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Abstract. In this paper, a graph matching method and a distance between attributed graphs are defined. Both approaches are based on graph probes. Probes can be seen as features exctracted from a given graph. They represent a local information. According two graphs G1,G2, the univalent mapping can be expresssed as the minimum-weight probe matching between G 1 and G 2 with respect to the cost function c.

1 Probe Matching and Probe Matching Distance

Probes of graph

Let L V and L E denote the set of node and edge labels, respectively. A labeled, undirected graph G is a 4-tuple G = (V, E, µ, ξ) , where

-V is the set of nodes, -E ⊆ V × V is the set of edges -µ : V → L V
is a function assigning labels to the nodes, and -ξ : E → L E is a function assigning labels to the edges.

From this definition of graph, probes of graph for the matching problem can be expressed as follow:

Let G be an attributed graphs with edges labeled from the finite set {l1, l2, ..., a}. Let P be a set of probes extracted from G. There is a probe p for each vertex of the graph G. A probe (p) is defined as a pair < V i , H i > where H i is an edge structure for a given vertex (V i ), H i is a 2a-tuple of non-negative integers {x 1 , x 2 , ..., x a , y 1 , y 2 , ..., y a } such that the vertex has exactly x i incoming edges labeled l i , and y j outgoing edges labeled l j .

Probe Matching

Let G 1 (V 1 , E 1 ) and G 2 (V 2 , E 2 ) be two attributed graphs. Without loss of generality, we assume that | P 1 |≥| P 2 |. The complete bipartite graph G em (V em = P 1 ∪ P 2 ∪ , P 1 × (P 2 ∪ )), where represents an empty dummy probe, is called the probe matching graph of G1 and G2. A probe matching between G1 and G2 is defined as a maximal matching in G em . Let there be a non-negative metric cost function c : P 1 × P 2 → + 0 . We define the matching distance between G1 and G2, denoted by d match (G1, G2), as the cost of the minimumweight probe matching between G1 and G2 with respect to the cost function c.

Cost function for probe matching

Let p 1 and p 2 be two probes. The cost function can be expressed as a distance between two probes :

c(p 1 , p 2 ) =| V 1 -V 2 | + | H 1 -H 2 |

Time complexity analysis

The matching distance can be calculated in O(n 3 ) time in the worst case. To calculate the matching distance between two attributed graphs G1 and G2, a minimum-weight probe matching between the two graphs has to be determined. This is equivalent to determining a minimum-weight maximal matching in the probe matching graph of G1 and G2. To achieve this, the method of Kuhn [START_REF] Kuhn | The Hungarian method for the assignment problem[END_REF] and Munkres [START_REF] Munkres | Algorithms for the assignment and transportation problems[END_REF] can be used. This algorithm, also known as the Hungarian method, has a worst case complexity of O(n 3 ), where n is the number of probes in the larger one of the two graphs [START_REF] Kriegel | Similarity search in structured data[END_REF].

The probe matching distance for attributed graphs is a metric.

Proof. To show that the probe matching distance is a metric, we have to prove the three metric properties for this similarity measure.

-d match (G 1 , G 2 ) >= 0
The probe matching distance between two graphs is the sum of the cost for each probe matching. As the cost function is non-negative, any sum of cost values is also non-negative.

-d match (G 1 , G 2 ) = d match (G 2 , G 1 )
The minimum-weight maximal matching in a bipartite graph is symmetric, if the edges in the bipartite graph are undirected. This is equivalent to the cost function being symmetric. As the cost function is a metric, the cost for matching two probes is symmetric. Therefore, the probe matching distance is symmetric.

-d match (G 1 , G 2 ) <= d match (G 1 , G 2 ) + d match (G 2 , G 3 )
As the cost function is a metric, the triangle inequality holds for each triple of probes in G1, G2 and G3 and for those probes that are mapped to an empty probe. The probe matching distance is the sum of the cost of the matching of individual probes. Therefore, the triangle inequality also holds for the probe matching distance.

1.6 The probe matching distance is a lower bound for the edit distance.

Given a cost function for the edge matching which is always less than or equal to the cost for editing an probe, the matching distance between attributed graphs is a lower bound for the edit distance between attributed graphs:

∀G 1 , G 2 : d match (G 1 , G 2 ) <= d ED (G 1 , G 2 ) (1) 
Proof. The edit distance between two graphs is the number of edit operations which are necessary to make those graphs isomorphic. To be isomorphic, the two graphs have to have identical probe sets. As the cost function for the probe matching distance is always less than or equal to the cost to transform two probes into each other through an edit operation, the probe matching distance is a lower bound for the number of edit operations, which are necessary to make the two probe sets identical. It follows that the edge matching distance is a lower bound for the edit distance between attributed graphs.

Experiments

Protocol

In this paragraph, we assess the correlation concerning the responses to k-NN queries when using edit distance, graph probing or probe matching distance as dissimilarity measures. The setting is the following: in a graph dataset we select a number N of graphs, that are used to query by similarity the rest of the dataset. Top k responses to each query obtained in the first place using edit distance, graph probing and probe matching distance. These k responses are compared using Kendalland correlation coefficient while the k distance values are evaluated using Pearson correlation. We consider a null hypothesis of independence between the two responses and then, we compute by means of a two-sided statistical hypothesis test the probability (p-value) of getting a value of the statistic as extreme as or more extreme than that observed by chance alone, if H0 is true. Kendall's rank correlation measures the strength of monotonic association between the vectors x and y (x and y may represent ranks or ordered categorical variables). Kendall's rank correlation coefficient τ may be expressed as τ = S D , where

S = i<j (sign(x[i] -y[i]).sign(y[i] -x[i])) (2) D = k(k -1) 2 (3) 

Data Set Description

The last database used in the experiments consists of graphs representing distorted letter drawings. In this experiment we consider the 15 capital letters of the Roman alphabet that consists of straight lines only (A, E, F, ...). For each class, a prototype line drawing is manually constructed. To obtain arbitrarily large sample sets of drawings with arbitrarily strong distortions, distortion operators are applied to the prototype line drawings. This results in randomly shifted, removed, and added lines. These drawings are then converted into graphs in a simple manner by representing lines by edges and ending points of lines by nodes. Each node is labeled with a two-dimensional attribute giving its position, since our approach only focuses on nominal attributes, a quantification is performed by the use of a bi-dimensional mesh Fig. 1. More information concerning these data set is detailed on table 1. Using N = 400, K = 30, we present in Tab.3,Tab.4 and Fig. 2, the results obtained in terms of τ and cor values. From the 400 tests (Tab. 2 ), only 45 have a p-value greater than 0.05, so we can say that the hypothesis H0 of independence is rejected in 88.75% cases, with a significance level of 0.05. The observed correlation obtained for k-NN queries, strengthen our decision to use a faster (and simpler) dissimilarity measure than edit distance in order to perform a graph classification. Moreover, the Probe Matching Distance outperfom the Graph Probing in terms of linear relation with the edit distance while keeping a reasonnable time complexity Tab.3. 
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Table 1 .

 1 Characteristics of the data set used in our computational experiments

		Base D
	Number of classes (N)	15
	| T raining |	3796
	| T est |	1266
	| V alidation |	1688
	Average number of nodes 4.7
	Average number of edges 3.6
	Average degree of nodes 1.3
	Max number of nodes	9
	Max number of edges	7

Table 2 .

 2 Summary of P-values

	Minimum 1st quantile Median Mean 3rd quantile Maximum
	p -values 0.000	0.000	2.682e-6 5.018e-5 1.455e-3 8.278e-1

Table 3 .

 3 Summary of correlations for the Graph Probing Dissimilarity Measure

	Minimum 1st quantile Median Mean 3rd quantile Maximum
	τ -0.93170 0.05542 0.73330 0.48350 0.99900	1.00000
	cor 0.3541	0.7384	0.8951 0.8484	1.0000	1.0000

Table 4 .

 4 Summary of correlations for the Probe Matching Distance

	Minimum 1st quantile Median Mean 3rd quantile Maximum
	τ -0.7216	0.2853 0.7429 0.5704 1.0000	1.0000
	cor 0.1571	0.7358 0.9785 0.8619 1.0000	1.0000