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Abstract

The screening method proposed by Morris in 1991 allows to identify the important
factors of a model, including those involved in interactions. This method, known as
the elementary effects method, relies on a “one-factor-at-a-time” (OAT) design of
experiments, i.e. two successive points differ only by one factor. In this article, we
introduce a non-OAT simplex-based design for the elementary effects method. Its
main advantage, compared to Morris’s OAT design, is that the sample size doesn’t
collapse when the design is projected on sub-spaces spanned by groups of factors.
The use of this design to estimate a metamodel depending only on the (screened)
important factors is discussed.

Key words: computer experiments, sensitivity analysis, factor screening,
elementary effect, simplex design

1 Introduction

The framework of this article is experimentation with deterministic computer
codes (simulation models), as presented for example by Santner et al. [1].
Computational models are used when the direct investigation of some real
phenomena is expensive, dangerous, or even impossible. However, there are
three main obstacles to the study of a computational model: the computation
time, the number of inputs, and the size of the input space. Increasingly, the
purpose of computer experiments is to study the model over a large range of
inputs, rather than around some specific values; see for example Jones et al.
[2].
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In such situations, reducing the input dimensionality is a necessity. For this
purpose, screening methods aim at identifying the non-important input pa-
rameters at a low computational cost. The screening design proposed by Morris
[3] may be effective because it doesn’t rely on a strong prior assumption about
the model. In a recent work, Alam et al. [4] use this design for developing a
metamodel, i.e. an approximation of the model. The procedure has two steps:
a first design (Morris’s OAT) for the screening, and a second design (latin
hypercube design in the subspace spanned by the important inputs, while the
non-important inputs are fixed) for estimating the metamodel.

In this article, we propose a screening design that can be reused for the esti-
mation of the metamodel, thereby improving the economy of the second set of
simulations. Indeed, Morris’s design is not well-suited for metamodel estima-
tion: there is an important loss of points when this design is projected into the
subspace formed by ignoring some inputs (here, the non-important inputs),
so-called collapsing of the design.

Section 2 recalls Morris’s screening method with the last improvements by
Campolongo et al. [5]. Using this method in the framework of metamodel
estimation is discussed in section 3. Section 4 introduces the new design, and
its efficiency is illustrated through an example.

2 Morris’s Elementary Effects Method

[Fig. 1 about here.]

The starting point of Morris [3] is that traditional screening methods, based on
the theory of designs of experiments (Fisher [6]), rely on strong assumptions,
such as monotonicity of outputs with respect to inputs, or adequacy of a low-
order polynomial approximation. In contrast, the method he proposed doesn’t
rely on such assumptions. His method is referred to as the elementary effects
method, and is more and more popular thanks to its moderate computational
cost and its graphical aspects (as we shall see).

Let the function f : x ∈ Ω → y ∈ R denote the computational model. The
input space Ω is a subset of Rp; in most cases it is a hypercube: Ω =

∏p
i=1[ai, bi].

The p input parameters x = (x1, . . . , xp) are called the factors, and the scalar
output y is called the response. In practice, however, simulation models have
multiple outputs. Assuming that the response is scalar isn’t restrictive in this
article since we only consider initial designs, and not adaptive ones; therefore,
the screening can be done separately for each response based on the same
design.
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The objective of screening is to split the factors into two subsets x = (u,v),
where u (resp. v) is the vector of the important (resp. non-important) factors.
“Non-important” means that these factors can be fixed, while having little
impact on the model response (see for example Alam et al. [4]). In section 3,
we present an alternative approach to factor fixing, based on regression.

2.1 The design of experiments

Morris’s design has the following characteristics; also see figure 1(a):

(1) the design belongs to the family of fractional factorial designs, i.e. the
points are sampled from a p-dimensional regular grid;

(2) the design is structured in groups of points, called trajectories; these
trajectories are random, but follow a specific scheme:
(a) the trajectories are one-factor-at-a-time (OAT), i.e., two successive

points differ by one factor only;
(b) this occurs exactly once for each factor and for each trajectory.

To illustrate the construction of a trajectory, a base point x0 is randomly
chosen on the grid, and each coordinate is increased or decreased in turn:
xi = xi−1 + ∆iei for i = 1 . . . p, where ∆i is a multiple of the grid spacing in
the ith direction, eii = 1, and eij = 0 if i 6= j. In practice, the trajectories
aren’t generated with this scheme, but in one step with a matrix approach
(see Morris [3]).

Composed of R trajectories of p+1 points each, the design has R(p+1) points;
for example in figure 1(a), R = 10 and p = 3. Then, the number of points
of the design is linear with respect to the number of factors. The number of
trajectories R should be large enough to compute statistics such as means
and standard deviations (see section 2.2). In the following, x

(r)
i denotes the

ith point of the rth trajectory (i = 0, . . . , p, r = 1, . . . , R).

A randomly generated design can have a poor coverage of the space, especially
if the number of points is low with respect to the input space dimension.
Space-filling-designs (SFD) were introduced to assure a better spread of the
points over the input space (see for example Santner et al. [1]). Following these
principles, Campolongo et al. [5] improved Morris’s design by maximizing the
distances between the trajectories.
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2.2 The screening method

The structure of the design allows to calculate, for each trajectory r = 1, . . . , R,
one elementary effect per factor, i.e. the increase or the decrease of the response
when the considered factor is disturbed, while the other factors are fixed:

d
(r)
i =

f(x
(r)
i ) − f(x

(r)
i−1)

∆i

, i = 1 . . . p (1)

(recall that x
(r)
i = x

(r)
i−1 + ∆iei).

The elementary effects are then post-processed into statistics expressing the
sensitivities of the factors. The first statistic is the mean µ̂i,

µ̂i =
1

R

R
∑

r=1

d
(r)
i , i = 1 . . . p . (2)

µ̂i is a measure of the ith factor’s importance. Noting that elementary effects
with opposite signs cancel each other, Campolongo et al. [5] suggest to consider
instead the mean of the absolute value:

µ̂∗

i =
1

R

R
∑

r=1

|d(r)
i | , i = 1 . . . p . (3)

Empirical studies [5] tend to show that µ̂∗

i proxies the so-called “total sensi-
tivity index”, denoted STi

(Homma and Saltelli [7]). The third statistic is the
standard deviation σ̂i,

σ̂i =

√

√

√

√

1

R − 1

R
∑

r=1

(d
(r)
i − µ̂i)2 , i = 1 . . . p . (4)

σ̂i is either a measure of the non-linearities with respect to the ith factor,
or a measure of the interactions involved with the ith factor, or both. Morris
highlights that his method doesn’t allow to distinguish between non-linearities
and interactions, remarking however that data analysis could give insight into
these phenomena.

To screen the factors, the statistics µ̂i, µ̂
∗

i and σ̂i are simultaneously considered.
In practice, a graph representing σ̂i versus µ̂∗

i for i = 1, . . . , p is sufficient to
distinguish between three groups of factors:

(1) negligible factors (low µ̂∗

i );
(2) factors with linear effects without interactions (high µ̂∗

i and low σ̂i);
(3) factors with non-linear effects and/or interactions (high µ̂∗

i and σ̂i).

See, for example, figure B.3 (discussed later in the paper).
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3 Using the Elementary Effects Method with metamodeling

Alam et al. [4] present the elementary effects method as a tool to reduce the di-
mensionality, when estimating complex metamodels such as neural networks,
support vector machines, kriging, etc. Indeed, these metamodels are used when
the relationship between the inputs and the output cannot be represented by
simple models, such as polynomial approximations; in this case, the screening
procedure should not rely on a strong assumption about the form of the sim-
ulation model. That is why the elementary effects method is one of the rare
screening methods that can be used in that context.

After the screening phase, the common practice is to use a second design
for the regression where the non-important factors are fixed at their nominal
values. This implies that more simulations must be run. However, even if
the computational cost of the elementary effect method can be considered as
moderate (linear with respect to the number of factors), it often reaches the
maximally allowed number of simulations. Then, there is no other choice than
estimating the regression metamodel from the screening design points only.

We recall that x = (u, v) denotes the splitting between important and non-
important factors, according to the screening results (i.e. the values of the
statistics µ̂∗

i and σ̂i). The objective is to build a metamodel f̃ that depends
only on important factors:

y = f(u,v) = f̃(u) + ε(u,v) , (5)

where ε is a residual random variable representing the gap between the sim-
ulation model and the metamodel; we assume that f̃(u) and ε(u,v) are non-
correlated, and that E(ε(u,v)|u) = 0. The variance of ε gives information
about the quality of the screening. Indeed,

var(ε)

var(y)
= 1 −

var(f̃(u))

var(y)
(6)

= 1 −
var(E(y|u))

var(y)
(7)

=
E(var(y|u))

var(y)
, (8)

where (8) follows from (7) by the total variance law. Hence, var(ε)/var(y) is the
so-called “total sensitivity index” with respect to the non-important factors,
denoted STv

(Homma et Saltelli [7]). Here, the non-important factors v are
considered as noise in the model, and the index STv

is a measure of this noise
over the response y (as in Iooss and Ribatet [8]). A low value confirms that the
dropped factors are really non-important. In this sense, the regression model
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provides a post-validation of the screening results. It must be noted that, when
fixing the non-important factors, this post-validation cannot be provided: the
practitioner has to trust the screening results.

To estimate a metamodel depending only on the important factors (u), the
orthogonal projections of the points of the design onto the subspace formed by
the u-coordinates are considered. In Morris’s OAT design, the aligned points
collapse through the projections, leading to a loss of points 1 . For example,
figure 1(a) represents such a design in p = 3 dimensions with R = 10 tra-
jectories (altogether 40 points), and figure 1(b) shows the projection of this
design onto the (x1, x2)-plane (27 remaining points), and onto the x1-axis (7
remaining points). The loss of points can be explained by the OAT structure
(one point lost per eliminated dimension and per trajectory), but also by the
grid structure of the design. To illustrate, if α% of the factors are important,
the loss of points is greater than (1 − α)% for the regression. This can be
dramatic in high dimensions, because α is expected to be lower than 20%: the
loss of points is then greater than 80%. Therefore, we develop simplex-based
designs.

4 Simplex designs for computing the elementary effects

[Fig. 2 about here.]

To avoid the loss of points, the idea is to allow a better flexibility in the way
the trajectories are done. In our new design, the trajectories are assumed to
be simplexes. A simplex is the p-dimensional analogue of a triangle in two
dimensions. Specifically, a simplex is the convex hull of a set of p + 1 linearly
independent points. In this article, the term “simplex” is referring only to
the nodes, i.e. a sequence of p + 1 points xi = (xi1, . . . , xip), i = 0 . . . p. To
illustrate, figure 2(a) represents such a design in three dimensions.

The design is composed of R different random simplexes in the domain. The
simplexes are successively generated, and the space filling improvement re-
ferred to in section 2.1 (Campolongo et al. [5]) can also be applied. The sim-
plexes can be of any shape. Technical details about simplex generation are
discussed in appendix A.

Figure 2(b) shows the projections of the design of figure 2(a). As expected,
most of the points don’t collapse through the successive projections.

1 Although this is commonly referred to as a “loss of points” (see for example
Morris [3]), this is in fact a loss of information: all the points will be used for the
regression, but one projected point could match several points of the original design,
and so, several values of the response.
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The simplex-based designs enable the computation of the elementary effects.
Fitting a first-order polynomial to each simplex,

y
(r)
i = c

(r)
0 +

p
∑

j=1

c
(r)
j x

(r)
ij , r = 1 . . .R , i = 0 . . . p , (9)

implies the assumption that the model is without interactions. The coefficients
c
(r)
i are then proxies of the elementary effects d

(r)
i . Hence, the statistics µ̂i, µ̂∗

i

and σ̂i can be computed by (2)–(4).

It is important to notice that the size of the simplexes must be chosen properly.
Small simplexes imply that the model has to be linear (in the factors x)
without interactions at a local scale, whereas with simplexes that spread over
the input space each, the model is assumed to be globally linear without
interactions.

4.1 Example

[Fig. 3 about here.]

We illustrate the elementary effects method with a simplex-based design through
the function introduced by Morris [3]:

y = f(x1, . . . , x20)

=β0 +
20
∑

i=1

βiwi +
20
∑

i<j

βijwiwj +
20
∑

i<j<l

βijlwiwjwl

+
20
∑

i<j<l<s

βijlswiwjwlws , (10)

where Ω = [0, 1]20, wi = 2(xi − 1/2) except for i = 3, 5, 7, where wi =
2(1.1xi/(xi + 0.1)− 1/2). Coefficients of relatively large value are assigned as:
βi = 20, i = 1, . . . , 10; βij = −15, i, j = 1, . . . , 6; βijl = −10, i, j, l = 1, . . . , 5;
βijls = 5, i, j, l, s = 1, . . . , 4. The remaining first and second order coefficients
are generated independently from a standard normal distribution N (0, 1), and
the remaining third and fourth order coefficients are set to zero.

The non-important factors are x11, . . . , x20. Concerning the important fac-
tors, their effects are linear, except for x3, x5 and x7 which are non-linear;
factors involved in interactions are x1, . . . , x4 (second, third and fourth-order
interactions), x5 (second and third-order interactions) and x6 (second-order
interactions). Hence, the expected result for the elementary effects method is

(1) non-important factors: x11, . . . , x20;
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(2) factors with linear effects without interactions: x8, x9 and x10;
(3) factors with non-linear effects and/or interactions: x1, . . . , x7.

We applied the elementary effects method with a simplex-based design and
compare it with Morris’s OAT design. In both cases, the number of OAT
trajectories/simplexes is R = 10; for the OAT design, the grid spacing is 1/4
(5 levels for each factor); for the simplex design, the simplexes are orthonormal,
with an homothety parameter of 1/4 (see appendix A); hence, the simplexes
are random rotations of OAT trajectories. The OAT trajectories/simplexes
were generated at random (no space filling improvement). Both methods were
repeated 100 times. The results are presented in figure B.3. In both cases, the
results are as expected. Moreover, the 100 replicates allow to see that:

• the estimation of the statistics based on the elementary effects has a large
variability, due to the small size of the samples (R = 10);

• with the simplex-based design, the effects of the factors of the third group
(interactions and/or non-linear effects) are underestimated; indeed, for these
factors, the model isn’t linear at the scale of a simplex (here 1/4); however,
although underestimated, these effects are properly identified as interactions
or non-linearities.

5 Conclusion

In this article, we have proposed simplex-based designs as an alternative to
Morris’s OAT designs for the elementary effects screening method. Contrary to
Morris’s designs where no explicit assumption is made, the simulation model
is now supposed to be linear without interactions at the scale of a simplex;
however, if the simplexes are small enough, this assumption isn’t too restric-
tive. The advantage of simplex-based designs over Morris’s designs is that
they keep most of their points (non-collapsing) after the projections on the
subspaces formed by groups of factors (typically, important factors), so they
are well-suited for metamodel estimation.

The methodology presented in this article – screening followed by regression
– may be compared with the forward (stepwise) variable selection procedures
where the screening is incorporated into the metamodel estimation procedure.
Although these methods are efficient when the assumptions underlying the
metamodel fit the problem, it may be difficult to choose, a priori, a kind
of metamodel. For example, Welch et al. [9] assume that the model can be
approximated through a kriging metamodel, and their screening procedure
relies on this assumption. With the methodology presented in this article,
the metamodel can be chosen after the screening. Then, several metamodels
(regression, kriging, etc.) can be estimated, in order to choose the best one.
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The two following issues may be investigated in future research.

The first issue concerns the quality of the design through the different projec-
tions. With the space filling algorithm proposed by Campolongo et al. [5], the
design is optimized to cover the space over the p dimensions, but it doesn’t
imply that the subspaces of dimensions lower than p would be correctly filled
(i.e. have a nearly uniform distribution). Moreover, it seems impossible to con-
trol the quality of the design through all the projections. One possibility could
be to optimize the design only in the subspaces formed by single factors, in
order to obtain something like a latin hypercube design (following for example
Griensven et al. [10]). Another possibility could be to use a priori knowledge of
the experimenter, who says that a specific group of factors must be important,
and to optimize the design in the subspace formed by these factors.

The second issue concerns the extraction of simplex-based designs from any
given design. In particular, this would permit to apply the elementary effects
method on existing databases of simulations that don’t have the required
structure. Two methods have been tested. The first was to sketch an ideal
simplex-based design, and then to take the simplexes defined by the nearest
points of the real design. The second was to build the Delaunay tessellation
of the design (see for example Watson [11]). However, these two approaches
seem to be computationally expensive in high dimensions.

A Generating a random simplex in the input space

A random simplex is generated by applying two random transformations to a
reference simplex: a rotation to orient it, and a translation to place it in the
input space. In the following, we detail how to construct the reference simplex,
and how to rotate it.

The reference simplex is represented by a (p + 1) × p matrix

Sref =















x01 . . . x0p

...
. . .

...

xp1 . . . xpp















. (A.1)

The reference simplex can be of any shape. The two common shapes are:

(1) the orthonormal simplex, given by: x0 = (0, . . . , 0), xi = ei, i = 1 . . . p.
(2) the isometric simplex, given by: x0 = (0, . . . , 0), x1 = e1, and for i ≥ 2,

xij = 1
n

∑

k<i xkj if j < i, xii =
√

1 −
∑

k<i xik
2 and xij = 0 if j > i.

A homothety must be applied to the reference simplex, in order to scale it
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according to the assumed linearity of the model (see section 4).

The rotation is represented by a p × p matrix belonging to the special or-
thogonal group SO(p), i.e. having determinant = +1. Let Rij(θij) denote the
element of SO(p) which rotates the basis vector ei through an angle θij to-
wards the basis vector ej inside the (ei, ej)-plane, leaving the complementary
coordinates fixed. Rij(θij) is a p× p diagonal matrix having 1 on its diagonal,
where the 2 × 2 sub-matrix indexed by (i, j) × (i, j) is the plane rotation of
angle θij . The full rotation matrix is the product of all the matrices Rij(θij),
and the angles θij are referred to as “Euler angles”; there are (p2 − p)/2 Euler
angles (the number of coordinate-planes in Rp); see for example Arnold [12].

B Software

The programs used in this article were written in R[13]. The elementary effects
method, either with Morris’s OAT and simplex-based designs, is implemented
in the R package sensitivity, available at http://cran.R-project.org .
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Fig. B.1. (a) Morris’s OAT design in p = 3 dimensions with R = 10 trajectories. (b)
Projection of the points of the design on the (x1, x2)-plane, and, in dotted lines, on
the x1-axis (see section 3).

13



x1

x2

x3

(a)

x1

x2

(b)

Fig. B.2. (a) Simplex-based design in p = 3 dimensions with R = 10 simplexes. (b)
Projection of the points of the design on the (x1, x2)-plane, and, in dotted lines, on
the x1-axis.
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100 independent studies. In the foreground, the means over the 100 replicates.

15


