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Abstract. This paper presents the first segmentation operation defined
within the 3D topological map framework. Firstly we show how a tradi-
tional segmentation algorithm, found in the literature, can be transposed
on a 3D image represented by a topological map. We show the consistency
of the results despite of the modifications made to the segmentation algo-
rithm and we study the complexity of the operation. Lastly, we present
some experimental results made on 3D medical images. These results
show the process duration of this method and validate the interest to
use 3D topological map in the context of image processing.

Key words: Topological model, 3D Image segmentation, Intervoxel bound-
aries, Combinatorial maps.

1 Introduction

Segmentation of 3D images is a great challenge in many fields as for example
in the analysis of medical images. The segmentation refers to the process of
partitioning an image into regions which are homogeneous to a criterion. This
kind of approach, called region-based segmentation, requires a representation of
regions in the image.

There are many works that have studied the definition of such a structure
to represent images. Topological data structures describe the image as a set
of elements and their neighborhood relations. The most famous example is the
Region Adjacency Graph (RAG) [1] which represents each region by a vertex,
and where neighboring regions are connected by an edge. But the RAG suffers
from several drawbacks as it does not represent multiple adjacency or makes no
difference between inclusion and adjacency relations. To solve these issues the
RAG model has been extended, for instance in dual-graph structure to represent
2D images [2] or in topological maps [3–6]. These last have already been used in
segmentation of 2D images [7, 8] and a previous work has defined two operations

⋆ Partially supported by the ANR program ANR-06-MDCA-008-05/FOGRIMMI.
⋆⋆ Paper published in Proceedings of 14th International Conference DGCI, LNCS 4992,

pp. 507-518, 2008. Thanks to Springer-Verlag Berlin Heidelberg. The original publi-
cation is available at http://www.springerlink.com/content/q783qhrp33n15v0v/



2 A. Dupas, G. Damiand

on 3D topological maps needed to achieve image segmentation [9] but without
using it in a segmentation process.

Our general objective is to develop segmentation operations which profit from
all the information stored by topological maps. As a first step toward this goal,
we show in this paper how topological maps may be used as a 3D image rep-
resentation model in a traditional segmentation process. In our knowledge, this
is the first time that 3D image segmentation is achieved by using combinatorial
maps.

In the literature, we found a region-based segmentation method, proposed
by P. F. Felzenszwalb and D. P. Huttenlocher in [10], which seems to provide
interesting results. This method merges neighboring homogeneous regions in or-
der to produce another homogeneous region. This approach of the segmentation
is called bottom-up. As a variant of the split-and-merge methods, it consists in
the merging of small regions into bigger ones. In the original work, the seg-
mentation using a local criterion is defined on 2D graph representation of the
image, but was extended to different models and in particular to a hierarchical
combinatorial map representation of 2D image in [8].

In this paper we present how this segmentation technique can be transposed
to the topological map framework. The implementation of the homogeneity cri-
terion, its computation and the algorithm used are also provided. We show that
the results obtained with this method are similar to those that could be ob-
tained with the original approach. Moreover the processing time is suitable for
3D image segmentation as it allows to segment real medical images. At this time,
using topological map does not improve original methods. The next step of this
work is to mix this approach with topological criteria to improve the segmen-
tation results and show the contribution of topological maps to the 3D image
processing.

We first present in Sect. 2 topological maps, which are combinatorial maps
verifying specific properties, used to represent 3D images. We also introduce a
topological map manipulation operation used in this work : the region merging.
Then, Sect. 3 details the criterion and presents the segmentation algorithm. We
also explain why despite the differences between this method and the classical
one, the results are similar. In Sect. 4 we present the complexity analysis of the
segmentation operation and we give some experimental results on 3D medical
images. Lastly, we conclude and give some perspectives in Sect. 5.

2 Recalls on 3D Topological Maps

A 3D topological map is an extension of a combinatorial map used to represent a
3D image partition. Let us recall the notions of combinatorial maps, 3D images,
intervoxel elements and topological maps that are used in this work.

2.1 Combinatorial Map

A combinatorial map is a mathematical model describing the subdivision of a
space, based on planar maps. A combinatorial map encodes all the cells of the
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Fig. 1. The successive decompositions of an object to obtain the corresponding 3-map.
(A) A 3D object. (B) Disjointed volumes. (C) Disjointed faces. (D) Disjointed edges.
(E) Corresponding combinatorial map.

subdivision and all the incidence and adjacency relations between the different
cells, and so describe the topology of this space.

A combinatorial map can be obtained intuitively by successive decomposi-
tions as we can see in Fig. 1. To describe the 3D object shown in Fig. 1 A, we first
decompose the volumes of this object (Fig. 1 B) then the faces of these volumes
(Fig. 1 C) and finally the edges of these faces (Fig. 1 D). At each step, we keep
the adjacency relations between the decomposed cells (drawn by black segments
but only partially drawn for the last step). The obtained elements after the last
decomposition are called darts and are the only basic elements used in the def-
inition of the combinatorial maps. In order to obtain the map, we report each
adjacency relation onto darts. We call βi the relation between two darts which
describes an adjacency between two i-dimensional cells. Figure 1 E presents the
combinatorial map corresponding to object shown in Fig. 1 A.

Let us see now the formal definition of 3D combinatorial maps:

Definition 1 (3D combinatorial map). A 3D combinatorial map, (or 3-map)
is a 4-tuple M = (D,β1, β2, β3) where:

1. D is a finite set of darts;
2. β1 is a permutation3 on D;
3. β2 and β3 are two involutions4 on D;
4. β1 ◦ β3 is an involution5 on D.

The different constraints of the 3-map definition (β1 is a permutation, other
βi are involutions and β1 ◦ β3 is an involution) ensures the topological validity
of described objects. For example, intuitively the last constraint says that two
volumes can not be partially adjacent. If two volumes are adjacent for a face,
they must be adjacent for all the edges of the face. See [11] for more details on
maps and comparison with other combinatorial models.

3 A permutation on a set S is a one to one mapping from S onto S.
4 An involution f on a set S is a one to one mapping from S onto S such that f = f−1.
5 β1 ◦ β3 is the composition of both permutations: (β1 ◦ β3)(x) = β1(β3(x)).
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2.2 3D Images and Intervoxel Elements

Let us now recall some usual notions about images and intervoxels elements.
A voxel is a point of discrete space ZZ3 associated with a value which could
be a color or a gray level. A three dimensional image is a finite set of voxels.
In this work, combinatorial maps are used to represent voxel sets having the
same labeled value and which are 6-connected. The label of a voxel is given by
a labeled function l : ZZ3 → L which gives for each voxel its label (a value in
the finite set L). We speak about region for a maximal set of 6-connected voxel
having the same label.

To avoid particular process for the image border voxels, we consider an infi-
nite region R0 that surrounds the image. If a region Rj is completely surrounded
by a region Ri we say that Rj is included in Ri.

In the intervoxel framework [12], an image is considered as a subdivision of
a 3-dimensional space in a set of cells: voxels are the 3-cells, surfels the 2-cells
between two 3-cells, linels the 1-cells between two 2-cells and pointels the 0-cells
between two 1-cells.

2.3 Topological Map

The topological map is a data structure used to represent the subdivision of an
image into regions. It is composed of three parts:

– a minimal combinatorial map representing the topology of the image;
– an intervoxel matrix used to retrieve geometrical information associated to

the combinatorial map. The intervoxel matrix is called the embedding of the
combinatorial map;

– an inclusion tree of regions.

Figure 2 presents an example of topological map. The 3D image, divided
into three regions plus the infinite region R0 (Fig. 2 A), is represented by the
topological map which is divided in three parts labeled B, C and D. The mini-
mal combinatorial map extracted from this image is displayed in Fig. 2 B. The
embedding of the map is represented in Fig. 2 C and the inclusion tree of regions
in Fig. 2 D.

The combinatorial map allows the representation of all the incidence and
adjacency relations between cells of the subdivision. In the topological map
framework, we use the combinatorial map as a topological representation of
the partition of an image in regions. Each face of the topological map is separat-
ing two adjacent regions and two adjacent faces do not separate the same two
regions. With these rules, we ensure the minimality (in number of cells) of the
topological map (see [13, 9] for more details on topological maps).

The intervoxel matrix is the embedding of the combinatorial map. Each cell
of the map is associated with intervoxel elements representing geometrical in-
formation of the cell. A face in the combinatorial map is embedded by a set of
surfels separating voxels of the two incident regions. The edges, which are the
border of faces, are represented by a set of linels. The vertices, which are the
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Fig. 2. The different parts of the topological map used to represent an image. (A) 3D
image. (B) Minimal combinatorial map. (C) Intervoxel matrix (embedding). (D) Inclu-
sion tree of regions.

border of edges, are embedded by pointels. Thus the intervoxel matrix allows
to retrieve the geometry of the labeled image represented by the combinatorial
map.

The inclusion tree of regions represents the inclusion relations. Each region
in the topological map is associated to a node in the inclusion tree. The nodes
are linked together by the inclusion relation defined in Sect. 2.2. To link this tree
with the combinatorial map, each dart d of the map knows its belonging region
(called region(d)). Each region R knows one of its dart called representative dart
(called rep(R)).

The topological map can be modified by using an operation of regions merg-
ing [14]. This process, called global merge, allows to merge any number of sets
of connected regions. In the resulting topological map, each set of connected
regions is represented by only one region.

In order to handle such sets, we use a disjoint-set forest [15] of regions. We use
the union-find trees to represent the disjoint-sets. The two possible operations
on sets are the union of two sets, and find the corresponding set of a particular
element. In [16], R. Tarjan shows that union and find on disjoint-set represented
by trees can be considered as constant time operations.

The principle of the algorithm of global merging is to remove all existing faces
between regions of a same set: we remove the faces in the combinatorial map
and their corresponding embedding. The next step is to simplify incident cells
to respect the minimality of the topological map. This process is also performed
both in the combinatorial map and in the embedding. The last step of the global
merging process is to rebuild the inclusion tree by using the list of the remaining
regions and the combinatorial map already built.

The complexity of this operation is O(|D|+|S|) where |D| is the total number
of darts in the combinatorial map and |S| is the number of surfels of the removed
faces in the embedding (see [14] for more details).
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3 Operation of Segmentation

The segmentation is an image processing operation which leads to partition an
image into multiple regions. The goal of segmentation is to simplify the represen-
tation of an image into something that is more meaningful and easier to analyze.
Image segmentation is typically used to locate objects in images.

The result of image segmentation is a set of regions that cover the entire
image. All voxels in a region are similar with respect to some characteristics or
computed properties, such as color or intensity. Adjacent regions are significantly
different with respect to the same characteristics.

Let us present the characteristic used in this work to show the capacity of
the topological map to be used in an image processing operation.

3.1 Criterion Used in the Segmentation Process

This method uses a local criterion proposed by P. F. Felzenszwalb and D. P.
Huttenlocher in [10]. This segmentation criterion is based on intensity differ-
ences between neighboring pixels in 2D image. It is a region based segmentation
using a characteristic onto regions and another characteristic between neighbor-
ing regions to produce a well-segmented (i.e. not over-segmented neither under-
segmented) partition of the image.

We recall the principle of this segmentation. Each couple of adjacent regions is
characterized by an external variation (Ext(Ri, Rj)). This value is the smallest
intensity difference between neighboring voxels, one belonging to Ri and the
other one belonging to Rj .

Each region is characterized by an internal variation (Int(R)): this value
depends on voxels that are contained in the region. If a region contains voxels of
the same intensity, its internal variation is 0. The authors in [10] prove that the
new internal variation of two neighboring regions merged is equal to the external
variation between the two regions. It allows the incremental computing of the
internal variation of regions during the segmentation process.

We say that two regions are similar, and should be merged into one region,
when the external variation between the regions is smaller than their minimum
internal variation:

Ext(Ri, Rj) ≤ MInt(Ri, Rj)

Where the minimum internal variation MInt is

MInt(Ri, Rj) = min(Int(Ri) + τ(Ri), Int(Rj) + τ(Rj))

The threshold function τ controls the degree to which the external variation
can actually be larger than the internal variations, and still have the regions be
considered similar. We use, in this work, the same function as in the original
work which depends on the size of the region, τ(R) = k/|R| where |R| is the size
(in number of voxels) of the region R and k is a constant defined by the user
depending on the considered image.
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To use this process with the topological map, the notion of external variation
is transposed on faces. We define the external difference of a face F to be the
smallest intensity difference between neighboring voxels across the face F (i.e.
one voxel is on a side of the face, and its neighboring voxel is on the other side).

This value is related to the external variation of regions by the following
formula. Let be two regions Ri and Rj witch are adjacent by k faces Fp, p ∈ [1..k].
The external variation Ext(Ri, Rj) is equal to the minimum external variation
of the faces Fp with p ∈ [1..k]. This gives the following formula:

Ext(Ri, Rj) = min(Ext(Fp), p ∈ [1..k])

For performance purposes, we store these values into the topological map.
Each dart of the topological map knows both its belonging region and its be-
longing face. With the help of this structure, we store on each face its external
variation and on each region its internal variation. These values are computed
during the creation of the topological map and each operation applied to the map
updates these values accordingly. So for each region and face of the topological
map, we retrieve the corresponding variations in a constant time.

3.2 Algorithm

Algorithm 1 shows the segmentation process using a threshold function to pro-
duce the optimal6 segmentation of the 3D image represented by the given topo-
logical map.

This process is divided in two steps. First, we build a symbolic merging of
the regions. This step corresponds to the choice of the regions to merge in the
topological map. Then, we use the merging operation recalled in Sect. 2.3 to
convert the symbolic merging into an effective one.

The first step uses a disjoint-set forest of regions to efficiently represent the
symbolic merging of regions. Before the segmentation, each region belongs to
its own set. To merge symbolically two regions, we merge the two disjoint-set
representing these regions. We compute the new characteristics of the resulting
region and we set them to the head of the disjoint-set (which represents the
resulting region).

To initialize the process, we build a list of faces sorted by increasing external
variation. The first face in the list has the lowest external variation. In fact, each
face his represented by one of its darts. To build the list, we run through each
dart of the topological map. If its incident face is not marked, we add the current
dart to the list L and we mark the corresponding face. When all the darts have
been processed, the list contains one dart for each face of the image. Then the
list is sorted by increasing order of the external variation of the incident face,
by using a classical sort algorithm.

For each dart, we first check if the two incident regions around the incident
face are not already merged. This is performed by checking if the belonging region

6 according to P. F. Felzenszwalb and D. P. Huttenlocher in [10].
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Algorithm 1: Segmentation

Input: Topological map M , Threshold function τ

Result: M is modified and represents the segmentation of the initial map

L← build the sorted list of faces;
while L 6= ∅ do

F ← L.pop();
R1 ← region(F ), R2 ← region(β3(F ));
if R1 6= R2 then

if Ext(F ) ≤MInt(R1, R2) then
R← union of R1 and R2 in the disjoint-set forest;
Int(R)← Ext(F );

Apply the global operation of region merging;

of the current dart d does not belong to the same disjoint-set as the belonging
region of the dart β3(d) (i.e. the dart which belongs to the second region incident
to the face). Then we compute the MInt value for the two incident regions and
if this value is lesser or equal to the external variation of the current face, we
symbolically merge the two regions.

When all faces have been processed, the segmentation algorithm uses the
merging operation to produce the topological map corresponding to the resulting
regions.

The main difference between this algorithm and the graph-based process
described in [10] is the usage of the external variation onto each face instead of
the external variation between couple of regions. This modification is necessary
since the topological map represents multi-adjacency while RAG only represents
simple adjacency. We have to prove that both approaches are equivalent.

Property 1 ensures that two regions are merged if and only if they respect
the original criterion equation. This property says that two regions Ri and Rj

may be merged together if and only if they merge during the process of the first
face which is incident to both regions in the increasing order of their external
variation (this is due to the fact that the external variation of this first face is
equal to the external variation between the two regions).

Property 1 (Validity). If two regions Ri and Rj are not merged when the algo-
rithm process the first separating face, then they will never merge during the
algorithm.

Proof. We consider two regions R1 and R2 in the topological map that are multi-
adjacent. Let be Fp, p ∈ [1..k], the different faces incident to both R1 and R2. We
suppose that Ext(F1) ≤ Ext(F2) ≤ . . . ≤ Ext(Fk). We know that the external
variation of the two regions is equal to the external variation of the face F1.

Algorithm 1 processes the faces in increasing external variation order. The
first face considered to merge R1 and R2 is thus F1.

Suppose Ext(F1) > MInt(R1, R2) then the two regions R1 and R2 are not
merged according to the criterion. Given this hypothesis, we want to know if it
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is possible for the two regions to merge when considering the other faces. There
are two cases to consider.

If MInt(R1, R2) does not change, the process of the other faces can not leads
to the merging of the two regions since they have a greater external variation.

If MInt(R1, R2) increases its value between the treatment of two faces Fi

and Fj (i ≥ 1 and j > i) we have to show that this modification will not alter
the result of the algorithm.

Let suppose Int(R1) + τ(R1) < Int(R2) + τ(R2) and thus MInt(R1, R2) =
Int(R1)+τ(R1) (this supposition can be made without lost of generality, eventu-
ally by renaming the two regions). So MInt(R1, R2) increases only if Int(R1) +
τ(R1) increases. This is only possible if R1 is merged with another neighboring
region which will be called R3.

To merge R1 and R3, we need a face F so that Ext(F ) ≤ MInt(R1, R3). Since
the list is sorted Ext(F1) ≤ Ext(F ), and by definition of MInt, MInt(R1, R3) ≤
Int(R1)+τ(R1). Our starting hypothesis gives that Ext(F1) > Int(R1)+τ(R1).
When combining these assertions, we have: Ext(F ) ≥ Ext(F1) > Int(R1) +
τ(R1) ≥ MInt(R1, R3). Thus Ext(F1) > MInt(R1, R3), the region R1 and R3

will not be merged and Int(R1) + τ(R1) will not increase. This property shows
that R1 will never be merged during the algorithm. So MInt(R1, R2) does not
increase and each face Fp, p ∈ [2..k], Ext(Fp) > MInt(R1, R2). The region R1

and R2 will never merge. ⊓⊔

Thus Prop. 1 is verified. Algorithm 1 gives the same result as the one proposed
in [17].

4 Results and Analysis

Let us talk about the complexity of the segmentation. Let be |F | the number
of faces of the topological map and |D| the number of darts of the topological
map. We know that |D| > |F | since there is at least one dart for each face of the
map.

The initialization of the list of faces needs to run through all the darts.
The marking operation as well as the checking of a mark are constant time
operations. We perform |F | insertions in the list and then we sort it which leads
to a complexity for this operation in O(|D|+ |F | ∗ log(|F |)). The union and find
operations on disjoint-set are quasi-linear according to [16] and thus we consider
it linear for our usage.

Then each face is considered in a loop executed |F | times. The extraction
of the list is a constant time operation as well as the retrieval of the belonging
region of a dart and the β3 operation. With the previous hypothesis on union-find
trees, checking if the two regions are not merged is a constant time operation. The
computation of the equation is also a constant time operation because we store
the needed values on regions and faces. The access to these values is a constant
time operation. The symbolic merging corresponds to the union operation on
disjoint-sets and thus we consider it constant. So this part is performed in O(|F |).
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The last step of this algorithm is the application of the global merging oper-
ation on the topological map. We use the complexity given in Sect. 2.3 which is
O(|D| + |S|) where |S| is the number of surfels of deleted faces.

This gives the complexity for the whole segmentation algorithm to O(|D| +
|F | ∗ log(|F |)+ |S|). The operation depends on the number of darts of the whole
topological map, the number of faces of the topological map and the number of
surfels belonging to deleted faces.

We have written an application which allows to segment an image in the
3D topological map framework. We have measured several values during the
segmentation of three images (which are medical brain images). In order to
decrease the memory needed by the representation of the image, we pre-segment
the image during the extraction of its topological map. Table 1 shows the initial
and final number of regions for each of the 3 images so as it gives an idea of the
effectiveness of the segmentation process. We have also collected the processing
time of the three steps of the segmentation.

Table 1. Image information and processing time for the three steps of the segmentation
algorithm (segmentation threshold k = 5000 and pre-segmentation p = 3).

Image Img1 Img2 Img3

Size 256x256x44 256x256x111 256x256x124

Initial Regions 147924 431486 310421

Remaining Regions 10121 30179 22523

List initialization 2.93s 8.72s 6.25s

Symbolic merge 0.46s 1.30s 0.97s

Global merge 5.50s 14.99s 11.69s

Total 8.89s 25.10s 18.92s

The fastest step is the symbolic merging since it only manipulates regions by
using union-find trees and the sorted list of faces. The list initialization is a slow
step as it depends on the topological map size. The slowest part is, as expected,
the region merging operation since it heavily depends on the number of darts in
the topological map. The total processing time is nevertheless suitable for a use
of the algorithm in the image analysis framework.

We present a segmentation result obtained on Img1. Figure 3 shows one slice
of the medical image on left side. The image on the right represents the labeled
view of the slice after the segmentation process. This view allows to identify
all the resulting regions of the image since they have different colors. We could
observe that most of the brain is represented by only one region whereas the
skull is composed of many regions. The segmentation needs to be tuned in order
to produce more accurate results depending on the problem. For example, a low
segmentation threshold leads to an over-segmentation which could be used in an
image processing chain as the initial input.
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Fig. 3. A slice of a 3D brain image (256 x 256 x 44 gray image) and the segmentation
result produced by the algorithm on the same slice (k = 5000, p = 3).

5 Conclusion

In this paper, we have presented the implementation of an existing bottom-
up segmentation process in the 3D topological map. This work shows that the
topological map is a suitable data structure to represent 3D images within the
image processing framework.

We have detailed the homogeneity criterion used in the segmentation opera-
tion. It relies on intensity differences between neighboring voxels of the image.
The aim of the segmentation process is to provide a set of homogeneous regions
according to the criterion such as the merge of two regions produces another
region which is not homogeneous.

The segmentation algorithm is divided in two main parts. Firstly we aim
to produce a symbolic segmentation of the image, by handling its regions on a
high level, and computing the criterion step by step during the merging process.
Secondly, we use the existing operation of region merging in order to reflect the
symbolic changes in the topological map.

We then proved that the modifications made to the initial segmentation
algorithm do not modify its initial properties. We have analyzed the complexity
of the whole segmentation process. It depends on the number of darts |D|, the
number of faces |F | and the number of surfels |S| of the topological map. The
complexity is given by the relation O(|D| + |F | ∗ log(|F |) + |S|).

We have made some experiments on the segmentation process. Obtained
processing times prove that the most expensive part of the algorithm is the
region merging one and show that 3D topological maps can be used in real
image processing applications.

The following step is to improve the segmentation process by taking advan-
tage of the topological and geometrical information stored by the 3D topological
map. We intend to use these information in addition with the existing criterion
to obtain results that not only depend on the homogeneous criterion but also
take into account the shape of regions as well as the adjacency relations between
regions. For example one topological criterion may disallow the creation of dou-
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ble torus region if no such object could exist in the image. This future work will
show the advantage of using the topological map for 3D image segmentation.
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