) we have

P

{

max
0≤i≤aN

∣

∣

∣

∣

i

N
− ξi,N

∣

∣

∣

∣

≥ N−1/2
(ε

2
(log aN)

)1/2

+ A4N
−1 (log aN)

}

≤ (2 + B4)N
−ε. (38)

Now, Lemma1.2.1 and Lemma1.4.1 of (4) allow us to write

P

{

sup
0≤i≤N−N1/2(log aN)

sup
0≤s≤N−1/2(log aN)

∣

∣

∣

∣

B
(1)
N

(

i

N
+ s

)

− B
(1)
N

(

i

N

)∣

∣

∣

∣

> A6N
−1/4(log aN)3/4

}

≤ B6N
−ε,

This, combined with (38), implies that

P

{

max
0≤i≤aN

|B(1)
N

(

i

N

)

− B
(1)
N (ξi,N ) | > A7N

−1/4(log aN)3/4

}

≤ B7N
−ε. (39)

Lemma 4.1 follows from the fact that
∣

∣

∣

∣

UN (t) − UN

(

i

N

)∣

∣

∣

∣

≤ N−1/2 for
i − 1

N
< t <

i

N
. (40)
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We return now to the proof of Theorem 2.2. Following (1), we have

sup
0<t<∞

F (m)(t)(1 − F (m)(t))
|(f (m))

′

(t)|
(f (m))2(t)

≤ γ, (41)

together with

lim
t→∞

F (m)(t)(1 − F (m)(t))
|(f (m))

′

(t)|
(f (m))2(t)

= 1, (42)

lim
t→0

F (m)(t)(1 − F (m)(t))
|(f (m))

′

(t)|
(f (m))2(t)

= 1, (43)

for someγ = γ(m) < ∞.

By the mean value theorem, we obtain

κN (t) − UN (t) = UN (t)

(

f (m)(Q(m)(t))

f (m)(Q(m)(θt,N ))
− 1

)

, (44)

for someθt,N such that|θt,N − t| < N−1/2|UN (t)|. In Theorem1.5.1 in (5), it is proved that

P

(

sup
c≤t≤1−c

∣

∣

∣

∣

f (m)(Q(m)(t))

f (m)(Q(m)(θt,N ))
− 1

∣

∣

∣

∣

> δ

)

≤ 4([γ] + 1){exp(−Nch((1 + δ)1/2([γ]+1)))

+ exp(−Nch((1 + δ)−1/2([γ]+1)))}, (45)

for all δ > 0, 0 < c < 1 andN ≥ 1, whereh(x) = x + log(1/x) − 1, x > 0.

Moreover, there exist aδ0 > 0 such that

h((1 + δ)∓1/2([γ]+1)) ≥ 1

8
([γ] + 1)2δ2, 0 < δ < δ0. (46)

Let δN := (8ε)1/2([γ] + 1)−1N−1/4(log aN)1/2, andC(1) := C
(1)
N := N−1/2.

By the above inequality and (45) we obtain that, forN sufficiently large, that

P



 sup
C

(1)
N ≤t≤1−C

(1)
N

∣

∣

∣

∣

f (m)(Q(m)(t))

f (m)(Q(m)(θt,N ))
− 1

∣

∣

∣

∣

> δN



 ≤ 8([γ] + 1)N−ε. (47)

Combining (44), (35) and (47), we obtain that, forN sufficiently large

P



 sup
C

(1)
N ≤t≤a−C

(1)
N

|κN (t) − UN (t)| > A8N
−1/4(log aN)3/4



 ≤ B8N
−ε. (48)

To complete the proof of Theorem 2.2, we replacelog N in the proof of the Theorem B of (1) by(log aN). �

To prove Theorems 3.1 and 3.2, we will make use of Lemma 4.2 and4.3 bellow.

Lemma 4.2 We have, for eachε > 0, and alln ≥ m sufficiently large

P

(∣

∣

∣

∣

N1/2

(

TN

mN
− 1

)

− 1

m

∫ ∞

0

tdB
(1)
N

(

F (m)(t)
)

∣

∣

∣

∣

> A9N
−1/2 (log aN)2

)

≤ B9N
−ε. (49)

whereA9 = A9(ε) = 4(1/2 + ε)A andB9 = 8
√

2 + B denote positive constants.

Proof of Lemma 4.2.

We have,

TN

mN
=

1

mN

N
∑

i=1

Yi =
1

m

∫ ∞

0

tdGN (t) and
∫ ∞

0

tdF (m)(t) = m. (50)

7



Hence

N1/2

(

TN

N
− m

)

=

∫ ∞

0

tdβN (t) = −
∫ ∞

0

βN (t)dt. (51)

Let λN be a sequence of positive numbers and consider the followingdecomposition
∣

∣

∣

∣

∫ ∞

0

βN (t)dt −
∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

≤
∫ λN

0

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt

+

∫ ∞

λN

|B(1)
N (F (m)(t))|dt

+

∫ ∞

λN

|βN (t)|dt.

We know that

E (βN (t)) = E
(

B
(1)
N (F (m)(t))

)

= 0, (52)

V ar (βN (t)) = E
[

(βN (t))
2
]

= F (m)(t)(1 − F (m)(t)), (53)

and

V ar
(

B
(1)
N (F (m)(t)

)

= E

[

(

B
(1)
N (F (m)(t)

)2
]

= F (m)(t)(1 − F (m)(t)). (54)

By Fubini theorem’s and Cauchy-Schwartz inequality we obtain

E

∫ ∞

λN

|βN (t)|dt =

∫ ∞

λN

E|βN (t)|dt

≤
∫ ∞

λN

(F (m)(t)(1 − F (m)(t)))1/2dt, (55)

and

E

∫ ∞

λN

|B(1)
N (F (m)(t))|dt =

∫ ∞

λN

E|B(1)
N (F (m)(t))|dt

≤
∫ ∞

λN

(F (m)(t)(1 − F (m)(t)))1/2dt. (56)

By (1), there existst0 > 0 such that

1 − F (m)(t) ≤ 2 exp

(

− t

2

)

, if t ≥ t0. (57)

Hence, provided thatλN ≥ t0, by (57) and the fact that

F (m)(t) ≤ 1 for all t > 0, (58)

the left hand sides of (55) and (56) are bounded above by4
√

2 exp(−λN/4).

Indeed,

E
(

|B(1)
N (F (m)(t))|

)

≤ (F (m)(t)(1 − F (m)(t)))1/2

≤
√

2 exp(−t/4),

and by using (56), we have

E

(∫ ∞

λN

|B(1)
N (F (m)(t))|dt

)

≤
√

2

∫ ∞

λN

exp(−t/4)dt

= 4
√

2 exp(−λN/4).

In the same way

E

(∫ ∞

λN

|βN (t)|dt

)

≤ 4
√

2 exp(−λN/4).

8



By choosingλN = 4(1
2 + ε)(log aN), Markov inequality gives

P

(

∫ ∞

4( 1
2 +ε)(log aN)

|βN (t)|dt > a−(1/2+ε)N−1/2

)

≤ 4
√

2N−ε, (59)

and

P

(

∫ ∞

4( 1
2+ε)(log aN)

|B(1)
N (F (m)(t))|dt > a−(1/2+ε)N−1/2

)

≤ 4
√

2N−ε. (60)

By Theorem (2.1) we can prove that

P

(

∫ λN

0

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt > λNAN−1/2(log aN)

)

≤ BN−ε. (61)

In fact:
∫ λN

0

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt ≤ sup
0≤x≤Q(m)(a)

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣

∫ λN

0

dt

= λN sup
0≤x≤Q(m)(a)

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ .

By the theorem (2.1), we have

P

(

∫ λN

0

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt > λNAN−1/2(log aN)

)

≤ P

(

λN sup
0≤x≤Q(m)(a)

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt > λNAN−1/2(log aN)

)

= P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣βN (t) − B
(1)
N (F (m)(t))

∣

∣

∣ dt > AN−1/2(log aN)

)

≤ BN−ε.

Let Λ1 = 2a−(1/2+ε)N−1/2 andΛ2 = λNAN−1/2(log aN) = 4(1/2 + ε)AN−1/2(log aN)2. Then

Λ1 + Λ2 = 4(1/2 + ε)AN−1/2(log aN)2 (1 + o(1)) .

Lemma 4.2 now follows by combining the above three inequalities (55), (56) and (61).

P

(∣

∣

∣

∣

∫ ∞

0

(

βN (t) − B
(1)
N (F (m)(t))

)

dt

∣

∣

∣

∣

> Λ1 + Λ2

)

≤ P

(∣

∣

∣

∣

∣

∫ λ

0

(

βN (t) − B
(1)
N (F (m)(t))

)

dt

∣

∣

∣

∣

∣

> 4(1/2 + ε)AN−1/2(log+ aN)2

)

+P

(∣

∣

∣

∣

∫ ∞

λ

(

B
(1)
N (F (m)(t))

)

dt

∣

∣

∣

∣

> a−(1/2+ε)N−1/2

)

+P

(∣

∣

∣

∣

∫ ∞

λ

(βN (t)) dt

∣

∣

∣

∣

> a−(1/2+ε)N−1/2

)

≤ 4
√

2N−ε + 4
√

2N−ε + B.

If we poseA9 = A9(ε) = 4(1/2 + ε)A andB9 = 8
√

2 + B, and the proof of lemma 4.2 is now complete.�

Lemma 4.3 For eachε > 0 andn ≥ m, we have, uniformly over0 ≤ a ≤ 1

P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

B
(1)
N

(

F (m)

(

x
TN

mN

))

− B
(1)
N (F (m)(x))

∣

∣

∣

∣

> A10N
−1/4(log aN)3/4

)

≤ B10N
−ε,

whereA10 andB10 are positive constants.
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Proof of lemma 4.3. The random variable
∫∞

0
B

(1)
N (F (m)(t)) dt has a normal distribution, with expectation0

and finite variance, given by

σ2
1 = E

{

(∫ ∞

0

B
(1)
N (F (m)(t))dt

)2
}

< ∞. (62)

Hence

P

(

1

σ1

∣

∣

∣

∣

∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

> (2ε log aN)1/2

)

≤ 2N−ε. (63)

This inequality and Lemma 4.2 imply that

P

(∣

∣

∣

∣

TN

mN
− 1

∣

∣

∣

∣

> A11N
−1/2(log aN)1/2

)

≤ B11N
−ε. (64)

WhereA11 = A11(ε) =
(

2m−2σ2
1ε
)1/2

andB11 = 2 + B9. In fact:

A9N
−1/2(log aN)1/2 + (2m−2σ2

1ε log aN)1/2 = (2m−2σ2
1ε)1/2(log aN)1/2(1 + o(1)).

So the probability (64) is the same as

P

(∣

∣

∣

∣

N1/2

(

TN

mN
− 1

)∣

∣

∣

∣

> A9N
−1/2(log aN)1/2 + (2m−2σ2

1ε log aN)1/2

)

.

By Lemma 4.2 and inequality (63), it was

P

(∣

∣

∣

∣

N1/2

(

TN

mN
− 1

)∣

∣

∣

∣

> A9N
−1/2(log aN)1/2 + (2m−2σ2

1ε log aN)1/2

)

≤ P

(∣

∣

∣

∣

N1/2

(

TN

mN
− 1

)

− 1

m

∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

> A9N
−1/2(log aN)1/2

)

+P

(∣

∣

∣

∣

1

m

∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

> (2m−2σ2
1ε log aN)1/2

)

= P

(∣

∣

∣

∣

N1/2

(

TN

mN
− 1

)

− 1

m

∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

> A9N
−1/2(log aN)1/2

)

+P

(∣

∣

∣

∣

1

σ1

∫ ∞

0

B
(1)
N (F (m)(t))dt

∣

∣

∣

∣

> (2ε log aN)1/2

)

≤ (B9 + 2)N−ε.

By first order Taylor expansion we have
∣

∣

∣

∣

F (m)

(

x
TN

mN

)

− F (m)(x)

∣

∣

∣

∣

= xf (m)(xN )

∣

∣

∣

∣

TN

mN
− 1

∣

∣

∣

∣

, (65)

where|xN − x| ≤
∣

∣

TN

mN − 1
∣

∣. Let 0 < δ < 1 and defineAN (δ) by

AN (δ) =

{

ω :

∣

∣

∣

∣

TN

mN
− 1

∣

∣

∣

∣

≤ δ

}

. (66)

Now, by choosingN sufficiently large so thatA11N
−1/2(log aN)1/2 ≤ δ, and using (64) we get thatP (Ac

N (δ)) ≤
B11N

−ε. In addition, we have for eachxN ∈ AN (δ),

xf (m)(xN ) ≤ (1 + δ)m−1

Γ(m)
xme−(1−δ)x, (67)

which is bounded on[0,∞). Now, if

A12 = A11. sup
0≤x≤Q(m)(a)

(1 + δ)m−1

Γ(m)
xme−(1−δ)x, (68)
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then

P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

F (m)

(

x
TN

mN

)

− F (m)(x)

∣

∣

∣

∣

> A12N
−1/2(log aN)1/2

)

≤ P (Ac
N (δ))

+P

(

AN (δ) and

{

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

F (m)

(

x
TN

mN

)

− F (m)(x)

∣

∣

∣

∣

> A12N
−1/2(log aN)1/2

})

≤ P (Ac
N (δ))

+P

(

AN (δ) and

{

sup
0≤x≤Q(m)(a)

xf (m)(xN )

∣

∣

∣

∣

TN

mN
− 1

∣

∣

∣

∣

> A12N
−1/2(log aN)1/2

})

≤ B11N
−ε + P

(

AN (δ) and

{∣

∣

∣

∣

TN

mN
− 1

∣

∣

∣

∣

> A11N
−1/2(log aN)1/2

})

≤ B11N
−ε, for large enoughN. (69)

Now, (69) combined with Lemma1.1.1 of (4) implies that

P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

B
(1)
N

(

F (m)

(

x
TN

mN

))

− B
(1)
N (F (m)(x))

∣

∣

∣

∣

> A10
(log aN)3/4

N1/2

)

= P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

B
(1)
N

(

F (m)(x) + F (m)

(

x
TN

mN

)

− F (m)(x)

)

− B
(1)
N (F (m)(x))

∣

∣

∣

∣

> A10N
−1/2(log aN)3/4

)

≤ P

(

sup
0≤t≤1−A12N−1/2(log aN)1/2

sup
0≤s≤A12N−1/2(log aN)1/2

∣

∣

∣B
(1)
N (t + s) − B

(1)
N (t)

∣

∣

∣

>
A10√
A12

(log aN)1/2
(

A12N
−1/2(log aN)1/2

)1/2
)

+ B11N
−ε

≤ B10N
−ε, (70)

This completes the proof of Lemma 4.3. �

4.2 Proof of Theorem 3.1.

By the representation (12) we get

{γmN (t), 0 ≤ t < 1} d
=
{

γ1
N (t), 0 ≤ t < 1

}

. (71)

We want to prove the inequality

P

(

sup
0≤t≤a

|γ1
N (t) − W ∗

N (t)| > A2N
−1/4(log aN)3/4

)

≤ B2N
−ε, (72)

where

W ∗
N (t) := B

(1)
N (t) − φ(m)(t)

m

∫ ∞

0

B
(1)
N (F (m)(t))dt. (73)

First we observe that

γ1
N (t) −

(

B
(1)
N (t) − φ(m)(t)

m

∫ ∞

0

B
(1)
N (F (m)(t))dt

)

= κN (t) − B
(1)
N (t) +

(

(

TN

mN

)−1

− 1

)

κN(t)

+φ(m)(t)N1/2

((

TN

mN

)

− 1

)

(

(

TN

mN

)−1

− 1

)

−φ(m)(t)

m

(

N1/2

(

m − TN

N

)

−
∫ ∞

0

B
(1)
N (F (m)(t))dt

)

. (74)
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Now, by Theorem 2.2 we have

P

(

sup
0≤t≤a

|κN(t) − B
(1)
N (t)| ≥ A1N

−1/4(log aN)3/4

)

≤ B1N
−ε. (75)

Noting that

sup
0≤t≤a

φ(m)(t) = sup
0≤x≤Q(a)

xf (m)(x) < ∞. (76)

Let A13 = A9 sup0≤x≤Q(a) xf (m)(x), by Lemma 4.2 and (76) we get

P

(

sup
0≤t≤a

∣

∣

∣

∣

N1/2

(

1 − TN

mN

)

φ(m)(t) − φ(m)(t)

m

∫ ∞

0

B
(1)
N

(

F (m)(t)dt
)

∣

∣

∣

∣

> A13N
−1/2 (log aN)

2
)

≤ B9N
−ε. (77)

Moreover, we have
(

(

TN

mN

)−1

− 1

)

κN (t) = −
((

TN

mN

)

− 1

)

κN(t) +

((

TN

mN

)

− 1

)2
TN

mN
κN (t). (78)

First, we have

P

(

sup
0≤t≤a

∣

∣

∣

∣

((

TN

mN

)

− 1

)

κN (t)

∣

∣

∣

∣

>
(

A11N
−1/2(log aN)1/2

)

×
(

(

1

2
ε(log aN)

)1/2

+ A1N
−1/4(log aN)3/4

))

≤ P

(∣

∣

∣

∣

((

TN

mN

)

− 1

)∣

∣

∣

∣

>
(

A11N
−1/2(log aN)1/2

)

)

+P

(

sup
0≤t≤a

|κN(t)| >

(

(

1

2
ε(log aN)

)1/2

+ A1N
−1/4(log aN)3/4

))

≤ P

(∣

∣

∣

∣

((

TN

mN

)

− 1

)∣

∣

∣

∣

>
(

A11N
−1/2(log aN)1/2

)

)

+P

(

sup
0≤t≤a

∣

∣κN(t) − B1
N (t)

∣

∣ >
(

A1N
−1/4(log aN)3/4

)

)

+P

(

sup
0≤t≤a

∣

∣

∣
B

(1)
N (t)

∣

∣

∣
>

(

1

2
ε(log aN)

)1/2
)

≤ B11N
−ε + B1N

−ε + 2N−ε

≤ B14N
−ε. (79)

From the law of large numbers;TN/N tends tom, asn tends to infinity. ThenTN/Nm tends to one whenn

tends to infinity. On the other hand, we remark, ifTN/Nm ≥ 1/2, thenNm/TN ≤ 2. We can see that

P

(

sup
0≤t≤a

∣

∣

∣

∣

∣

((

TN

mN

)

− 1

)2
mN

TN
κN (t)

∣

∣

∣

∣

∣

>
(

2A2
11N

−1(log aN)
)

×
(

(

1

2
ε(log aN)

)1/2

+ A1N
−1/4(log aN)3/4

))

≤ B14N
−ε. (80)

Using (79) and (80), we obtain

P

(

sup
0≤t≤a

∣

∣

∣

∣

∣

(

(

TN

mN

)−1

− 1

)

κN (t)

∣

∣

∣

∣

∣

> A14N
−1/4(log aN)3/4

)

≤ B14N
−ε. (81)
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Moreover we have

φ(m)(t)N1/2

((

TN

mN

)

− 1

)

(

(

TN

mN

)−1

− 1

)

= −φ(m)(t)N1/2

((

TN

mN

)

− 1

)2

+ φ(m)(t)N1/2

((

TN

mN

)

− 1

)3
TN

mN
.

Now, onAN (δ), sup0≤t≤a φ(m)(t) = M < ∞. TakingA15 = A2
11M and applying the technique used in line

2 of (69) we get, by (64), that

P

(

sup
0≤t≤a

φ(m)(t)N1/2

∣

∣

∣

∣

∣

((

TN

mN

)

− 1

)2
∣

∣

∣

∣

∣

> A15N
−1/2(log aN)

)

≤ B11N
−ε. (82)

Let A16 = 2A3
11M. Using the same arguments, we see that

P

(

sup
0≤t≤a

φ(m)(t)N1/2

∣

∣

∣

∣

∣

((

TN

mN

)

− 1

)3
∣

∣

∣

∣

∣

mN

TN
> A16N

−1(log aN)3/2

)

≤ B11N
−ε. (83)

From (82) and (83), we obtain

P

(

sup
0≤t≤a

φ(m)(t)N1/2

((

TN

mN

)

− 1

)

(

(

TN

mN

)−1

− 1

)

(84)

> A17N
−1/2(log aN)

)

≤ B17N
−ε.

Now, combining (74), (75), (77), (81) and (84) we get

P

(

sup
0≤t≤a

∣

∣

∣

∣

γ1
N (t) −

(

B
(1)
N (t) − φ(m)(t)

m

∫ ∞

0

B
(1)
N (F (m)(t))dt

)∣

∣

∣

∣

> A2N
−1/4 (log aN)

3/4
)

≤ B2N
−ε. (85)

By Lemma4.4.4 of (4) and (19), we can define a sequence of Gaussian process{WmN (t), 0 ≤ t ≤ 1}, N =

1, 2, . . . such that for eachN , we have

{γmN (t), WmN (s), 0 ≤ t, s ≤ 1} d
=
{

γ1
N (t), W ∗

N (t), 0 ≤ t, s ≤ 1
}

. (86)

This completes the proof of Theorem 3.1. �

4.3 Proof of Theorem 3.2.

We are going to give the main steps of the proof. The details are the same as in theorem 3.1. Assume first that

n = mN . Representation (18) for the empirical process ofm-spacings, our aim is to prove the following

P

(

sup
0≤x≤Q(m)(a)

|α1
N (x) − V ∗

N (x)| ≥ A3N
−1/2(log aN)

)

≤ B3N
−ε, (87)

where

V ∗
N (x) = B

(1)
N (F (m)(x)) − 1

m
xf (m)(x)

∫ ∞

0

B
(1)
N (F (m)(y))dy. (88)

By taking the second order Taylor expansion in the second term of (18), we get

α1
N (x) − V ∗

N (x) = βN

(

x
TN

mN

)

− B
(1)
N

(

F (m)

(

x
TN

mN

))

+ B
(1)
N

(

F (m)

(

x
TN

mN

))

− B
(1)
N (F (m)(x)) + N1/2

(

TN

mN
− 1

)2

x2f ′(m)(xN )

+
xf (m)(x)

m

(

N1/2

(

TN

mN
− 1

)

−
∫ ∞

0

tdB
(1)
N (F (m)(t))

)

,
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where|xN −x| ≤ x
∣

∣

TN

mN − 1
∣

∣. Making use of Lemmas 4.2 and 4.3, together with Theorem 2.1 we obtain (87).

Hence together with Lemma4.4.4 of (4), we can define a sequence of Gaussian processes{VmN (x), 0 ≤ x <

∞}, N = 1, 2, . . . , such that for eachN we have

{αmN (x), VmN (y), 0 ≤ x, y < ∞} d
={α1

N (x), V ∗
N (y), 0 ≤ x, y < ∞}. (89)

This completes the proof Theorem (3.2) withn = mN . Now, we prove the general case wherem(N − 1) <

n < mN . It follows from (11) that

{αn(x), 0 ≤ x < ∞}
d
=

{

N1/2

(

GN,m

(

x
Sn

mN

)

− F (m)(x)

)

, 0 ≤ x < ∞
}

, (90)

where

GN,m(x) =
1

N

N−1
∑

i=1

1{Yi<x} +
1

N
1{∑n

ℓ=(N−1)m+1 Eℓ<x}. (91)

Moreover

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

GN,m

(

x
Sn

mN

)

− GN−1

(

x
Sn

mN

)∣

∣

∣

∣

≤ 1

N
+

1

N(N − 1)
(92)

and

P

(∣

∣

∣

∣

Sn

mN
− TN−1

m(N − 1)

∣

∣

∣

∣

> A18N
−1(log aN)

)

≤ B18N
−ε. (93)

Taking

P = P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

N1/2

(

GN,m

(

x
Sn

mN

)

− F (m)(x)

)

− V ∗
N−1(x)

∣

∣

∣

∣

(94)

> A19N
−1/4 (log aN)

3/4
)

(95)

From (87) and (92) we have

P ≤ P

(

sup
0≤x≤Q(m)(a)

N1/2

∣

∣

∣

∣

F (m)

(

x
Sn

TN−1

)

− F (m)(x)

∣

∣

∣

∣

> A20N
−1/2(log aN)

)

+P

(

sup
0≤x≤Q(m)(a)

N1/2

∣

∣

∣

∣

V ∗
N−1

(

x
Sn

TN−1

)

− V ∗
N−1(x)

∣

∣

∣

∣

> A21N
−1/2(log aN)

)

+B3N
−ε.

As usual, by a first order the Taylor expansion we get

N1/2

∣

∣

∣

∣

F (m)

(

x
Sn

TN−1

)

− F (m)(x)

∣

∣

∣

∣

= xf (m)(xN ).N1/2

∣

∣

∣

∣

Sn − TN−1

TN−1

∣

∣

∣

∣

, (96)

where|xN − x| ≤ x
∣

∣

∣

Sn−TN−1

TN−1

∣

∣

∣
. Lemma 4.2 and (93) now imply that

P

(∣

∣

∣

∣

Sn

TN−1
− 1

∣

∣

∣

∣

> A22N
−1(log aN)

)

≤ B22N
−ε. (97)

By arguing in a similar way as in the proof (69), we obtain that

P

(

sup
0≤x≤Q(m)(a)

N1/2

∣

∣

∣

∣

F (m)

(

x
Sn

TN−1

)

− F (m)(x)

∣

∣

∣

∣

> A20N
−1/2(log aN)

)

≤ B20N
−ε. (98)

Now, by definitions (88), (98), and through a similar argument as that used at the end of the proof of Lemma

4.3, we get

P

(

sup
0≤x≤Q(m)(a)

N1/2

∣

∣

∣

∣

V ∗
N−1

(

x
Sn

TN−1

)

− V ∗
N−1(x)

∣

∣

∣

∣

> A21N
−1/2(log aN)

)

≤ B21N
−ε. (99)
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Then, by (98), (99) and (96) we have

P

(

sup
0≤x≤Q(m)(a)

∣

∣

∣

∣

N1/2

(

GN,m

(

x
Sn

mN

)

− F (m)(x)

)

− V ∗
N−1(x)

∣

∣

∣

∣

(100)

> A23N
−1/4 (log aN)3/4

)

≤ B23N
−ε. (101)

Again, by Lemma4.4.4 of (4) and (90), we can get a sequence of Gaussian processes{Vn(x); 0 ≤ x <

∞}, m(N − 1) < n < mN, N = 1, 2 . . ., such that for eachN we have

{αn(x), Vn(y), 0 ≤ x, y < ∞}
d
=

{

N1/2

(

GN,m

(

x
Sn

mN

)

− F (m)(x)

)

, V ∗
N−1(y), 0 ≤ x, y < ∞

}

.

This completes the proof of Theorem 3.2. �
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