N

N

Pseudo-random Sequences Generated by Cellular
Automata
Bruno Martin, Patrick Solé

» To cite this version:

Bruno Martin, Patrick Solé. Pseudo-random Sequences Generated by Cellular Automata. Interna-
tional Conference on Relations, Orders and Graphs: Interactions with Computer Science, May 2008,
Mahdia, Tunisia. pp.401-410. hal-00305407

HAL Id: hal-00305407
https://hal.science/hal-00305407v1
Submitted on 24 Jul 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00305407v1
https://hal.archives-ouvertes.fr

Pseudo-random Sequences Generated by Cellular
Automata

Bruno Martin and Patrick Soté
13S, Université de Nice—Sophia Antipolis, CNRS,
2000 route des Lucioles, BP 121, F-06903 Sophia Antipolide&e
{Bruno.Martin Patrick.Solé @unice.fr

Abstract
Generation of pseudo random sequences by cellular autgraatavell as by hy-
brid cellular automata is surveyed. An application to thetfavaluation and FPGA
implementation of some classes of boolean functions isls@but.

Introduction

Cellular Automata (CA) is a popular model of finite state maelwith some pretention

to generality and universality. Pseudo Random SequendgS)(Bn the other hand,
have a long history of applications to computational (MdD&lo sampling, numerical
simulation) and comunications problems (coding theorgashciphers). In that context
the popular model is the Linear Feedback Shift Register R)F&nother model of

linear finite state machine.

In the present work we survey the known attempts to genefdt Iy CA. We
give an account of the synthesis of LFSR by arrays of vari@#iegknown as hybrid
CA or HCA). We sketch an application to the evaluation of leaol functions im
variables which are related to cyclic codes of lengfth— 1. This is aimed at VLSI
implementation, especially by programmable arrays.

The material is organized as follows. Sect{dn 1 collectsnitashs and basic no-
tions on PRS, CA and HCA. Sectifh 2 reviews the synthesigyhefd FSR by HCA.
SectiorﬂB surveys the generation of PRS by elementary CAioSB@:surveys the gener-
ation of PRS by HCA. Sectioﬂ 5 contains the application otisgsis theory to boolean
functions evaluation.

1 Notations and definitions

1.1 (Pseudo-)randomness

This section recalls the classical definitions of pseudwoanness. We first give an
intuitive statement which gives the difference between readomness and pseudo-
randomness. We then introduce more formal definitions afiggggandomness.

* This work was supported by the french ANR program NUGET.



In [E], Wolfram describes three mechanisms responsibleaiodom behavior in
systems: (1Randomness from physidee brownian motion; (2Randomness from the
initial conditionswhich is studied by chaos theory; and @andomness by design
also called pseudo-randomness used in pseudo-randomnsegugenerators. Many
algorithms generate pseudo-random sequences. The bebfthe system is fully de-
termined by knowing the seed and the algorithm used. Theguicker methods than
getting "true” randomness from the environment, inacddes$or computers.

The applications of randomness have led to many differethoaks for generating
random data. These methods may vary as to how unpredictablatistically random
they are, and how quickly they can generate random sequeBefse the advent of
computational PRS, generating large amount of sufficieattfgom numbers (important
in statistics and physical experimentation) required afatork. Results would some-
times be collected and distributed as random number tablegem CD iso-images.

More formally, a pseudo-random sequence (PRS for shortheatefined as:

Definition 1. A sequence ipseudo-randorif it cannot be distinguished from a truly
random sequence by any efficient (polynomial time) proeeducircuit.

Theorem 1 ([2]). A sequence ipseudo-randoriff it is next-bit unpredictable.

Theorenﬂl claims that for pseudo-random sequences, evankhaw all the history,
we don’t have any information on the next bit. Theorﬂm 1 wawed equivalent to:

Theorem 2 ([23]).A PRS generatof passes Yao’s test if, for any family of circults
with a polynomial number of gates for computing a statidtieat, G passed’.

1.2 Cellular automata

In this section, we recall several definitions of cellulatcmmata (CA). We focus on
elementarygellular automata rules which restrict the set of the statbelF,. A cellular
automatoris generally a bi-infinite array of identical cells which éx®synchronously
and in parallel according to a local transition functioneTdells can only communicate
with their nearest neighbors. Here, we will concentratevamftnite restrictions of CA:

— cyclic: aring of N cells indexed byZ .
— null boundary: an array a¥ cells in which both extremal cells are fed with zeroes.

All the cells are finite state machines with a finite numbertates and a transition
function which gives the new state of a cell according toutsent state and the current
states of its nearest neighbors.

Definition 2. A cellular automatoris a finite array of cells. Each cell is a finite state
machineC = (Q, f) whereQ is a finite set of states anfla mappingf : Q® — Q.



The mappingf, calledlocal transition function has the following meaning: the state
of cell ¢ at timet + 1 (denoted byzf“) depends upon the state of cells- 1, ¢ and

i + 1 at timet (the neighborhoodf cell i of radius 1). Fig[]L illustrates one transition
of a cellular automaton with 8 cells. The following equalityes the dynamics of the
cellular automaton:

x?rl = f(xlzlla $£7x§+1) 1)

neighborhood

t=1  [I110] 1 [TT07II0]

Fig. 1. Transition of a cell (rule 30); cyclic CA.

For a fixed, the sequence of all the valuelsfor i € Z, is theconfiguratiorat time
t. It is a mapping: which assigns a state ¢ to each cell of the cellular automaton.
The sequence of configurations as pictured by Eig. 2 is callémhe-spacaliagram.
Fig.[3 depicts the evolution of a ring witN = 8 cells. On the top of Fid]2, we have
depicted rule 30 with each transition illustrated by thrdmeent squares representing
the different preimages of and on the bottom, their image bf A O (resp. 1) is
painted white (resp. black). On the bottom of Fﬁb 2, we sedithe-space diagram of
the cellular automaton from theitial configurationat timet¢ = 0 to timet = 7.

2 LFSR synthesis by HCA

We will restrict ourselves to the case whépe= [F; and f is a Boolean predicate with
3 variables, arlementary ruleThese CA have been consideredm [19]: there are 256
different binary CA and a natural number can be associateddh rule as follows:

xf_qala!, (111 110 101 100 011 010 001 000
2787 Jo 0 0 1 1 1 1 0

3

The top line gives all possible preimages fboand the bottom line the images by
Thus, f is fully specified by the 8-bit number written on the bottomeli(00011110
in our example) which can be translated in basis 10 and thiedctoe rule of the
cellular automaton (as rule number 30 here). Equivaletitly,rule can be considered
as a Boolean function with (at most) 3 variables. Taking Bll@gain, its corresponding
Boolean function isz}*" = z!_; @ (! v z!,,) with & denoting the Boolean XOR
function andv the classical Boolean OR function. Its equivalent forniotain s is:
w = (g al ol alaly).
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t=0

Fig. 2. Evolution of CA30 on a ring with N = 8 cells.

Equivalent rules Since we are dealing with pseudo-random generators, sottie of
elementary rules are equivalent by three transformatiathsntroduced by Wolfram
in [[L9, p. 492]. We first introduce some notation: let us deriytd the mirror image of
the finite binary wordv = w; ... w,, W = w, ...w; and byw the word obtained from
w by exchanging the 0’s by 1's (and conversely)= wy . .. w,. The first transforma-
tion is theconjugationwhich interchanges the roles of 0 and 1. It takes as an inghe
binary representation of a rule and retufngor instance, the conjugation transforms
rule 30 into rule 135. The second transformation, calidigctiongives a re-ordering of
the bits ofr. Each bitf, (x;_1, z;, x;11) is replaced by the value ¢f.(z;41, 25, xi—1)
(the mirror image of:;_1z;x;+1) and leads to a re-ordering of the bitsrofthe binary
representation of the rule. As an example, by reflectior, 8Glis changed into rule 86.
The last transformation combines boths and is caltagugation-reflectionit changes
rule 30 into rule 149. All of these transformations keep thesh-Hadamard transform
values of the cellular automata dynamics and are thustitatlg equivalent.

2.1 Hybrid Cellular Automata

In the sequel, we will consider the case where differensadlthe CA can use different
rules. This model is called hybrid and will be denoted by H@Aghort. In the context
of sequence generation, several authors have considésezktansion of the model of
CA [[./L3[15]. We will focus orinear HCA (LHCA) which is used by([}4].

Linear hybrid cellular automata In [EE], Muzio et al. consider null-boundary hy-
brid CA which only use two rules: rule 90 and 150. In this cas€A is fully specified
by which cells use rule 90 and which use rule 150. This infdaiomais summarized

. 0 if cell z uses rule 90
in therule vectorM = [dg,ds,...,dy_1] such thatl; = {1 it cell i uses rule 150



Given M, itsreversalis M’s mirror image:[dy_1, - .., d1, dp]. We also define theub-
vectorM; ; = [d;, ..., d;] with i < j which also represents a submachine of the HCA
consisting of cellg throughj.

The encoding of rules 90 and 150 into zero and one, resp.,snbanequatior{[1)
can be rewritten i, asz!™ = fi(zl_;, 2l 2t ) = 2!, + dizt + 2t . We de-
fine thestateof a HCA at timet to be then-tuple formed from the state of the cells:
ot = [z, 2%, ... 2% _,]T (the superscript denotes the transpose). Then, the next
state function of the HCA is computed a5™' = f(!). Since eacly; is linear, f is
also linear and an endomorphismI®¥ . Linearity implies the existence of a matrik
such thatr!™ = f(z!) = A - 2*. TheHCA transition matrix plays the same role as an
LFSR transition matrixA is tridiagonal.

do 1 0 - - 0 0
1dy 1 0
A=1 4, da
1 dn_o 1
0 0 - - 0 1 dy-1

Let us denote byl the characteristic polynomial of, thatisA =| zld — A |.

Definition 3. [EI] A polynomialp is said to be a HCA polynomial if it is the character-
istic polynomial of some HCA.

Recall that)/; ; is the HCA consisting of cell$ through;j and denote); ; its corre-
sponding characteristic polynomial. Wheénr= 0, we simply write M), (resp.Ay) for
the CA consisting of cell® to & (resp. its corresponding characteristic polynomial).
Cattell and Muzio |[kl] proved thaf\; satisfies a recurrence relation:

Theorem 3. [ﬂ] Ay, satisfies the reccurrenced_, = 0,A_, = 1, Ay = (z +
dk)Ak—l + Ap_o fork > 0.

Theorenﬂs provides an efficient algorithm to computg _; the characteristic poly-
nomial of a HCA from its rule vectoM . Actually, this recurrence relation is related
to Euclidean GCD algorithm on polynomials with; as the dividendA,_; as the
divisor,z + dj, as the quotient and;,_» as the remainder. Applying Euclid’s extended
greatest division algorithm yields to the sequence of gmbsiwhose constant terms are
the mirror image of the rule vector. This comes from:

Lemma 1. [l Let p € Fy[z] andg € Fyz] of respective degreesandn — 1. Then
there exists a HCA with characteristic polynomjishnd characteristic subpolynomial
q if and only if applying Euclid’s greatest division algorithto p and ¢ results inn
degree one quotients.



Thus Ay_; and Ay _> determine the whole HCA. But in general, a characteristic
polynomial isn’t sufficient to uniquely determine the HCAusf consider the follow-
ing counter-examplg0, 0,1,0,0,0] < 2% + 2% + 2 + 2% + 1 < [1,1,0,1,1,1]

To uniquely determine the HCA, we must know one more chariatitesubpolyno-
mial Ay x_1 and use theoreffd 4:

Theorem 4 (HCA quadratic congruence [}1]).Suppose we have a HCA with charac-
teristic polynomialA n_; and characteristic subpolynomialsy _, andA; x_;. Then
bothy = Ay_s andy = A; y_; satisfy the congruencg?+ (2 +x) A%, _,y+1=0
mod Ay_; whereA_, is the formal derivative ofAy_; in Fs.

By combining Lemmeﬂl and Theoreﬂn 4, Cattell and Muzio give aratterization of
HCA polynomials and give an algorithm for finding a HCA givepaynomial. Their
method has been recently improved[ih [7].

Corollary 1. Letp € Fy[z] of degreen. Thenp is a HCA polynomial if and only if for
some solutiory for y of the congruence

v 4+ (@ 4+ 2)p'y+1=0 modp (2)
Euclid’s greatest division algorithm gmandq results inn degree one quotients.

Theorenﬂ4 has some weaknesses: it does not say neither thatmials solutions to
the quadratic congruence will be subpolynomialg'o§_; nor that non HCA polyno-
mials won't have solutions to the quadratic Congruenceoi'émﬂl only gives neces-
sary conditions for HCA polynomials: they have solution$ite quadratic congruence
and that some of these solutions are subpolynomials. How'ékxeorenﬂ4 is useful for
irreducible polynomials:

Theorem 5. If p € Fy[z] is an irreducible polynomial of degree then equationﬂZ)
has exactly two solutions, both of which resultilegree one quotients.

Corollary 2. If p € Fo[z] is an irreducible polynomial, thep has exactly two HCA
realizations with one being the reversal of the other.

Since one can build a HCA from an irreducible polynomial aggresent it by
its transition matrix, we can ask which is the relationshgween LHCA and LFSR.
If both are based on the same irreducible or primitive poigiad, they have the same
behavior up to permutation of the order in which the statggapand the cycle structure
of the states is identical. A similarity transform betwedd@A and LFSR has been
given in [B] and recently improved if][8].



3 PRS generation by CA

In [L7,L8], Wolfram uses a one-dimensional cellular auttemdor pseudo-random bit
generation by selecting the values taken by a single celiviteeating the computation
of rule 30 from an initial finite configuration where the cedie arranged on a ring of
N cells. Mathematically, Wolfram claims the sequefaé};>, is pseudo-random for
a giveni. Wolfram extensively studied this particular rule, demaating its suitability
as a high performance randomizer which can be efficientiyléampnted in parallel;
indeed, this is one of the pseudo-random generators whistshigped with the con-
nection machine CM2 and which is currently used in the Math@aR) software.

Unfortunately, this PRG is not suitable for cryptographicgose. In EIZ], Meier
and Staffelbach proposed a correlation attack to revees®RE generated by rule 30
although it passes classical statistical tests like the pneposed in[]9].

More recently, in[[1]1], we have used a Walsh transform to@epihe set of the 256
elementary rules. The Walsh transform is a well-known tadhie field of cryptology
for studying the correlation-immunity of Boolean functfoixXiao and Masseml] have
characterized the notion of correlation-immunity with ¥alsh transform. We have
applied this technique to the pseudo-random sequencesagetidy all of the 256
binary rules and we provide evidence that there does nat &xisn-linear rule which
generates a correlation-immune pseudo-random sequelmgg, e state Theore[’p 6.

Theorem 6. [EI] There is no non-linear correlation-immune elementax.
And, according to Theoreffh 2, we can state that:
Corollary 3. There is no elementary CA which can serve as PRS generator.

So, does Theoreﬂ1 6 annihilate any hope to design a good PRt bydans of CA?
Not necessarily. Next section recalls the approach ieiity Tomassini and Sipper and
sectio] b describe another way of generating PRS with LHCA.

4 PRS generation by HCA

4.1 The cellular programming approach

Tomassini and SippeﬂllS] proposed to use HCA for generditter PRS. In this
model, the rules are obtained by an evolutionary approageitatic algorithm). They
have designed eellular programmingalgorithm for cellular automata to perform com-
putations, and have applied it to the evolution of pseu}sﬂnﬂmm sequence generators.

Their genetic algorithm uses KozastropyE, = — Zle Ph, log, pr; wherek de-
notes the number of possible values per sequence positiansubsequence length
andpy,; is a measured probability of occurrence of a sequénda a pseudo-random



sequence. It measures the entropy for the set"oprobabilities of thek” possible
subsequences of length The entropy achieves its maximal valig = h when the
probabilities of thek” possible sequences of lengitare all equal td /¢", where/"
denotes a number of possible states of each sequence. TWeegdiacted four rules of
radius 1 for use in non-uniform cellular automata. The bastsrselected by the genetic
algorithm were rule$§0, 105, 150 and165 (which are all linear, a clear drawback).

A series of tests (including? test, serial correlation coefficient, entropy and Monte
Carlo, but no correlation-immunity analysis) were madehvgibod results, showing
that co-evolving generators are at least as good as the vaEktde CA randomizer.
The authors also use elementary rules which we proved to beon@lation-immune.
This was further investigated ifi [13].

Following the same kind of approach, Seredynski et al ift f&e generalized the
selection process to radius 2 rules. They use then bothgddand radius 2 rules in
hybrid cellular automata. The rules selected by their gemaégorithm were30, 86, 101
and 869020563, 1047380370, 1436194405, 1436965290, 1705400746, 1815843780,
2084275140 and2592765285.

Their new set of rules was tested by a number of statistici$ teequired by the
FIPS 140-2 standarﬂllB] but no correlation-immunity asiglyvas made either.

4.2 The synthesis approach

This approach follows the synthesis algorithm proposeE]in‘I[hey propose a method
for the synthesis of a HCA from a given irreducible polynoloigerF,. The same prob-
lem for LFSR is well known as it can be directly obtained frdm transition matrix.
Furthermore, there is a one to one correspondence betwegR’s¢ &nd polynomials.
For CA, in general, a characteristic polynomial is not sigfit to uniquely determine
the CA from which it was computed.

If we consider the characteristic polynomial of the HCA (assumed to be
irreducible), with o a root in Fan. All n roots of A lie in Fan. The roots
a,02,0% ... o aredistinct and\ can be factored iffyn as(z —a)(z — a2)(z —

o). (=¥ ).

Product of irreducibles Givenp andgq two irreducible characteristic polynomials and
P and @ their respective transition matrix, on can build the tréosi matrix corre-
sponding top - ¢. It can be defined by blocks aéﬁ g) This operation corresponds
to the concatenation of LHC/E|[6]. They quoted that it perntitgoncatenate primitive
machines for forming machines of much longer lengths.



5 Application: boolean functions evaluation

There is a well-known dictionary between, on the one handldam functions im
variables, and binary sequences of petlddMore specifically, iff is such a function,
and if we denote by the base expansion of we can define a sequence by the rule
s¢(i) = f(i), fori <2m—1.

Many interesting boolean functions can be cast under tha fter) = T'r(ax +
bz®), wherea, b are scalars of the extension fidid. andT'r the trace function from
F2» down toFs. In the case where is odd and the Walsh Hadamard transform takes
only three values they are the so-calf@dteauedoolean function of ordet — 1 [@]
also known as almost optimal or semi-bent.

They are the traces of so-callatinost bentd B functions [13]. For monomialgl B
functions, the most famous exponen@re in the conjecturally exhaustive list of Gold,
Kasami, Welch, Niho (see Tab|]3 1). In all these cases, anaspshthe theory of

| Name| s | Condition |
Gold 27+ 1 iAm=1,1<i<m/2
Kasam| 2% —2' +1|iAm=1,1<i<m/2
Welch [2(m—D/2 3
Niho [22" 42" —1 r =t/2forteven
r=(3t+1)/2fort odd
withl<r<m=2t+1
Table 1.Exponents of AB monomials.

Mattson-Solomon polynomialﬂlo, p.249] is that the pacityeck polynomials of the
attached cyclic codes (or, essentially, the connectioprmohial of the LFSR) is of the
formm,m.s, wherea generateF,. overlFs,. A fast algorithm to compute the minimal
polynomials of elements in finite field extensions is givefﬂh

6 Conclusion

We have used the synthesis approach to give an effectivee@heation of classical
pseudo-random sequences of cryptographic quality. The inéérest of this work
would be to give an hardware implementation. The targetvaare model of CAs is
the Field Programmable Gate Arrays (known as FPGAS). FPGAsiaw a popular
implementation style for digital logic systems and subsys. These devices consist of
an array of uncommitted logic gates whose function and éotemection is determined
by downloading information to the device. When the prograngmonfiguration is held
in static RAM, the logic function implemented by those FPGAas be dynamically re-
configured in fractions of a second by rewriting the configioramemory contents.
Thus, the use of FPGAs can speed up the computation done loglthtar automata.
Putting all together allows high-rate pseudo-random getiar of good quality.
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