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Abstract. In this paper, we present an algorithm for computing effi-
ciently homology generators of 3D subdivided orientable objects which
can contain tunnels and cavities. Starting with an initial subdivision,
represented with a generalized map where every cell is a topological ball,
the number of cells is reduced using simplification operations (removal
of cells), while preserving homology. We obtain a minimal representation
which is homologous to the initial object. A set of homology generators
is then directly deduced on the simplified 3D object.

Key words. topological features, homology generators, generalized maps.

1 Introduction

In this paper, we present an algorithm for computing efficiently the three dimen-
sional minimal generalized map homologous to a given 3D object. Then we show
how cells that belong to homology group generators can be directly characterized
onto this minimal object.

Homology is a topological invariant, classically studied in algebraic topol-
ogy [1], which characterizes an object by its "holes" in each dimension. This
corresponds to connected components in dimension 0, tunnels in dimension 1,
cavities in dimension 2; this notion of hole can be generalized in any dimension.
For each dimension d, the number of d—dimensional holes of a given object is
called its d*"* Betti number. Homology group generators are d-dimensional paths
(edges, faces) that surround the d-dimensional holes.

Generalized maps [2] are a combinatorial cellular structure which can be used
to represent both topological and geometrical information of a three dimensional
subdivision, with particular properties that makes it a good model for features
extraction. In this work, generalized maps are used to compute a minimal cell
decomposition (called minimal map) of a 3-manifold in R? with the same homol-
ogy as the initial 3D object. For that, we extend in 3D the work of [3]. Starting
from the initial subdivision, where every cell is equivalent, to a topological ball,
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the number of cells is progressively reduced using removal operations [4]. At the
end of the simplification, we show that the minimal obtained object is homolo-
gous to the initial subdivision. Moreover, this minimal map allows us to directly
characterize cells of the subdivision that belong to homology generators.

This paper is organized as follows. In Section 2, basic notions related to gen-
eralized maps and homology groups are recalled. The removal operations, which
are used to compute a minimal map are introduced. In Section 3, the algorithm
for computing a minimal map is detailed, and its complexity is discussed. We
give the arguments to show that our algorithm provides a minimal object with
the same homology as the initial one. Finally, Section 4 concludes and gives some
perspectives.

2 Preliminaries

In this section some basic notions are presented. Our algorithm deals with subdi-
visions of 3D topological spaces. A subdivision is a partition into 4 subsets whose
elements are {0, 1,2, 3}-cells of dimension 0, 1, 2 and 3 (respectively called ver-
tices, edges, faces and volumes). The border of an i-cell is a set of (j<i)-cells.
Two cells are incident if one belongs to the border of the other, and two i-cells
are adjacent if they are both incident to a common (j<i)-cell. The cell degree of
an i-cell ¢ is the number of distinct (i+1)-cells incident to ¢. We only consider
quasi-manifolds®.

Generalized Maps For 3D quasi-manifolds, incidence and adjacency relations
can be represented using 3-dimensional generalized maps (3-G-maps) [5]. Intu-
itively, a 3D generalized map can be obtained by successive (from volumes to
vertices) decompositions of a 3D object into elementary elements called darts.
Then, adjacency relations between i-cells are reported onto darts (denoted «;).
Involution® o; connects the two darts incident to the two adjacent i-cells incident
to the darts (see [5] for a formal definition).

Within the generalized map framework, all cells are implicitly represented
through the notion of orbit. Given, {p1,...,p;}, a set of involutions, and a dart
d, an orbit < p1,...,p; > (d) is the set of darts that can be reached with a
breadth-first search algorithm, starting with d, and using all combinations of p;
Vk, 1< k<j.

Removal Operations Removal operations are the basic operations used dur-
ing our algorithm. The removal of an i-cell ¢ (called i-removal of ¢) leads to
the merging of the two (i+1)-cells incident to ¢. For 3D subdivisions, i-removal

4 A n-dimensional quasi-manifold is an nD space subdivision which can be obtained
by gluing together n-dimensional cells along (n-1)-dimensional cells. In such subdi-
vision, an (n-1)-cell cannot belong to the boundary of more than two n-cells. This
notion is weaker that the manifold property, see [5].

5 An involution f on S is a one to one mapping from S onto S such that f = f~ .
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operations are defined for i = 0,1, 2 (see [4] for the definition of removal opera-
tions). The i-removal operation consists mainly in locally modify the «; relation
for each dart that belongs to the neighborhood of the removed cell.

Homology In this part, basic homology notions are recalled; interested readers
can find more details in [1] for algebraic approach and [6] for more computational
approach. The notion of homology is defined in an algebraic way using the sets
of i—cells used to describe the 3D manifold. Within this context, a p-chain (i.e.
a chain of dimension p) is a formal sum of p-cells. From this, the group C,
of p-chains is defined. The boundary of a p-chain is defined as the sum of the
boundaries of its p-cells. Note that the boundary of a p-chain must be a (p — 1)-
chain. The set of p-chains which have a null boundary (i.e. p-cycles) is a subgroup
of C}, (denoted Z,). The set of p-chains which are boundaries of a (p + 1)-chain
(i.e. p-boundaries) form a subgroup of C, (denoted B,).

An essential property is that the boundary of any boundary is null. Hence,
every boundary is a cycle and By, is contained in Z,. Two p-cycles z; and z; are
homologous if their difference is a boundary, i.e. there is a p + 1-chain f such
that z; = 2o + 0f. From this, an equivalence relation can be defined and the
homology class of z is the set {z+b | b € Bp}. The homology group of dimension
p, denoted H,, is defined as the quotient group Z,/B,, and its elements are the
homology classes. For a group G, a set of generators is a maximal subset S of
elements of G, such that every element of G can uniquely be defined as a linear
combination of elements of S.

3 Computation of Homology Generators

In this section, we present an algorithm for computing the generators of homol-
ogy groups of 3D orientable objects with cavities, i.e. an object bounded by one
or more orientable surfaces.

3.1 Related Works

In [3], the authors propose an algorithm for computing a minimal representation
of a 2D surface. It is shown that the homology generators H; can be directly
deduced from this minimal representation.

In [7], the authors study the homology of 3D manifolds object X bounded
by several surfaces. Indeed the considered objects are 3D balls with tunnels
and cavities. For example, Fig. 1(a) illustrates a 3D object which contains three
tunnels and two cavities. The authors then show how to compute homology
generators H; and Hs of such objects. Moreover, it is shown that if X is bounded
by j+1 surfaces so, ..., s, then the set {s1, ..., s;} is a basis of Hy(X). They also
introduce the notion of longitudinal and latitudinal generators of a surface and
show that if so denotes the external boundary of X, then the set of latitudinal
generators of {si,...,s;} together with the longitudinal generators of s forms
a basis of H;(X) (s¢ is called external surface, others s; are called internal
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(a) (b)

Fig.1. (a): a 3D object with 3 tunnels and 2 cavities, (b): the latitudinal generator
of the torus cavity together with the longitudinal generators of the external boundary
forms a basis of the first homology group of the object.

surfaces). For example, on Fig. 1(b), the homology generators of the object
represented in (a) is made of the 3 longitudinal generators of the external surface
together with the latitudinal generator of the torus cavity. Note that the first
homology groups of a sphere is trivial.

3.2 Simplification Algorithm

In this section, we extend the algorithm presented in [3] to 3D regions with
cavities and tunnels. Our algorithm, given in Algorithm 1, provides the same
result as in [7] but by working only with the initial subdivision of the object,
and use basic simplification operations and combinatorial characteristics of cells.

Starting from a subdivision of a 3D object, where each cell is homeomorphic
to a topological balls, we simplify progressively the subdivision, by decreasing
cell dimension. First we remove faces (i.e. 2-cells) while keeping the volume
homeomorphic to a topological ball. For that, we keep fictive faces, i.e. faces
that are “inside” the volume, and whose removal involves map disconnection.
We obtain a representation made of only one volume. To compute the minimal
representation for other cells, we use the algorithm of [3] on each surface of the
map. But for that, it is necessary to remove all the fictive faces in order to obtain
2D objects. After having computed the minimal representation of each surface,
we need to reconstruct the minimal representation of the 3D object. This is
achieved by adding the minimal number of fictive faces in order to obtain a
connected volume homeomorphic to a topological ball.

This minimal subdivision is homologous to the initial object, and allows to
directly compute the homology generators of the initial object by simple cell
characterization. Moreover, this principle gives some perspectives to generalize
our approach to n-dimensional objects.
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Algorithm 1: Simplification of a 3D subdivision in its minimal
homologous form.

Input: A generalized map M representing an orientable subdivision of a 3D
object such that each cell is homeomorphic to a topological balls
Output: The minimal subdivision homologous to M

1 foreach face f of the map do
if the degree of f is 2 then
| Remove f;

else if f is a dangling face then
push(P, f);
repeat
[ — pop(P);
push in P all the dangling faces adjacent to f;
Remove f;
until empty(P) ;

| else Mark f as fictive face;

Mark external surface, without considering fictive faces;
Remove all fictive faces;
Compute the H; generators of each surface;

if the external surface is a sphere then
| ext < the only edge of the external surface;

S\ NV R )

else for one edge out of two e of the external surface do
Add a fictive face along e;

| ext « ¢

foreach internal surface s do

if s is a sphere then
| int < the only edge of s;

else for one edge out of two e of s do
L Add a fictive face along e;

int «— e;

| Add a fictive face between int and ext;

Now we detail more precisely each step of our algorithm. The first simplifica-
tion step (line 1 of Algorithm 1) is similar to the algorithm described in [3], which
provides a minimal representation (in term of cells) in the case of 3D objects
bounded by only one surface. The difference concerns the dimension of processed
cells, since we need here to consider in first volumes (3-cells) by removing faces
(2-cells), while in [3] faces (2-cells) are processed by removing edges (1-cells).

During this step, we remove either degree two faces (i.e. faces between two
different volumes), or dangling faces (i.e. faces inside a volume). Indeed, both
faces can be removed without modifying the homology of the subdivision. When
we remove a dangling face f, we need to reconsider dangling faces adjacent to
f. Indeed, some faces adjacent to f can be non-dangling before f was removed
and become dangling after its removal, hence non minimal subdivision can be
obtained. To reconsider these faces, we use a stack of dart which contains one
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(a)

Fig. 2. (a) After the first simplification step, the 3D object contains some fictive faces.
Black faces are fictive faces which stop up the tunnels, and black faces marked with
crosses are fictive faces that link the different surfaces. (b) Result obtained after having
disconnected surfaces and compute H; generators for each surface. External surface is
represented by 6 edges and 1 vertex, the torus cavity is represented by 2 edges and 1
vertex and the sphere by 1 edge and 2 vertices. The obtained map is disconnected in
three connected components.

dart of each reconsidered face, and when we remove a dangling face, we put in
this stack one dart for each dangling adjacent faces.

The subdivision obtained after applying the first step is composed by only
one volume homeomorphic to a 3D ball, some real faces (faces with each dart 3-
free) and some fictive faces (faces with each dart not 3-free). Fig. 2(a) illustrates
a possible subdivision that can be obtained after the first simplification step.
In this subdivision, there is exactly one volume, and thus the non 3-free darts
belong necessarily to fictive faces (i.e. degree one faces incident twice to the
volume). Note that there are two types of fictive faces: the ones which link
different surfaces in order to keep only one connected component, and the ones
which stop up the tunnels, and that allow to keep the volume homeomorphic to
a topological ball.

In the second step (line 2 of Algorithm 1), we work on each surface. Firstly,
we mark the external surface. This step is necessary since H; generators are lon-
gitudinal for external surface whereas they are latitudinal for internal surfaces.
Finding a dart of the external surface can be achieved directly by searching
among all the darts the one associated with the smaller 3D coordinates. Start-
ing from this dart, we can run through all the darts of the external surface by
using a breadth first search algorithm which uses involutions «yq, a1, and as, and
which jumps over darts of fictive faces. Darts not 3-free belong to fictive faces,
and darts 3-free and non-marked belong to internal surfaces.

Then, all the fictive faces are removed in order to continue the simplifications
in smaller dimension (line 3 of Algorithm 1). The next step (line 4 of Algorithm 1)
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consists in computing independently the H; generators for each surface. This
step is not detailed here since it is achieved by using the work of [3].

After this step, we obtain the minimal representation of each surface, com-
posed with one face, one edge and two vertex if the corresponding surface is a
sphere, and composed with one face, 2k edges and one vertex if the correspond-
ing surface is a torus with k£ holes. Each edge of the minimal representation
belong to an H; generator of the 2D object, except if the corresponding surface
is a sphere. Indeed, in such a case, there is no H; generator (see Fig. 2(b)).

Now, we have all necessary information to reconstruct the minimal repre-
sentation of the initial 3D subdivision. This is the goal of the last step of our
algorithm (line 5 of Algorithm 1). We firstly add fictive faces along one edge out
of two of each surface, except for surfaces which represent spheres. This step is
necessary to stop up the tunnels, and then obtain a volume homeomorphic to a
topological ball. There are two cases to consider: if the surface is a sphere, there
is no fictive face to add, otherwise the surface is a torus with & holes, and in
this case there are k fictive faces to add in order to cut all the tunnels. Since
the surface is composed with 2k edges in its minimal representation, to add k
fictive faces, we just need to add one fictive face along one edge out of two. Then,
fictive faces are added in order to connect each internal face with the external
face (Fig. 3(a)).

(a) (b)

Fig.3. (a) The minimal map obtained at the end of our algorithm (partial repre-
sentation, fictive faces which link internal surfaces and the external surface are not
represented.). This map is homologous to the initial subdivision. (b) H; generators are
composed with all the edges non-incident to fictive faces, and non-incident to spheres.

After these two steps, we obtain a map where each cell is homeomorphic to a
topological ball. This is necessary in order to ensure that this map is homologous
to the initial subdivision. Moreover, this map is composed with j + 1 real faces,
one for each surface (external and internal surfaces) of the initial subdivision.

This minimal map M gives directly the homology generators:
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1. H; generator is composed with all the real faces that belong to internal
surfaces of M;

2. H; generator is composed with all the edges of M not incident to fictive
faces, and which are not incident to a sphere (see Fig. 2);

3. Hj generator is always isomorphic to Z since we only consider one connected
object.

3.3 Validity of the Method

In this section, we use the works of [8] and [7] to show that the resulting object
is minimal; homology is preserved; and homology generators can be directly
characterized.

The Object is Minimal and Homology is Preserved The first step of the
algorithm (the simplification process) preserves the homology. In [8], the authors
use interior face reduction to simplify a simplicial complex. These reductions are
equivalent to the removal operations used in [3] which consist in taking a common
i-face ¢ of exactly two (i + 1)-simplices a and b, and delete ¢ and replace b and
¢ by a cell which represents their union. It is proven in [§] that interior face
reductions preserve homology and thus we can conclude that this is also the
case for removal operations.

After the removal of fictive faces, each surface is simplified in its minimal
form while preserving homology (step 3 and 4 which use [3]). The last step build
a minimal representation of the initial 3D object. This is done into 3 steps:

1. each internal generator of the external surface is filled;
2. each longitudinal generator of internal surfaces is filled;
3. each internal surface is connected to the external surface.

It is shown in [9] that adding faces into each latitudinal generator cut the volume
corresponding to the external surface into a topological ball. For each internal
surface homeomorphic to a torus with g holes, each latitudinal generator (tun-
nels of internal surfaces) is filled by a face as these generators are no longer
generators when the internal surface is considered as a cavity [7]. Lastly, each
cavity is connected to the external surface and the obtained volume is minimal
as we have added the minimal number of fictive faces. Moreover, each cavity is
homeomorphic to a topological ball as each tunnel has been filled.

Direct Characterization of Homology Generators As mentioned before,
if a 3-manifold X is bounded by j + 1 surfaces sq, ..., s;, then the set {s1,...,s;}
is a basis of Ha(X) (see [7]). This set corresponds to all non fictive internal faces.

Moreover, the set of longitudinal generators of sy together with all the lati-
tudinal generators of all internal surfaces forms a basis of H;. Once the minimal
form of each surface has been computed (step 4 of the algorithm), all the edges
are either a longitudinal or a latitudinal generator. As seen before, all the latitu-
dinal generators of sy and all the longitudinal generators of the internal surfaces
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are incident to a fictive face. Thus homology generators of the 3D object are
all the edges that are not incident to a fictive face. Note that detecting an edge
incident to a fictive face is done in a combinatorial way, thus we do not need the
linking numbers or perturb the generators as it is done in [7].

3.4 Complexity

The complexity of Algorithm 1 is equal to O((3 — x) x n) with y = Ele Xi, Xi
being the Euler characteristic of surface s;, and n is the number of darts of the
subdivision.

The first step is linear in number of faces of the map. Firstly, each face is
consider at most twice, a first time during the loop around all the faces of the
map, and a second time during the second loop which remove dangling faces.
When the face is reconsidered, it is removed and thus it will be never reconsidered
later.

To test the face degree, we use union-find trees [10] allowing to represent
efficiently disjointed sets. This structure is handled by two operations: find which
returns, given an element, the representative of the set, and union which allows
to merge two sets. The amortized cost of a series of m union-find operations on
n elements can be done in time O(n.a(m,n)) with a(m,n) being the inverse
Ackermann function which grows extremely slowly, and which is less than 5 in
practical cases (see [10] for the demonstration about the complexities).

We link each dart of a volume of the initial subdivision with an union-find tree
representing the volume. When we remove a face, we merge both corresponding
trees by using the wnion operation. The test if d and a3(d) belong to the same
volume is simply achieved by testing if find(d) is equal to find(as(d)). Since
we only consider one 3D object, subdivided in several volumes in the initial
subdivision, we are sure that if d and as(d) belong to the same volume, the
corresponding face is a degree one face (i.e. incident twice to the volume) and
otherwise the face is a degree two face.

The face removal is achieved locally, by running through each edge incident
to the face to remove and by modifying locally «g involutions. Moreover, to test
if a face f is dangling or not, we have to run through each edge incident to f,
and test if the edge is only incident to f, i.e. if d a dart of the edge is such that
0&23(d) =d.

To summarize the first step, the cost of the test on the face degree can be
bounded by 5, the cost of the dangling face test is linear in number of edges of
the face, and the face removal is also achieved linearly in number of edges of the
face. This shows that the first step of Algorithm 1 is linear in number of darts
of the map (indeed, the number of darts is always greater than the number of
cells).

The second step (mark external surfaces) is also achieved linearly in number
of darts of the map. Indeed, find the smaller dart of the map need to run through
all the darts. Then, mark the surface is achieved by using for example a breadth
first search algorithm by using involutions «g, ai, and s, and jumping over
darts of fictive faces.
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The fictive faces removal is achieved linearly in number of darts of the map,
since we need to consider each dart, and modify locally involution as for those
that belong to fictive faces. Testing if a dart belongs to a fictive face is achieved
in constant time (if d is 3-free or not).

Compute H; generators of a surface s; is achieved in O((3 — x;) X n;) where
n; is the number of darts of surface s;, and x; is the Euler characteristic of the
surface (see [3]). Since we compute H; generators for each surface, we obtain the
final complexity by adding the complexity of each surface, which gives O((3 —
X) X n) with x = Zle x: and n is the number of darts of the map.

The last step is achieved linearly in number of darts of the map since we just
run through all the edges of the map, using the mark on darts to distinguish
longitudinal and latitudinal generators, and distinguish external and internal
surfaces. Moreover, adding a face along a loop is achieved in constant time, and
adding a face between two edges that belong to two distinct surfaces is also
achieved in constant time.

This gives the global complexity of our method: O((3 — x) X n). Indeed, all
steps are linear in number of darts, except the step which allows to compute H;
generators of each surface which depends on the number of darts multiply by
the sum of the Euler characteristics of all surfaces.

3.5 Geometry of Generators

Algorithm 1 gives a method to compute the minimal representation homologous
to a given 3D subdivision. This minimal representation allows to characterize
directly the homology generators of the object. Depending on the need of ap-
plications, it is sometime necessary to embed the generators onto the original
subdivision, for example to draw the H; generators onto the surfaces.

This is directly possible for Hs generators since they are composed with
all the non-fictive faces of the minimal subdivision, and each non-fictive face
corresponds exactly to one surface into the original subdivision. This surface can
be retrieved easily by running through the original subdivision and following the
boundary (i.e. darts 3-free) and jumping over darts not 3-free.

But the problem is more complex for H; generators. Indeed, in the last step
of Algorithm 1, fictive faces are added along one edge out of two, without partic-
ular properties on chosen edges. This is possible because all the configurations
obtained by adding fictive faces along one edge out of two are homologous. How-
ever, configurations are not equivalent if we take into account the links with the
initial subdivision. Indeed, in such a case, we need to distinguish latitudinal and
longitudinal generators since they do not have the same role for the homology
of the 3D object.

Algorithm 1 can easily be modified in order to compute a minimal subdivision
which is homologous to the original subdivision, and which take into account
these two kinds of generators. It is only necessary to make two modifications:

1. after having computed H; generators, we determine the class (latitudinal or
longitudinal) of these generators by using the algorithm given in [7];
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2. when we add fictive faces along edges, we need to chose edges which are not
H, generators. These edges are either latitudinal generators that belong to
the external surface, or longitudinal generators that belong to an internal
surface. Since edges are distinguish by the previous modification, this mod-
ification can be directly added in the last step of Algorithm 1, by replacing
the loop “For one edge out of two e of the external surface” with “ForEach
latitudinal edge e of the external surface”, and replacing the second loop “For
one edge out of two e of §” with “ForEach longitudinal edge e of s”.

With these two basic modifications, the computed minimal subdivision is
not only homologous to the initial subdivision but H; generators can also be
embedded onto the initial surfaces. Note that compute this embedding is not
so straightforward than for H, generators since we need to keep links between
edges of the minimal representation and edges of the subdivision during the
whole simplification process.

However, these modifications involve complexity modifications. Indeed, to
distinguish longitudinal and latitudinal generators, we use the method given in
[7] which is in O(n?g) with § = maz1<i<kg:, and g; is the genus of the surface
s;. This step is thus the more expensive part of the modified method, and so
gives the global complexity of the method. One perspective of this work is to
either improve this part, or remove it by computing generators by using only
the combinatorial structure.

4 Conclusion

In this paper, we have presented an algorithm that computes the minimal gen-
eralized map homologous to a given 3D object, orientable and with or without
cavities. Thanks to this minimal form, we can characterize easily and directly the
cells that belong to homology generators. This gives a new method to compute
efficiently the generators of a 3D object.

The main interest of our approach is to use a simple method which simplify
the given subdivision. Moreover, the method is efficient since the complexity of
our algorithm is in O((3 —x) x n) with x = Z;‘;l Xi; where each x; is the Euler
characteristic of surface s;, and where n is the number of darts of the subdivision.

We have proposed a modified version of our algorithm which allows to embed
the H; generators onto the initial subdivision. To do that, the method given
in [7] to distinguish longitudinal and latitudinal generators is used. However,
with this additional step, the complexity of the method become in O(n?g) with
§ = mazi1<i<igi, and g; is the genus of the surface s;.

Another main interest of our approach is that the simplification is made
by decreasing cell dimension. This allows to reuse previous work in 2D [3]. We
disconnect the 3D object into several 2D surfaces by removing fictive faces. After
having 2D minimal representations, we insert back fictive faces in order to obtain
the 3D minimal representation. This principle can be generalized in nD, where
we simplify an nD object into a representation with only one n-cell, then (n—1)
fictive cells are removed to process independently (n—1)D objects. Lastly, (n—1)
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fictive cells are inserted back to obtain the minimal representation of the initial
object. However, there is a lot of work to do to validate the method. We need
to show that the homology is preserved, and show the link between the minimal
representation and the homology generators. This is one perspective of this work:
extend our method to deal with nD objects. Moreover, we can also study how
to consider orientable or non-orientable objects, with or without boundaries.

Another perspective is to improve the step which allows to distinguish lon-
gitudinal and latitudinal generators. Indeed, this step is necessary if we need to
keep a link between the minimal representation and the original object, but using
the method of [7] leads to increase the complexity of our algorithm. We want to
study the possibility to compute this information directly onto the subdivision,
by using the fictive faces to characterize the different edges of the original object,
and propagate these information during the simplification steps.
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