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Abstract

Let M = (Mt )t≥0 be any continuous real-valued stochastic process. We prove that if there exists a
sequence (an)n≥1 of real numbers which converges to 0 and such that M satisfies the reflection property at
all levels an and 2an with n ≥ 1, then M is an Ocone local martingale with respect to its natural filtration.
We state the subsequent open question: is this result still true when the property only holds at levels an? We
prove that this question is equivalent to the fact that for Brownian motion, the σ -field of the invariant events
by all reflections at levels an , n ≥ 1 is trivial. We establish similar results for skip free Z-valued processes
and use them for the proof in continuous time, via a discretization in space.
c© 2009 Elsevier B.V. All rights reserved.
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1. Introduction and main results

Local martingales whose law is invariant under any integral transformations preserving
their quadratic variation were first introduced and characterized by Ocone [7]. The motivation
for introducing Ocone martingales comes from control theory where often optimal control
function is the sign of some observed process. In the Brownian case, this fact is based on the
invariance properties of Brownian motion. When Brownian motion is replaced by a martingale,
the construction of optimal control can be similar if M is invariant under integration with respect
to processes taking values ±1. Namely a continuous real-valued local martingale M = (Mt )t≥0
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with natural filtration F = (Ft )t≥0 is called Ocone if(∫ t

0
HsdMs

)
t≥0

L
= M, (1.1)

for all processes H belonging to the set

H = {H = (Ht )t≥0 | H is F-predictable , |Ht | = 1, for all t ≥ 0}.

In the primary paper [7], the author proved that a local martingale is Ocone whenever it
satisfies (1.1) for all processes H belonging to the smaller class of deterministic processes:

H1 = {
(
1[0,u](t)− 1]u,+∞[(t)

)
t≥0 , with u ≥ 0}. (1.2)

A natural question for which we sketch out an answer in this paper is to describe minimal sub-
classes of H characterizing Ocone local martingales through relation (1.1). For instance, it is
readily seen that the subset {(1[0,u](t)−1]u,+∞[(t))t≥0, with u ∈ E} of H1 characterizes Ocone
martingales if and only if E is dense in [0,∞). Let us denote by 〈M〉 the quadratic variation
of M . In [7] it was shown that for continuous local martingales, (1.1) is equivalent to the fact
that conditionally to the σ -algebra σ {〈M〉s, s ≥ 0}, M is a gaussian process with independent
increments. Hence a continuous Ocone local martingale is a Brownian motion time changed by
any independent non-decreasing continuous process. This is actually the definition we will refer
to all along this paper.

When the continuous local martingale M is divergent, i.e. P-a.s.

lim
t→∞
〈M〉t = +∞,

we denote by τ the right-continuous inverse of 〈M〉, i.e. for t ≥ 0,

τt = inf{s ≥ 0 : 〈M〉s > t},

and we recall that the Dambis–Dubins–Schwarz Brownian motion associated to M is the (Fτt )-
Brownian motion defined by

B M (def)
= (Mτt )t≥0.

Then Dubins, Emery and Yor [2] refined Ocone’s characterization by proving that (1.1) is
equivalent to each of the following three properties:

(i) The processes 〈M〉 and B M are independent.
(ii) For every F-predictable process H , measurable for the product σ -field B(R+) ⊗ σ(〈M〉)

and such that
∫
∞

0 H2
s d〈M〉s <∞, P-a.s.,

E
(

exp
(

i
∫
∞

0
HsdMs

)
| 〈M〉

)
= exp

(
−

1
2

∫
∞

0
H2

s d〈M〉s

)
.

(iii) For every deterministic function h of the form
∑n

j=1 λ j1[0,a j ],

E
[

exp
(

i
∫
∞

0
h(s)dMs

)]
= E

[
exp

(
−

1
2

∫
∞

0
h2(s)d〈M〉s

)]
.

It can easily be shown that the equivalence between (1.1) and (i), (ii), (iii) also holds in the case
when M is not necessarily divergent. This fact will be used in the proof of Theorem 1. We also
refer to [8] for further results related to Girsanov theorem and different classes of martingales.
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In [2], the authors conjectured that the class H1 can be reduced to a single process, namely
that (1.1) is equivalent to:(∫ t

0
sign(Ms)dMs

)
t≥0

L
= M. (1.3)

In fact, (1.3) holds if and only if B M and 〈M〉 are conditionally independent given the σ -field of
invariant sets by the Lévy transform of B M , i.e. B M

7→ (
∫
·

0 sign(B M
s )dB M

s ), see [2]. Hence, if
the Lévy transform of Brownian motion is ergodic, then B M and 〈M〉 are independent and (1.3)
implies that M is an Ocone local martingale. The converse is also proved in [2], that is if (1.3)
implies that M is an Ocone local martingale, then the Lévy transform of Brownian motion B M

is ergodic.
Different approaches have been proposed to prove ergodicity of the Lévy transform but this

problem is still open. Among the most accomplished works in this direction, we may cite papers
by Malric [5,6] who recently proved that a.s. the orbits of the Lévy transform of Brownian motion
are dense in the set of continuous functions. Let us also mention that in discrete time case this
problem has been treated in [3] where the authors proved that an equivalent of the Lévy transform
for symmetric Bernoulli random walk is ergodic.

In this paper we exhibit a new sub-class of H characterizing continuous Ocone local
martingales which is related to first passage times and the reflection property of stochastic
processes. If M is the standard Brownian motion and Ta(M) the first passage time at level a, i.e.

Ta(M) = inf{t ≥ 0 : Mt = a}, (1.4)

where here and in all the remainder of this article, we make the convention that inf{∅} = +∞,
then for all a ∈ R:

(Mt )t≥0
L
=
(
Mt1{t≤Ta(M)} + (2a − Mt )1{t>Ta(M)}

)
t≥0 .

It is readily checked that this identity in law actually holds for any continuous Ocone local mar-
tingale. This property is known as the reflection principle at level a and was first observed for
symmetric Bernoulli random walks by André [1]. We will use this terminology for any continu-
ous stochastic process M and when no confusion is possible, we will denote by Ta = Ta(M) the
first passage time at level a by M defined as above.

Let (Ω ,F ,F,P) be the canonical space of continuous functions endowed with its natural
right-continuous filtration F = (Ft )t≥0 completed by negligible sets of F =

∨
t≥0 Ft . The

family of transformations Θa , a ≥ 0, is defined for all continuous functions ω ∈ Ω by

Θa(ω) = (ωt1{t≤Ta} + (2a − ωt )1{t>Ta})t≥0. (1.5)

Note that Θa(ω) = ω on the set {ω : Ta(ω) = ∞}. When M is a local martingale, Θa(M) can
by expressed in terms of a stochastic integral, i.e.

Θa(M) =

(∫ t

0

(
1[0,Ta ](s)− 1]Ta ,+∞[(s)

)
dMs

)
t≥0

.

The set H2 = {(1[0,Ta ](t)−1]Ta ,+∞[(t))t≥0 | a ≥ 0} is a sub-class of H which provides a family
of transformations preserving the quadratic variation of M and we will prove that it characterizes
Ocone local martingales. Moreover, the fact that the transformations ω 7→ Θa(ω) are defined for
all continuous functions ω ∈ Ω allows us to characterize Ocone local martingales in the whole
set of continuous stochastic processes as shows our main result.
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Theorem 1. Let M = (Mt )t≥0 be a continuous stochastic process defined on the canonical
probability space, such that M0 = 0. If there exists a sequence (an)n≥1 of positive real numbers
such that limn→∞ an = 0 and for all n ≥ 0:

Θan (M)
L
= Θ2an (M)

L
= M, (1.6)

then M is an Ocone local martingale with respect to its natural filtration. Moreover, if Ta1 <∞

a.s., then M is a divergent local martingale.

Remark 1. It is natural to wonder about the necessity of the hypothesis Θ2an (M)
L
= M in

Theorem 1. The discrete time counterpart of this problem which is presented in Section 2, shows

that it is necessary for a skip free process M to satisfy Θa(M)
L
= M , for a = 0, 1 and 2 in

order to be a skip free Ocone local martingale, i.e. the reflection property at a = 0 and 1 is
not sufficient, see the counterexamples in Section 2.2. This argument seems to confirm that the

assumption Θ2an (M)
L
= M is necessary in continuous time.

In an attempt to identify the sequences (an)n≥1 which characterize Ocone local martingales,
we will prove the following theorem. Let a = (an)n≥1 be a sequence of positive numbers with
limn→∞ an = 0 and let I a be the sub-σ -field of the invariant sets by all the transformations Θan ,
i.e.

I a
= {F ∈ F : 1F ◦Θan a.s.

= 1F , for all n ≥ 0}.

Theorem 2. The following assertions are equivalent:

(i) Any continuous local martingale M satisfying Θan (M)
L
= M for all n ≥ 0 is an Ocone local

martingale.
(ii) The sub-σ -field I a is trivial for the Wiener measure on the canonical space (Ω ,F), i.e. it

contains only the sets of measure 0 and 1.

Remark 2. It follows from Theorems 1 and 2 that if the sequence (an) contains a subsequence
(2an′) (this holds, for instance, when (an) is the dyadic sequence), then the sub-σ -field I a is
trivial for the Wiener measure on (Ω ,F). So, our open question is equivalent to: is the sub-σ -
field I a trivial for any sequence (an) decreasing to zero?

In the next section, we prove analogous results for skip free processes. We use them as
preliminary results to prove Theorem 1 in Section 3. In Section 2.2, we give counterexamples in
the discrete time setting, related to Theorem 3. Finally, in Section 4, we prove Theorem 2.

2. Reflecting property and skip free processes

2.1. Discrete time skip free processes

A discrete time skip free process M is any measurable stochastic process with M0 = 0 and
for all n ≥ 1, 1Mn = Mn − Mn−1 ∈ {−1, 0, 1}. This section is devoted to an analogue of
Theorem 1 for skip free processes.

To each skip free process M , we associate the increasing process

[M]n =
n−1∑
k=0

(Mk+1 − Mk)
2, n ≥ 1, [M]0 = 0,
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which is called the quadratic variation of M . In this section, since no confusion is possible,
we will use the same notations for discrete processes as in the continuous time case. For every
integer a ≥ 0, we denote by Ta the first passage time by M to the level a,

Ta = inf{k ≥ 0 : Mk = a}.

We also introduce the inverse process τ which is defined by τ0 = 0 and for n ≥ 1,

τn = inf{k > τn−1 : [M]k = n}.

Then we may define

SM
= (Mτn )n≥0, (2.7)

with M∞ = limn→∞ Mn , when this limit exists (note that limn→∞[M]n = limn→∞ τn = ∞,
when limn→∞ Mn does not exist). Denote also

T = inf{k ≥ 0 : [SM
]k = [S

M
]∞},

and note that the paths of SM are such that 1SM
k ∈ {−1,+1}, for all k ≤ T and 1SM

k = 0, for
all k > T , where 1SM

k = Sk − SM
k−1.

We recall that skip free martingales are just skip free processes being martingales with respect
to some filtration. It is well known that for any divergent skip free martingale M , that is satisfying
limn→+∞[M]n = +∞, a.s., the process SM is a symmetric Bernoulli random walk on Z. This
property is the equivalent of the Dambis–Dubins–Schwartz theorem for continuous martingales.
In discrete time, the proof is quite straightforward and we recall it now.

A first step is the equivalent of Lévy’s characterization for skip free martingales: any skip
free martingale S such that Sn+1 − Sn 6= 0, for all n ≥ 0 (or equivalently, whose quadratic
variation satisfies [S]n = n) is a symmetric Bernoulli random walk. Indeed for n ≥ 1, S1,

S2 − S1, . . . , Sn − Sn−1 are i.i.d. symmetric Bernoulli r.v.’s if and only if for any subsequence
1 ≤ n1 ≤ · · · ≤ nk ≤ n:

E[(Sn1 − Sn1−1)(Sn2 − Sn2−1) · · · (Snk − Snk−1)]

= E[Sn1 − Sn1−1]E[Sn2 − Sn2−1] · · ·E[Snk − Snk−1] = 0

and this identity can easily be checked from the martingale property. Finally call F = (Fn)n≥0 the
natural filtration generated by M . Since [M]n is an F-adapted process, from the optional stopping
theorem, SM is a martingale with respect to the filtration (Fτn )n≥0 and since its increments cannot
be 0, we conclude from Lévy’s characterization.

We also recall the following important property: any skip free process which is a symmetric
Bernoulli random walk time changed by an independent non-decreasing skip free process, is a
local martingale with respect to its natural filtration.

This leads to the definition:

Definition 1. A discrete Ocone local martingale is a symmetric Bernoulli random walk time
changed by any independent non-decreasing skip free process.

We emphasize that in this particular case, Definition 1 coincides with the general definition of
Ocone [7]. It should also be noticed that the symmetric Bernoulli random walk of Definition 1 is
not necessarily the same as in (2.7). It coincides with SM if M is a divergent process. If M is not
divergent, then it can be obtained from SM by pasting of an independent symmetric Bernoulli
random walk (see Lemma 3), otherwise the independence fails.
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A counterpart of transformations Θa defined in (1.5) for skip free processes is given for all
integers a ≥ 0 by

Θa(M)n =
n∑

k=1

(1{k≤Ta} − 1{k>Ta})1Mk, (2.8)

where 1Mk = Mk − Mk−1. Again in the following discrete time counterpart of Theorem 1, we
characterize discrete Ocone local martingales in the whole set of skip free processes.

Theorem 3. Let M be any discrete skip free process. Assume that for all a ∈ {0, 1, 2},

Θa(M)
L
= M, (2.9)

then M is a discrete Ocone local martingale with respect to its natural filtration. If in addition
T1 <∞ a.s. then M is a divergent local martingale.

The proof of Theorem 3 is based on the following crucial combinatorial lemma concerning the
set of sequences of partial sums of elements in {−1,+1} with length m ≥ 1:

Λm
= {(s0, s1, . . . , sm) : s0 = 0 and 1sk ∈ {−1,+1} for 1 ≤ k ≤ m},

where 1sk = sk − sk−1.
For each sequence s ∈ Λm , and each integer a, we define Ta(s) = inf{k ≥ 0 : sk = a}. The

transformation Θa(s) is defined for each s ∈ Λm by

Θa(s)n =
n∑

k=1

(1{k≤Ta(s)} − 1{k>Ta(s)})1sk, n ≤ m.

Lemma 1. Let m ≥ 1 be fixed. For any two elements s and s′ of the set Λm such that s 6= s′,
there are integers a1, a2, . . . , ak ∈ {0, 1, 2} depending on s and s′ such that

s′ = Θak Θak−1 · · ·Θa1(s). (2.10)

Moreover, the integers a1, . . . , ak can be chosen so that s ∈ Λm
a1

and Θai−1Θai−2 · · ·Θa1(s) ∈
Λm

ai
, for all i = 2, . . . , k where

Λm
a = {s ∈ Λm, Ta(s) ≤ m − 1}.

Proof. The last property follows from the simple remark that for s ∈ Λm we have that Θa(s) 6= s
if and only if s ∈ Λm

a . So, we suppose that all the transformations involved in the rest of the proof
verify the above property.

Let s̄(m) be the sequence of Λm defined by s̄(m)0 = 0, s̄(m)1 = 1 and 1s̄(m)k = −1s̄(m)k−1 for all

2 ≤ k ≤ m. That is s̄(m)
(def)
= (0, 1, 0, 1, . . . , 0, 1) if m is odd and s̄(m)

(def)
= (0, 1, 0, 1, . . . , 1, 0)

if m is even.
First we prove that the statement of the lemma is equivalent to the following one: for any

sequence s of Λm such that s 6= s̄(m), there are integers b1, b2, . . . , bp ∈ {0, 1, 2} such that

s̄(m) = ΘbpΘbp−1 · · ·Θb1(s). (2.11)
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Indeed, suppose that the latter property holds and let s′ ∈ Λm such that s′ 6= s. If s′ = s̄(m),
then the sequence b1, b2, . . . , bp satisfies the statement of the lemma. If s′ 6= s̄(m), then let
c1, . . . , cl ∈ {0, 1, 2} such that

s̄(m) = Θcl Θcl−1 · · ·Θc1(s′).

We notice that the transformations Θa are involutive, i.e. for all x ∈ Λm ,

ΘaΘa(x) = x . (2.12)

Then we have Θc1Θc2 · · ·Θcl (s̄m) = s′, so that

s′ = Θc1Θc2 · · ·Θcl ΘbpΘbp−1 · · ·Θb1(s),

which implies (2.10). The fact that (2.10) implies (2.11) is obvious.
Now we prove (2.11) by induction in m. It is not difficult to see that the result is true for

m = 1, 2 and 3. Suppose that the result is true up to m and let s ∈ Λm+1 such that s 6= s̄(m+1).
For j ≤ m, we call s( j) the truncated sequence s( j)

= (s0, s1, . . . , s j ) ∈ Λ j . From the hypothesis
of induction, there exist b1, b2, . . . , bp ∈ {0, 1, 2} such that

s̄(m) = ΘbpΘbp−1 · · ·Θb1(s(m)), (2.13)

where

s(m) ∈ Λm
b1

and Θbi−1Θbi−2 · · ·Θb1
(

s(m)
)
∈ Λm

bi
, for all i = 2, . . . , p. (2.14)

Then, let us consider separately the case where m is even and the case where m is odd.
If m is even and 1sm1sm+1 = −1, then we obtain directly that

ΘbpΘbp−1 · · ·Θb1(s) = s̄(m+1).

Indeed, from (2.14), none of the transformations Θbi−1 · · ·Θb1 , i = 2, . . . , p affects the last step
of s, so the identity follows from (2.13).

If m is even and 1sm1sm+1 = 1, then from the hypothesis of induction there exist d1, d2,

. . . , dr ∈ {0, 1, 2} such that

Θdr · · ·Θd1
(

s(m)
)
=

(
s̄(m−1), 2

)
(2.15)

which, from the above remark, may be chosen so that

s(m) ∈ Λm
d1

and Θdi−1Θdi−2 · · ·Θd1
(

s(m)
)
∈ Λm

di
, for all i = 2, . . . , r. (2.16)

Since from (2.16), none of the transformations Θdi · · ·Θd1 , i = 1, . . . , r affects the last step of
s, it follows from (2.15) that

Θdr · · ·Θd1(s) =
(

s̄(m−1), 2, 3
)
. (2.17)

Then by applying transformation Θ2, we obtain:

Θ2
(

s̄(m−1), 2, 3
)
=

(
s̄(m−1), 2, 1

)
. (2.18)

Hence, from (2.15) and since none of the transformations Θdr−i · · ·Θdr , i = 0, 1, . . . , r − 1
affects the last step of (s̄(m−1), 2, 1), we have

Θd1Θd2 · · ·Θdr
(

s̄(m−1), 2, 1
)
=

(
s(m), sm −1sm+1

)
.
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Finally from (2.13) and (2.14), we have

ΘbpΘbp−1 · · ·Θb1Θd1 · · ·Θdr Θ2Θdr · · ·Θd1(s) = s(m+1)

and the induction hypothesis is true at the order m + 1, when m is even.
The proof when m is odd is very similar and we will pass over some of the arguments in this

case. If m is odd and 1sm1sm+1 = −1, then we obtain directly that

ΘbpΘbp−1 · · ·Θb1(s) = s̄(m+1).

If m is odd and 1sm1sm+1 = 1 then from the hypothesis of induction, there exist d1, d2, . . . ,

dr ∈ {0, 1, 2} such that

Θdr · · ·Θd1
(

s(m)
)
=

(
s̄(m−1),−1

)
(2.19)

and

s(m) ∈ Λm
d1

and Θdi−1Θdi−2 · · ·Θd1
(

s(m)
)
∈ Λm

di
, for all i = 2, . . . , r. (2.20)

Then it follows from (2.19) and (2.20) that

Θdr · · ·Θd1(s) =
(

s̄(m−1),−1,−2
)

(2.21)

and by performing the transformation Θ0Θ1Θ0
= Θ−1,

Θ0Θ1Θ0
(

s̄(m−1),−1,−2
)
=

(
s̄(m−1),−1, 0

)
. (2.22)

From (2.19) and (2.20), it follows that

Θd1 · · ·Θdr
(

s̄(m−1),−1, 0
)
=

(
s(m), sm −1sm+1

)
,

which finally gives from (2.13) and (2.14),

ΘbpΘbp−1 · · ·Θb1Θd1 · · ·Θdr Θ0Θ1Θ0Θdr · · ·Θd1(s) = s̄(m+1)

and ends the proof of the lemma. �

In the proof of Theorem 3, for technical reasons we have to consider two cases: T1 <∞ a.s.
and P(T1 = ∞) > 0. Lemma 2 proves that in the first case M is a divergent process.

Lemma 2. Any skip free process such that T1 < ∞ a.s. and Θa(M)
L
= M for a = 0 and

1 satisfies:

lim
n→+∞

[M]n = +∞, a.s.

Proof. Let us introduce the first exit time from the interval [−a, a]:

σa(M) = inf{n : |Mn| = a},

where a is any integer. Let us put

Ψa(M) =

(
n∑

k=1

(1{k≤σa} − 1{k>σa})1Mk

)
n≥0

,
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where 1Mk = Mk − Mk−1. First we observe that if Θa(M)
L
= M for a = 0 and 1, then

Ψa(M)
L
= M , for a = 0 and 1. This assertion is obvious for a = 0 since σ0 = T0. For a = 1, it

follows from the almost sure identity:

Ψa(M) = Θa(M)1{Ta<T−a} +Θ−a(M)1{T−a<Ta}

and the equalities:

{Ta(M) < T−a(M)} = {Ta(Θa(M)) < T−a(Θa(M))},

{T−a(M) < Ta(M)} = {T−a(Θ−a(M)) < Ta(Θ−a(M))}.

Then from the almost sure inequality

σ3(Ψ1(M)) ≤ max{T1(M), T−1(M)},

the fact that T1(M) < ∞, T−1(M) < ∞ a.s. and the identity in law Ψ1(M)
L
= M , we deduce

that σ3(M) < +∞, a.s. Generalizing the above inequality, we obtain

σa+2(Ψ1(M)) ≤ max{Ta(M), T−a(M)}.

This gives in the same manner as before, that for each a ≥ 0, σa < ∞ a.s. From this it is not
difficult to see that limn→∞[M]n = +∞, P-a.s. �

The next lemma shows that in the case P(T1 = ∞) > 0 we can modify our process M by
pasting to it an independent symmetric Bernoulli random walk S and reduce the case P(T1 =

∞) > 0 to the case T1 <∞ a.s.
We denote by [M]∞ = limk→∞[M]k which always exists since it is an increasing process

and we put

T = inf{k ≥ 0 : [M]k = [M]∞},

with inf{∅} = +∞. We denote the extension of the process M by X . It is defined for all k ≥ 0
by

Xk = Mk1{k<T } + (MT + Sk−T )1{k≥T }.

Note that X = M , on the set {T = ∞}.

Lemma 3. Let M be a discrete skip free process which satisfies Θa(M)
L
= M for some a ∈ Z.

Then X also satisfies Θa(X)
L
= X. Moreover, the σ -algebras generated by the respective

quadratic variations coincide, i.e. σ([M]) = σ([X ]), X is a divergent process P-a.s. and
M = SX

[M].

Proof. We show that reflection property holds for X . In this aim, we consider the two processes
Y and Z such that for all k ≥ 0,

Yk = Θa(M)k1{k<T } + (Θa(M)T − Sk−T )1{k≥T },

Zk = Mk1{k<T } + (MT +Θa−MT (S)k−T )1{k≥T }.

We remark that

Θa(X) = Y1{Ta(Y )≤T } + Z1{Ta(Z)>T } (2.23)
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and we write the same kind of decomposition for X :

X = X1{Ta(X)≤T } + X1{Ta(X)>T }. (2.24)

In view of (2.23) and (2.24), to obtain X
L
= Θa(X) it is sufficient to show that for all bounded

and measurable functional F ,

E[F(X)] = E[F(Y )1{Ta(Y )≤T }] + E[F(Z)1{Ta(Z)>T }].

Since reflection is a transformation which preserves the quadratic variation of the process, the
random time T can be defined as a functional of Y as well as a functional of Z . So we see that
the last equality is equivalent to X

L
= Y and X

L
= Z . The first equality in law follows from the

fact that

(M, S)
L
= (Θa(M),−S)

which holds due to the reflection property of M and S, and the independency of M and S. The
second one holds since it can be reduced to the reflection property of S itself, by conditioning
with respect to M .

Finally, the identity M = SX
[M] just follows from the construction of X . �

Proof of Theorem 3. The quadratic variations of M and Θa(M) are measurable functionals of
M and Θa(M), which together with (2.9) gives for all a = 0, 1, 2:

(M, [M])
L
= (Θa(M), [Θa(M)]).

Since both processes M and Θa(M) have the same quadratic variation, the identity in law of the
statement is equivalent to: for all a = 0, 1, 2

(M, [M])
L
= (Θa(M), [M]).

Then we remark that the above equalities are equivalent to: for all a = 0, 1, 2

(SM , [M])
L
= (SΘa(M), [M]).

Now it is crucial to observe the path by path equality: for each a = 0, 1, 2

SΘa(M)
= Θa(SM ),

from which we obtain

(SM , [M])
L
= (Θa(SM ), [M]). (2.25)

From the last identity we conclude that the conditional laws of SM and Θa(SM ) with respect to
the σ -algebra generated by [M] are equal:

L(SM
|[M]) = L(Θa(SM )|[M]). (2.26)

Fix m ≥ 1 and let s, s′ ∈ Λm with s 6= s′ be fixed. Consider the sequence of integers a1,

a2, . . . , ak ∈ {0, 1, 2} given in Lemma 1 such that

s = Θak Θak−1 · · ·Θa1(s′). (2.27)

Denote by SM,m the restricted path (S0, S1, . . . , Sm). Iterating (2.26), we may write for all u
∈ Λm :

P
(

SM,m
= u | [M]

)
= P

(
Θa1Θa2 · · ·Θak (SM,m) = u | [M]

)
.
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Applying (2.12), we see that the right-hand side is equal to

P
(

SM,m
= Θak Θak−1 · · ·Θa1(u) | [M]

)
.

Take now u = s′ and use (2.27), to obtain

P
(

SM,m
= s′ | [M]

)
= P

(
SM,m

= s | [M]
)
. (2.28)

Consider now two cases: T1 <∞ a.s. and P(T1 = ∞) > 0. If T1 <∞ a.s. then from Lemma 2
we can see that M is divergent and for all m ≥ 0

P(SM,m
∈ Λm) = 1.

Then from (2.28) and the P-a.s. identity∑
s∈Λm

P
(

SM,m
= s | [M]

)
= 1,

we have,

P
(

SM,m
= s | [M]

)
=

1
card(Λm)

.

It follows that the law of SM,m is uniform over Λm and that it coincides with the conditional law
of SM,m given [M]. Hence, SM,m is symmetric Bernoulli random walk on [0,m] independent of
[M]. Since this holds for all m ≥ 0, we conclude that SM is a symmetric Bernoulli random walk
which is independent of [M]. So, from Definition 1, M is a divergent Ocone local martingale.

If P(T1 = ∞) > 0, we consider the extension X of the process M defined in Lemma 3. From
this lemma, X satisfies the hypotheses of Theorem 3 and P(T1(X) < ∞) = 1. From what has
just been proved SX is a symmetric Bernoulli random walk which is independent of [X ]. Since
the σ -algebra generated by [X ] is the same as the σ -algebra generated by [M], SX and [M] are
independent. From Lemma 3 we have M = SX

[M], and, hence, the process M is itself an Ocone
martingale according to Definition 1. �

2.2. Counterexamples

In this part, we give two examples of a discrete skip free process M which satisfy M0 = 0,

Θ0(M)
L
= M and Θ1(M)

L
= M , but which are not discrete Ocone martingales.

Counterexample 1. Let (εk)k≥1 be a sequence of independent symmetric Bernoulli random
variables. We put M0 = 0,1M1 = ε1,1M2 = ε2,1M3 = ε2 and for k > 3, 1Mk = εk .
We also introduce

Mn =

n∑
k=1

1Mk .

Since [M]n = n for all n ≥ 1 and since M is not Bernoulli random walk, it cannot be an Ocone
martingale.

Let us verify that Θa(M)
L
= M for a ∈ N \ {2}. For a = 0, the reflection property holds since

the εk’s are symmetric and independent. For a = 1 we consider four possible cases related with
the values of (M1,M2,M3). Let us put Rn =

∑n
k=4 εk for n ≥ 4.
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In fact, if M1 = 1,M2 = 2,M3 = 3, we have Θ1(M) = (0, 1, 0,−1, (−1− Rn)n≥4).

If M1 = 1,M2 = 0,M3 = −1, then Θ1(M) = (0, 1, 2, 3, (3− Rn)n≥4).
If M1 = −1,M2 = 0,M3 = 1, then Θ1(M) = (0,−1, 0, 1, (1− Rn)n≥4).
If M1 = −1,M2 = −2,M3 = −3, then Θ1(M) = (0,−1,−2,−3,Θ1(−3− Rn)n≥4).

Similar presentation is valid for M :

if M1 = 1,M2 = 2,M3 = 3, then M = (0, 1, 2, 3, (3+ Rn)n≥4),
if M1 = 1,M2 = 0,M3 = −1, then M = (0, 1, 0,−1, (−1+ Rn)n≥4),
if M1 = −1,M2 = 0,M3 = 1, then M = (0,−1, 0, 1, (1+ Rn)n≥4),
if M1 = −1,M2 = −2,M3 = −3, then M = (0,−1,−2,−3,Θ1(−3+ Rn)n≥4).

To see that the laws of Θ1(M) and M are equal it is convenient to pass to increments of the
corresponding processes.

If we take a pass with M1 = 1,M2 = 2,M3 = 3, then Θ2(M) of such trajectory has a

probability zero which is not the case for the corresponding trajectory of M . So, Θ2(M)
L
6= M .

For a ≥ 3 we can write

Θ3(M) =
(

M1,M2,M3,Θ3((Mk)k≥4)
)

and we conclude from symmetry of Bernoulli random walk.

Counterexample 2. Let (εk)k≥0 be a sequence of independent {−1,+1}-valued symmetric

Bernoulli random variables. Set kn =

⌊
ln(n+1)

ln 2

⌋
− 1, where bxc is the lower integer part of

x and let us consider the following skip free process:

M0 = 0 and for n ≥ 1, Mn =

kn∑
k=0

2kεk + (n − 2kn )εn .

Actually, M is constructed as follows: M0 = 0, M1 = ε0 and for all k ≥ 1 and n ∈ [2k, 2k+1
−1],

the increments Mn − Mn−1 have the sign of εk . In particular, the increments of (Mn) are −1 or
1 and since, from the discussion at the beginning of Section 2, the only skip free local martin-
gale with such increments is the Bernoulli random walk, it is clear that M is not an Ocone local
martingale.

The equality Θ0(M)
L
= M only means that M is a symmetric process, which is straightforward

from its construction. Now let us check that T1 < ∞, a.s. and Θ1(M)
L
= M . Almost surely on

the set {M1 = −1}, there exists k ≥ 0 such that εi = −1 for all i ≤ k and εk+1 = 1. The later
assertion is equivalent to say that for all integer n ∈ (0, 2k+1

− 1], Mn − Mn−1 = −1 and for all
n ∈ [2k+1, 2k+2

− 1], Mn − Mn−1 = 1. It is then easy to check that

M2k+2−1 = 1.

So we have proved that {M1 = −1} ⊆ {T1 <∞}, but since we also have {M1 = 1} ⊆ {T1 <∞},
it follows that P(T1 <∞) = 1.

Then we see from the construction of (Mn) that almost surely, T1 belongs to the set {2 j
− 1 :

j ≥ 1} and that for j ≥ 1, conditionally to T1 = 2 j
− 1, (Mn, n ≤ T1) and (MT1+n, n ≥ 0) are

independent. Moreover,

(MT1+n, n ≥ 0)
L
= (2− MT1+n, n ≥ 0),

so this proves that Θ1(M)
L
= M .
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Finally note that 0 and 1 are the only non-negative levels at which the reflection principle

holds for the process M , i.e. Θa(M)
L
= M implies a = 0 or 1. Indeed, at least it is clear from

the construction of M that the only times and levels at which the sign of its increments can

change belong to the set {2 j
− 1, j ≥ 0}, i.e. if a ≥ 0 is such that Θa(M)

L
= M , then necessarily

a ∈ {2 j
−1, j ≥ 0} and Ta ∈ {2 j

−1, j ≥ 0}. But suppose that for i ≥ 2 we have T1 = 2i
−1 and

recall that all the increments MT1+k+1−MT1+k for all k = 0, 1, . . . 2i
− 1 have the same sign. If

these increments are 1, then the process M reaches the level 2i
−1 at time T1+2i

−2 = 2i+1
−3

which does not belong to the set {2 j
− 1, j ≥ 0}. So the sign of the increments of M cannot

change at this time and the level 2i
− 1 cannot satisfy the identity in law Θ2i

−1(M)
L
= M .

2.3. Continuous time lattice processes

As a preliminary result for the proof of Theorem 1, we state an analogue of Theorem 3 for
continuous time lattice processes. We say that M = (Mt )t≥0 is a continuous time lattice process
if M0 = 0 and if it is a pure jump càdlàg process whose jumps 1Mt = Mt − Mt− verify :
|1Mt | = η, for some fixed real η > 0. If we denote by (τk)k≥1 the jump times of M , i.e. τ0 = 0
and for k ≥ 1,

τk = inf{t > τk−1 : |Mt − Mτk−1 | = η},

then for all t ≥ 0, P-a.s.

Mt =

∞∑
k=1

1Mτk1{τk≤t}.

The quadratic variation of M is given by:

[M]t =
∞∑

k=1

(1Mτk )
21{τk≤t} = η

2
∞∑

k=1

1{τk≤t}.

Note that τk admits the equivalent definition τk = inf{t ≥ 0 : [M]t = kη2
}. We define the time

changed discrete process SM by SM
= (Mτk )k≥0 which has values in the lattice ηZ. In particular,

we have:

Mt = SM
η−2[M]t

, t ≥ 0. (2.29)

We say that M is a continuous time lattice Ocone local martingale if it can be written as
Mt = SAt , where S is a symmetric Bernoulli random walk with values in the lattice ηZ and
A is a non-decreasing continuous time lattice process with values in N which is independent of
S. In the case where M is divergent, S coincides with SM given in formula (2.29). When M is
not divergent, S is different from SM , namely if T = inf{k ≥ 0 : [SM

]k = [SM
]∞} then S can

be taken as:

Sk = SM
k 1{k≤T } + (S

M
T + S̃T−k)1{k>T },

where S̃ is a symmetric Bernoulli random walk which is independent from SM . In this case S
is independent from [M]. Therefore, when considering a continuous time lattice Ocone local
martingale M , in identity (2.29) we can and will suppose that SM is a symmetric Bernoulli
random walk with values in the lattice ηZ and which is independent of [M].

Recall the definitions (1.4) and (1.5) of the hitting time Ta and transformations Θa , respec-
tively.
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Proposition 1. Let M be any continuous time lattice process such that for all k = 0, 1, 2,

Θkη(M)
L
= M,

then M is a continuous time lattice Ocone local martingale with respect to its own filtration. If
in addition Tη <∞ a.s., then M is a divergent local martingale.

Proof. Set N = η−1 M . We remark that for k = 1, 2, 3,

Θk(N )
L
= N .

Then following the proof of Theorem 3 along the same lines for the continuous time process
N , we obtain that SN conditionally to [N ] is Bernoulli random walk. Hence SN is a Bernoulli
random walk which is independent of [N ]. Since SN

= η−1SM and η−2
[N ] = [M], we obtain

that SM is a symmetric Bernoulli random walk on the lattice ηZ which is independent of [M]. It
means that it is a local martingale with respect to its own filtration. Finally, when Tη < ∞ a.s.,
M is a divergent local martingale since N is so. �

3. Proof of Theorem 1

Let (Ω ,F ,F,P) be the canonical space of continuous functions with filtration F satisfying
usual conditions. Let M be a continuous stochastic process which is defined on this space and
satisfying the assumptions of Theorem 1. Without loss of generality we suppose that the sequence
(an) is decreasing.

Proof of Theorem 1. First of all we note that since the map (x, ω) → Θ x (ω) from

R× C(R+,R) to C(R+,R) is continuous, the hypothesis of this theorem imply that Θ0(M)
L
=

M , i.e. M is symmetric process.
Now, fix a positive integer n. We define the continuous lattice valued process Mn by using

discretization with respect to the space variable. In this aim, we introduce the sequence of
stopping times (τ n

k )k≥0 i.e. τ n
0 = 0 and for all k ≥ 1

τ n
k = inf{t > τ n

k−1 : |Mt − Mτ n
k−1
| = an}.

Then Mn
= (Mn

t )t≥0 is defined by:

Mn
t =

∞∑
k=0

Mτ n
k
1{τ n

k ≤t<τ n
k+1}

.

We can easily check that Mn is a continuous time lattice process verifying the assumptions of
Proposition 1 for η = an . Therefore according to this proposition, Mn is a continuous time lattice
Ocone local martingale.

From the construction of Mn we have the almost sure inequality

sup
t≥0
|Mt − Mn

t | ≤ an . (3.30)

Hence the sequence (Mn) converges a.s. uniformly on [0,∞) toward M . The condition

sup
n≥1

sup
t≥0
|1Mn

t | ≤ a1
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and (3.30) imply (cf. [4], Corollary IX.1.19, Corollary VI.6.6) that M is a local martingale and
that

(Mn, [Mn
])

L
→ (M, 〈M〉). (3.31)

Since the properties (i) and (iii) given in the introduction are equivalent, it is sufficient to verify
that for every deterministic function h of the form

∑k
j=1 λ j1]t j−1,t j ] with t0 = 0 < t1 < · · · tk

we have:

E
[

exp
(

i
∫
∞

0
h(s)dMs

)]
= E

[
exp

(
−

1
2

∫
∞

0
h2(s)d〈M〉s

)]
. (3.32)

From (3.31) we see that

lim
n→∞

E
[

exp
(

i
∫
∞

0
h(s)dMn

s

)]
= E

[
exp

(
i
∫
∞

0
h(s)dMs

)]
.

Then in order to obtain (3.32), we will show by straightforward calculations that

lim
n→∞

E
[

exp
(

i
∫
∞

0
h(s)dMn

s

)]
= E

[
exp

(
−

1
2

∫
∞

0
h2(s)d〈M〉s

)]
. (3.33)

To prove (3.33) we first write

E
[

exp
(

i
∫
∞

0
h(s)dMn

s

)]
=

∫
E
[

exp
(

i
∫
∞

0
h(s)dMn

s

)
| [Mn

] = ω

]
dP[Mn ](ω),

where P[Mn ] is the law of [Mn
]. Then from Proposition 1 we have that

Mn L
= an Sa−2

n [Mn ]
,

where S is symmetric Bernoulli random walk independent from [Mn
]. Moreover,∫

∞

0
h(s)dMn

s =

k∑
j=1

λ j1Mn
t j

L
= an

k∑
j=1

λ j1Sr j ,

where 1Mn
t j
= Mn

t j
− Mn

t j−1
, 1Sr j = Sr j − Sr j−1 and r j = a−2

n [M
n
]t j , 1 ≤ j ≤ k.

Since S and [Mn
] are independent and E

[
exp(ia1Sk)

]
= cos(a) for all a ∈ R, we have:

E
[

exp
(

i
∫
∞

0
h(s)dMn

s

)
| [Mn

] = ω

]
=

k∏
j=1

[cos(λ j an)]
(un

j−un
j−1), (3.34)

where un
j = ba

−2
n ωt j c, j = 0, 1, . . . , k and bxc is the lower integer part of x . Moreover, it is not

difficult to see that

lim
n→∞

k∏
j=1

[cos(λ j an)]
(un

j−un
j−1) = exp

(
−

1
2

k∑
j=1

λ2
j (ωt j − ωt j−1)

)
, (3.35)

uniformly on compact sets of Rk
+. Then, the expression (3.34) and the convergence relations

(3.31) and (3.35) imply (3.33). �
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4. Proof of Theorem 2

In what follows, we assume without loss of generality, that the process M is divergent. We
begin with the following classical result of ergodic theory, a proof of which may be found in
[2, Lemma 1].

Recall that (Ω ,F ,F,P) is the canonical space of continuous functions endowed with its
natural right-continuous filtration F = (Ft )t≥0 completed by negligible sets of F =

∨
t≥0 Ft .

Let Θ be a measurable transformation from Ω to Ω which preserves P. We say that Z is
invariant a.s. by Θ if

Z ◦Θ a.s.
= Z .

Lemma 4. Let Θ be a measurable transformation from Ω to Ω which preserves P. A random
variable Z ∈ L2(Ω ,F ,P) is a.s. invariant by Θ if and only if

E(Z · (Y ◦Θ)) = E(Z · Y ),

for all Y ∈ L2(Ω ,F ,P).

Let Θn , n ≥ 1 be a family of transformations defined on canonical space of continuous func-
tions (Ω ,F,F,P). Let I be the sub-σ -algebra of the invariant events by all the transformations
Θn , n ≥ 1, i.e.

I = {F ∈ F : 1F ◦Θn
a.s.
= 1F , for all n ≥ 1}.

The following lemma extends Theorem 1 in [2]. For simplicity of writing both notations
X ◦Θn and Θn(X) are used for Θn-transformation of X .

Lemma 5. Let M be a continuous divergent local martingale defined on the filtered probability
space (Ω ,F,F ,P). Assume that the transformations Θn preserve the Wiener measure, i.e. if B

is the standard Brownian motion then for all n ≥ 1, B ◦ Θn
L
= B. The following assertions are

equivalent:

(j) For all n ≥ 1, (B M , 〈M〉) and (Θn(B M ), 〈M〉) have the same law.
(jj) B M and 〈M〉 are conditionally independent given the σ -field I M

= (B M )−1(I).

Proof. The proof almost follows from that of Theorem 1 in [2] along the same lines. We first
prove that (j) implies (jj).

Let h, g two measurable functions from Ω to Ω . Then (j) implies:

E
(

h(〈M〉)g(B M )
)
= E

(
h(〈M〉)g(B M

◦Θn)
)
= E

(
h(〈M〉)(g(B M ) ◦Θn)

)
. (4.36)

We take conditional expectation with respect to B M . For this we denote by f the following
function:

E
(

h(〈M〉)|B M
)

a.s.
= f (B M ).

Then (4.36) implies that

E
(

f (B M )g(B M )
)
= E

(
f (B M )(g(B M ) ◦Θn)

)
. (4.37)
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Then according to Lemma 4, f (B M ) is a Θn-invariant variable, i.e. it is measurable with respect
to σ -algebra of Θn-invariant sets In . Since it holds for all n ≥ 1, f (B M ) is measurable with
respect to I = ∩∞n=1 In . Moreover,

E
(

h(〈M〉)g(B M )|I M
)
= E

(
f (B M )g(B M )|I

)
= E

(
f (B M )|I

)
E
(

g(B M )|I
)
= E(h(〈M〉)|I M )E(g(B M )|I M )

and (jj) is proved.
Now suppose that (jj) is valid. Then

E(h(〈M〉)g(B M )|I M )
a.s.
= E

(
h(〈M〉)|I M

)
E
(

g(B M )|I M
)
. (4.38)

Moreover, since B M
◦Θn , is a measurable functional of B M , this functional and 〈M〉 are also

conditionally independent for all n ≥ 1, so we have

E
(

h(〈M〉)g(B M
◦Θn)|I M

)
a.s.
= E

(
h(〈M〉)|I M

)
E
(

g(B M
◦Θn)|I M

)
. (4.39)

From Lemma 4, we have

E
(

g(B M
◦Θn) | I M

)
a.s.
= E

(
g(B M ) | I M

)
(4.40)

and we obtain from (4.38)–(4.40) that

E
(

h(〈M〉)g(B M )
)
= E

(
h(〈M〉)g(B M

◦Θn)
)
,

which is (j). �

Proof of Theorem 2. If (ii) holds and Θan (M)
L
= M for all n ≥ 0, then in the same way as in

the proof of Theorem 3, (j) of Lemma 5 is satisfied. But (j) implies (jj), and since I a is trivial,
B M and 〈M〉 are independent. But it means that M is an Ocone local martingale, so (i) holds.

Let us prove that (i) implies (ii). Suppose that (ii) fails. We show that (i) fails, too. Namely we
show that one can construct a continuous martingale M = BA, where B is standard Brownian
motion and A is non-decreasing continuous adapted process, such that M satisfies the reflection
properties of (i) although it is not an Ocone martingale.

Let X be a nontrivial B−1(I a)-measurable bounded random variable. Call (F B
t ) the natural

filtration generated by B. Let Nt = E(X | F B
t ) for all t ≥ 0 and N = (Nt )t≥0. We remark that

N is a (F B
t )-martingale invariant by all transformations (Θan ):

N
L
= N ◦Θan .

Now, we can construct a finite non-constant stopping time T which is invariant by all the
transformations Θan by setting T = inf{t ≥ t0 | Nt ∈ K }, where t0 is large enough and K is a
suitable Borel set. For instance we can choose K such that P(X ∈ K ) ≥ 2/3. Since Nt → X a.s.
as t →∞ we can find t0 such that for t ≥ t0, P(Nt ∈ K ) ≥ 1/2.

Finally, for α > 0, let us define the following increasing process

At =

∫ t

0
1[0,T ](s)+ α1]T,∞[(s)ds.
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This process is not deterministic whenever α 6= 1. The inverse of A is given by

A−1
t =

∫ t

0
1[0,T ](s)+ α−11]T,∞[(s)ds,

so it is adapted and each At is a (F B
t )-stopping time.

The process A is a measurable functional of B., i.e. A = F(B). Since B
L
= Θan (B) for all

n ≥ 1, we have:

(B, F(B))
L
= (Θan (B), F(Θan (B))).

Since A is invariant by all the transformations Θan , one has F(B)
a.s.
= F(Θan (B)) and then

(B, A)
L
= (Θan (B), A),

for all n ≥ 1.
Therefore M = (Mt )t≥0 with Mt = BAt is a continuous divergent (F B

At
)-martingale satisfying

Θan (M)
L
= M , for all n ≥ 1. Moreover, B M

= B and 〈M〉 = A are not independent by
construction. Hence, M cannot be an Ocone martingale with respect to the filtration (F B

At
)t≥0

and it provides a counterexample to the assertion (i). So, we have proved that (i) implies (ii). �
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[6] M. Malric, Density of paths of iterated Lévy transforms of Brownian motion, Preprint, http://arxiv.org/abs/math/

0511154v5, 2009.
[7] D.L. Ocone, A symmetry characterization of conditionally independent increment martingales, in: Barcelona

Seminar on Stochastic Analysis, in: Progr. Probab., vol. 32, Birkhäuser, Basel, 1993, pp. 147–167.
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