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Clifford algebra and the Generating function of
Gegenbauer polynomial

M. Hage-Hassan
Université Libanaise, Faculté des Sciences Section (1)
Hadath-Beyrouth

Abstract

Using the quadratic transformation R* — R’ and the generating function method we
perform the Fourier transformation of the wave function of coordinates of hydrogen atom and we
find the analytic expression of the wave function in momentum space. We derive the matrix
elements between the basis to 4-dimensions and integral representation of the generating
functions of Gegenbauer polynomials. We find a relationship between a class of Clifford algebra
and the generating functions of these polynomials.

1-Introduction

The problem of the hydrogen atom has played a central role in the development of
quantum mechanics. Schrodinger solved his equation and found the wave function of the
coordinate representation. The problem in momentum space has been reformulated by
Fock [1] which led to an integral form of the Schrédinger equation. This equation is
solved by projecting the three-dimensional momentum space onto the surface of a four-
dimensional sphere and the eigenfunctions are then expanded in terms of spherical
harmonics.

Despite the importance of Fock’s work and the interest of many authors

[2-8] to study the wave function in momentum space it must not hide that the direct
calculation of Fourier transform of the wave function of coordinates is up till now undone
and our aim in this work is to fill this gap.

The wave function of coordinates [9] is in the formy .. (F) = R, (@r)Y,, (Op),0 =2/n.

Where R, (a@r) is the radial part, Y, (€2) is the spherical harmonic and €2 the solid
angle. The difficulty for the determination of the wave function in momentum space
comes from o and the appearance of the term “r” in the exponential of the radial part. We
propose to circumvent these problems by using the quadratic transformation R* >R’
and the generating function method where @ = 2/n, is a constant for all the elements of
the basis. After calculation we found in the expansion of the obtained function the
Fourier transform of the wave functions in position space withn =N, and then we obtain

the analytic expression of the wave function of hydrogen atom in momentum
representation.



To not cumbersome the text by the applications we limit ourselves for the passage
formula between the spherical function and Wigner’s D-matrix elements of SU(2). We
find an Integral representation of the generating functions of Gegenbauer polynomials
and as far as [ know this is a new formula.

We find also that the Bargmann’s integral of a class of quadratic forms related to
Clifford algebra gives as solution the generating function of Gegenbauer Polynomials.

This paper is organized as follows. In part 2 we construct the generating function for
the basis of the hydrogen atom. The next section is devoted to the presentation of the
connection of R*hydrogen atom and R*harmonic oscillator. In section 4 we derive the
wave functions of hydrogen atom in momentum space. In section 5 we derive the passage

formula between the basis of R* and the integral representation of the generating functions of
Gegenbauer polynomials. In the last section we present the relation between the Clifford
algebra and generating function of these polynomials.

2. Generating function for the basis of the hydrogen atom

The wave function of hydrogen atom in momentum representation [9] is

V()= 5 5m ——— 5 [y ()dF @.1)
With R, (X)is the radial part R, (X)= = +”'I)' e 2 2 (x) (2.2)
—1 =1
And X=ar, N, =% u a)=25,5=l (2.3)
n“\ [(n+D!] n

Where Lﬁ (X) s the associated Laguerre polynomial. Atomic unit are used through the

text.
2.1 The generating function of Laguerre polynomial L2"", (r)

The generating function of Laguerre polynomial is:

L
a0 (N+T1)! (1-2)™
From the property %L(n‘”(r)— LD (1)
We deduce that
. n 141
nzo(nz ey Lt (= (1(_22)2”2 (-, rz)) (2.4)

2.2 The generating function of spherical harmonics
The generating function of spherical harmonics is:
@n  4r

i) 20 Vi) (2.5)

With & is a vector of length zero,d-d = &> =0 and its components
==¢" 40, a,=-i(¢7 +n°), a, =287




_ §I+m77l—m
Pm(2) = Ja+mia—my!

2.3 Generating function for the basis of the hydrogen atom

With

,2=(&,n)

4r Y2 z" o
We multiply ¥, (F) by( dd j a@,, (&), and summing with respect to n,I,m

21+41) N,
G(z,a8,F) = IZ( JzNz—acﬂlm(f)‘?nlm(f)=
nim nl

Yenr L (@) Z a0 ()i (@)

- (n+1+1)! b
Substituting (1.4) and (1.5) in the above expression we obtain:

o2 _or(l+2) wz(ar)
G(z,aé,1)= 2y exp[ 20-2) +a2(1_z)2

] (2.6)

3. The connection of R*hydrogen atom and R*harmonic oscillator

We will derive the quadratic transformation by a simple way then we determine
the volume element. A summary of the connection between the wave function of
hydrogen atom and harmonic oscillator is given in the following.

3.1 The quadratic transformation R* — R’

The quadratic transformation R* — R has been used first by Kustaanheimo-Steifel [10]
in celestial mechanics and was used also by many authors [11-12] for the connection of
R’ hydrogen atom and R*harmonic oscillator. We shall derive this transformation by a
simple method knowing that its derivation can be done by several ways [12-16].
Consider the relationship between the well-known Wigner’s D matrix and spherical
harmonics polynomials [17]

4 _ =
2| +1 (r) D(0 m)(21921922922) (31)
Z,=U,+iu,, z,=U,+iu,
=2 2 .02 002 a2
r=>0°"=u; +u; +U; +U;
We write in terms of Euler’s angles or Cayley-Klein parameterization.

i) g i)
Z, =U, +iu, = \/_cos— 2, z,=Uy+iu, = \/_sm e 2 (3.2)

and D/, (2,,7,,2,,2,) = u“D(m mWOp), | =11/2,...

It is important to emphasize that the elements of the matrix D are solution of Laplacian
A, with the parameterization of Cayley-Klein.

If we put | =1in (3, 1) we obtain the quadratic transformationR* — R’ :
X=2(UUy +UyUy) = 2,7, + 2,7), Y =2(ujUy —UyU3) =1(2,Z, — 2,7))



and Z=U+U —Uui —u; =2,Z, - 2,7, (3.3)
3.2 The volume element
We consider the transformation (U,,u,,us,u,) = (r,0,0,¥)

With 0<0<7m,0<y,p<27,0<r<ec, —c<U; <+oc,i=1,...4.

and d*i = J|drd6ﬁ¢dly

The calculation of the Jacobian gives |J|=(u?/8)sin@ but d°F =r’drdédedy
Therefore 8u’di = drdy

And jf(x,y,z)d%:ljf(x,y,z)d3rdy/=ijf(x(u),y(u),z(u))d“ﬁ (3.4)
27 Vs

3.3 The connection of hydrogen atom and harmonic oscillator
A quick calculation shows that the equation of the hydrogen atom

n o Ze’ :
[-—A- ¥ = EY. (pis the reduced mass).
2u r
That may be written on the basis of harmonic oscillator in the form
hz 4 82 4 ) )
-— —4E) u ¥ =4Ze"VY 3.5
=502 o Z '] (3.5)
With a constraint on the eigenfunctions: ai‘l’ =0. (3.6)
74
and o=~-8E/u, 4Ze*=ho(n+2)
The energy is given by: E=-2 Z—ez (3.7)
gyisg y: H n+2) .

4- The wave functions of hydrogen atom in momentum space

We write first the Fourier transform in the representation (u) and with the help of
Bargmann integral we determine the generating function in momentum representation.
Finally the development of this function gives us the wave functions of hydrogen atom in
momentum space.

4.1 The generating function in {u} representation

We denote the generating function by G(z, @&, P) in the representation {u}. But to
determine the generating function (2.3) we must multiply by 4 / « to reflect the change in
the measure of integration. We write

B 1 -ip.F o\ 3z
wn.m(mzmje P i (F)AT 4.1)

To calculate this expression we must write (4.1) in the (u) representation using the
formula (3.4):



4 1

7 Q2r)?
In the expression /., (P) there is the term U ? for that we consider a new generating
function:

W oim (P) = ey (Fu*d*u (4.2)

1 4 z
G Zsa s _.5 = - X
J‘e_ipf eXp[— w r(l + Z) " awl’l (ar)]e_ﬁuzd 4U (43)
2(1-2)  2(1-2)*
We assume that £ > 0 therefore there is no problem of convergence.
. 0 ~ .
We write then [—%G(Z,a@f, p,ﬂ)]|ﬂ:0 =G(z,a¢,p) (4.4)
1
. 22"
With G(Z Olf p) Z( lj N a (Dlm (g)l//nlm(p) (45)
nim nl

4.2 The generating function of momentum-space
We can do the integration of (4.3) by a direct calculation with the variables (u) or more
quickly using the Bargmann integral [18]

1/ n“)ﬂ_[i”:ld v, exp(-V' XV + A'V+V'B) = (det X) " exp(A'X 'B)  (4.6)
With v=(v,,v,,..,V,)
Wehave —Iip.r =-ip,(2,Z, +2,Z))+ p,(2,Z, - 2,Z)) —ip,(2,Z, - 2,Z,)
ar=a,(z,z,+2,z))+ia,(2,Z, - 2,7,) +a,(2,Z, - 2,Z,) 4.7)
r=22,+12,7,
We obtain then

w(l+z)+ﬁ—ip N Wz a _ip, + Wz a —p +1 Wl a
X = 2(1-2) 21-2) ¢ T 2a-2) 7 7Y i20-2)* !
. —ip Y a +p L w(l+z)+ﬁ+ip 4
T 2a-2 Y 7Y i2a-2) ! (1-2) L o21-2)?%
Because d° =0 we deduce that:
o(1+2) ) o w
det(X) = [( ﬁj +pP +la a.pl, 6 =— (4.8)
(I-2) (1-2)° 2
We find therefore the generatmg function
YA
G(z,aé,p,p) = . 4.9)
S PF \/ [(6(1+2)+B(1-2)) +(1-2)* p* +2ci5%a.p]
In applying the relation (4.4) we find the generating function G(z,a¢, P)
2
G(z,a¢,p) = 10 2d-z) (4.10)

V27 [(5(1+2)) +(1-2)* p* +2aica. p]?



4.3 The wave functions in momentum-space
We drive the basis of momentum-space using the formula

16"1 0 1

1

4 \2 ~

[wmma/afr— T Cas Z(Efij V(D) @.11)
nl

In this case we must take 0=1/n and to execute the calculations we proceed by step:
1 - Derivation with respect to a

&—ﬁmwm wtg(m“
(1-z%)z" (a.p)
[(60+2)) +(1-2)'p")* 21 -
We have (5(1+2)) +(1-2) P> = (P> +6%)—22(p* = 6%) + 22 (p* + 52))
=2 2 2 _>2_52
(B +60)[1-22x+ 221, x=(;2+52J
We deduce that
10 .(|+1)!>< (45)"™ 1-z5z"" _(ap)
[l'a Gz.ac.p), = 2z (PP +6H)"? [1—2zx+z2]'+2] 2' (+13)

2- Derivation with respect to z
Using the familiar formula for the generating function of Gegenbauer polynomials

(A-2rt+r?)*=>r"Ca(t) (4.14)
m=0
. (1_2 )ZIJrl - I+ I+
We write 122 2277 Z(l 'C2(x)

=gﬂh?quﬂwﬂ

With m+l+1=n m+Il+3=nand 6 =1/n therefore

101 5 L+ @8)
[nva "o IG( a§ p)]| _() mx(pz_i_é‘z)nzx
= =\l
vt 0-ci, ] EP) (415

d) é‘px ﬁ)x (|32—52)
(P> +6%) (P> +6%) (B> +6°) (P’ +5%)

Put Y=0Y1,Y2 Y3, ¥a) =(

Weobtain  y.y=1
Thus we find the transformation introduced by Fock.
3- Derivation with respect to ¢, (0/0S)

By using the formula (2.5) we get the following expression



_a” la_' . .(|+1)!X 45)"™ y
[q)jm( 5) |'8 G( aé: p)| _(I) m (p,2+52)|+2

[C”f () =Cl 5 (0N, (B) (4.16)

4- The wave functions in momentum space
The comparisons of (4.16) and (4.12) give us the result:

TN 3/2 (|+1)!X 1+1 [CI+2 (X)— CrI1+I2—3(X)]
'//nlm(p)_(l) ana \/E (45) (p +52)I+2

And with the help of the recurrences formula [21]
(n+a)C " () = (@ =DIC;5 (0 - C]

n+1 n-+1

Yin (P) (4.17)

We derive finally the wave functions in momentum space:

1+1 2
Wom(P)=()'N QLG M (E 5]Y.m(p) (4.18)

nl \/_72' ( +§2)|+2 n—1-1 52

It is clear that we obtain by an elementary method not only the wave function in
momentum representation [4] but also the phase factor.

5- Passage formulas between the basis of R* and
between the generating functions of Gegenbauer.

In order do not cumbersome the text with the applications I am restricted only to the
calculation of the passage matrix elements from the spherical basis to the basis which

elements are D('m m)

(wlp) and the mapping between the generating functions of

Gegenbauer polynomials.
If we consider the spherical parameterization
X = vsinysindcos@,y = vsiny sindsing, z = vsiny c0sd, q = vcosy (5.1)

The Laplacian A, have solutions the spherical functions [2-19]

1+1 n 1+1 n(n 1) |+1
nIm(V) 2 I'( 2”(n+|)'j n—l- I(COSZ)YIm(r) (5-2)
With V=(F,q),F =(X,Y,2)

5.2 Passage formulas between the bases of R*
We consider the generating function [20] of Wigner’s D-matrix:

Loy a+iz x+iyY z,
exp[(Z 1z 2{_ X+iy q —iyj(z J Z]mm Dim' (Z' )(Djm(Z)D(m m)(ruz),

Vi=q>+x*+y>+2% (5.3)
By replacing in the formula (Zl 22) by (71 72) we have



, (q+iz x+|yj( J o
(z1 z qq'-+iXX+iyy'+izz'= qq'+iF.F' (5.4)
X+iy q

We find then the quadratic transformation R* 5 R’ (u'1 ,u'y,u'y,u'y) —> (X', y',z")
With F=(XY,2), '=(X,y,2), q'=r'=u7+u"+u" +u';
exp[qq +|r r ] Z]mm ¢Jm (Z )¢]m(z )rZJD(m m)(Uz) (5-5)

A second form of (5.5) can be done through the development of the wave free, then the
generating function of Gegenbauer polynomials and Legendre duplication formula.

We develop e'"" on the spherical harmonics basis
d oC +1 "R
e" " = 47[2I=02m ,' J (Ir)Y (6' 9, (Op) (5.6)

And we write

explaq+iF.F'1=47Y" S i'[exp[vg'cos 1]

2kr

With the second generating function of Gegenbauer polynomials

1 oC
eZ°°SZ(£sin)()2 J (z sin y) = z I'Qa)
) =0 (g + )r(za +n)

1/2
(Lj 3112 (F'Vsin 7)Y, (6' 9')Y,,, (69)] (5.7)

C{*(cos y)z" (5.8)

We obtain

exp[qq'-+iF. 47z2§: el —;1)1“(205)
N0 (o + —)F(2a +n)

i'>" [Ci (cos x)(r'v)" x

+1 Vo
> Y (00, (6p)] (5.9)
With Legendre duplication formula
r(%)r(zn +2)=2"T'(n+ %)l“(n +1) (5.10)

and we multiply (5.9) and (5.5) by jY,m (0'¢")dQY' and then we execute the integration.
We obtain

72 . r2(1+1) .
2 A G+ 2 O €93 )in(O9)
= 105, (205, (2N (0'9)dQ, 1D, 0y (U) (5.11)
With the help of the expression [17]
n-1 n-1

TNCE )D? NCE )Digm U,) =

5m 2

(n—l)/z (n—l)/2 y(n=bizn=hiz b,
(n-0/2 -(n-1/2 0 momoomo ) O



Finally we get the well known [2] expression

(I) -1 n-1

(- 1 n-1 |
(2)2 2D 2 @D 2 2 D2, Uy (5.13)
mlmz ml - m2 m
5.2 Integral representation of the generating functions of Gegenbauer polynomials.
With the development of the plane wave and the expression (5.6) we find that

[exp[B(@T")/2+a(qq+T - F)du(u') = /20y S {[ Texplavg'cos x]x
jwaasin e adgy &0

We can execute the integration using the Bargmann integral and we repeat the same
calculation of paragraph 4.We obtain

[exp[B(@T")/2+a(qq+T - F)du(U') = [exp[-2" Xz']

YnIm (\7) -

(5.14)

1—(aq+iaz+£az) —(iax+£ax+ay—i£ay)

With X = 2 2 2
—(iax+§a ay+|'B a,) 1—(aq+io:z+£az)

And det(X)=1-20q +a2\72 —iapB@-r)

o . N 1
Then J'exp[ﬂ(a.r)/2+a(qq+|r F')Jd(u") 2+ —iaBGT)

: I iz =\l
:Z (_Iaﬂ) (a'r) (5.15)

= (1-20q+a*V?)™
Putv =1,t =u'?, and comparing the two expressions (5.14) and (5.15) we
Find the integral representation of the generating functions of Gegenbauer:

1 -1 .
(1-2acos y+a’)* ;52”)1“] explteos 7], (tsin p)t'""e (5.16)

6. Clifford algebra and generating function
of Gegenbauer polynomials

We noticed a relationship between the generating function of Gegenbauer polynomials
and the octonions algebra and this part aims to present this relationship.
6.1 Bargmann integral and Levi-Civita transformation

The quadratic transformation R* — R”is
X'=2U,U,,y'=U —u;,r'=u’ +ul (6.1)
put (X,Y,2) = (X;,X;,%;)
And by analogy with the expression (5.3) we write:

. u (X3 +1X,) X, u,
ZrHixx'+yy'= (u, uz)Al(uzj—(u1 uz)( x (x3—ix2)j(u2] (6.2)



The Bargmann integral in this case is

[ explx;r+ix, X+ix, y' Jdgu(u) = 1

\/(1—2X3a+a2r2) (6.3)
du(u) = e’Z“‘ZHdui, r>=X3+X +X

The second part is the generating function of Gegenbauer polynomials

_ (X3 +1X,) X,

We also write A = . . = X1 + X, + x,I (6.4)
IX, (X5 —1IX,

With ;=T =-1

6.2 Bargmann integral and the quaternions

, X, +iX5
It is well known that A, = . Z XIG, Ty = (6.5)
— X, +1X, x4 =

Where (1,I5,I,,1) are the representations matrices of quaternion. We find by a direct
calculation the Bargmann integral

Iexp[a(f Z)(x4+ix3 X2+iX1J(ZIJ]d,U(Z)= 1
Ol ex, X, X —ixg )\ z, (A-2x,a+a’x})’ (6.6)

du(z) =e 2% [Tdu,
The second part is the generating function of Gegenbauer polynomials
6.3 Bargmann integral and the Octonions

The Hurwitz transformation of R® — R”is given by
(X, +1X,) =2(Z,2, + 2,Z,), (X3 +1X,)=2(Z,2, - 2,Z;)

2 02 002 2 2 02 002 2
L =Uu; +U;, +U; +U;, I, =U5 +U; +U; +Ug (6.7)
Xs=0—=0L, Ir=nr+r,
We consider as previously:
(Z'AZ) = X, T +T(X X, + X Xo + X X5 4+ X, Xy + X X5 ) =

X + 1Xs 0 =X +iX, =X, +iX,
0 Xg +1Xs =X, —IX; X +IX
A\t =\t 6 T1As 47123 1 T4
z Z)=(Z ] ] ] Z 6.8
@' AE)=0) Xp+1X, X=Xy Xg — X 0 ) (©5)
X, +1X; =X +iX, 0 Xg —IXs
t is the transpose and (Z)t = (Z1 Z, 1, 24)
The Bargmann integral in this case is
1
[exp(az' A,1)du(2) = (6.9)

(1-2ax, —a’u®)?
we find again that the second member is the generating function of Gegenbauer
polynomials.

10



A3:zixiria r}=-1
We note that { A, exp[az' A;z] =0} which permit us to do the expansion of (6.8) on the

basis of SO (6) or on the basis of SU (3) and the matrix of passage between these bases
is determined by the same method of part 5.
6.4 Bargmann integral and the Clifford Algebra

Based on the expression of A, A,and A, we can generalize these results by

We also write (6.10)

writing:
A - (Xon + ix_zn—l)lzn—z A 6.11)
- Awt—l (in - IX2n_1)|2n—2
Using a symbolic program we find also:
1
Forn=4 |exp(aZ'A,z)du(z)= 6.12
Jexp(az A,2)du(2) (= 2ar —aP) (6.12)
1
For n=5 exp(aZ' A,2)du(z) = 6.13
Jexp(az" Asz)du(2) (2o a0y (6.13)
And A, :inri ,

We deduce from the above mentioned that there is a close relationship between the
Clifford algebra and the generating functions of Gegenbauer polynomials and our method
of calculating Fourier transformation of the position coordinates can be generalized to
any orders.
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