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A graph matching method based on probe assignments

Romain Raveaux, Jean-christophe Burie and Jean-Marc Ogier.

L3I, University of La Rochelle, av M. Crépeau, 17042 La Rochelle Cedex 1, France, E-mail:
{romain.raveaux0l}@univ-1lr.fr

Abstract. In this paper, a graph matching method and a distance between at-
tributed graphs are defined. Both approaches are based on graph probes. Probes
can be seen as features exctracted from a given graph. They represent a local
information. According two graphs G1,G2, the univalent mapping can be ex-
presssed as the minimum-weight probe matching between G1 and G2 with re-
spect to the cost function c.

1 Probe Matching and Probe Matching Distance

1.1 Probes of graph

Let Ly and Lg denote the set of node and edge labels, respectively. A labeled,
undirected graph G is a 4-tuple G = (V, E, i, €) , where

V is the set of nodes,

E CV x V is the set of edges

— p:'V — Ly is a function assigning labels to the nodes, and
¢ E — L is a function assigning labels to the edges.

From this definition of graph, probes of graph for the matching problem can
be expressed as follow:

Let G be an attributed graphs with edges labeled from the finite set {/1,12, ..., a}.
Let P be a set of probes extracted from G. There is a probe p for each vertex
of the graph GG. A probe (p) is defined as a pair < V;, H; > where H; is an
edge structure for a given vertex (V;), H; is a 2a-tuple of non-negative integers
{z1, 22, ..., Ta, Y1, Y2, ..., Yo } such that the vertex has exactly x; incoming edges
labeled /;, and y; outgoing edges labeled ;.

1.2 Probe Matching

Let G1(V1, E1) and Ga(Va, E3) be two attributed graphs. Without loss of gener-
ality, we assume that | P1 |>| P2 |. The complete bipartite graph Gy, (Ver, =
P1UP2 UA, P1x (P2UA)), where A represents an empty dummy probe, is



called the probe matching graph of GG1 and G2. A probe matching between G'1
and G2 is defined as a maximal matching in G,,. Let there be a non-negative
metric cost function ¢ : P1 x P2 — R{. We define the matching distance
between G'1 and G2, denoted by d,,41cn(G1, G2), as the cost of the minimum-
weight probe matching between G'1 and G2 with respect to the cost function
c.

1.3 Cost function for probe matching

Let p; and py be two probes. The cost function can be expressed as a distance
between two probes : ¢(p1,p2) =| Vi — Vo |+ | H1 — Ha |

1.4 Time complexity analysis

The matching distance can be calculated in O(n?) time in the worst case. To
calculate the matching distance between two attributed graphs G'1 and G2, a
minimum-weight probe matching between the two graphs has to be determined.
This is equivalent to determining a minimum-weight maximal matching in the
probe matching graph of G1 and G2. To achieve this, the method of Kuhn [1]
and Munkres [2] can be used. This algorithm, also known as the Hungarian
method, has a worst case complexity of O(n?), where n is the number of probes
in the larger one of the two graphs [3].

1.5 The probe matching distance for attributed graphs is a metric.

Proof. To show that the probe matching distance is a metric, we have to prove
the three metric properties for this similarity measure.

- dmatch(GL GZ) >=0
The probe matching distance between two graphs is the sum of the cost for
each probe matching. As the cost function is non-negative, any sum of cost
values is also non-negative.

- dmatch(Gh GQ) = dmatch<G27 Gl)
The minimum-weight maximal matching in a bipartite graph is symmetric,
if the edges in the bipartite graph are undirected. This is equivalent to the
cost function being symmetric. As the cost function is a metric, the cost for
matching two probes is symmetric. Therefore, the probe matching distance
is symmetric.

- dmatch(Gh G2) <= dmatch(Gla GQ) + dmatch(G27 GS)
As the cost function is a metric, the triangle inequality holds for each triple
of probes in G1, G2 and G3 and for those probes that are mapped to an



empty probe. The probe matching distance is the sum of the cost of the
matching of individual probes. Therefore, the triangle inequality also holds
for the probe matching distance.

1.6 The probe matching distance is a lower bound for the edit distance.

Given a cost function for the edge matching which is always less than or equal
to the cost for editing an probe, the matching distance between attributed graphs
is a lower bound for the edit distance between attributed graphs:

VG, G2t dimaten(G1, G2) <= dpp(G1, G2) (D)

Proof. The edit distance between two graphs is the number of edit operations
which are necessary to make those graphs isomorphic. To be isomorphic, the
two graphs have to have identical probe sets. As the cost function for the probe
matching distance is always less than or equal to the cost to transform two
probes into each other through an edit operation, the probe matching distance is
a lower bound for the number of edit operations, which are necessary to make
the two probe sets identical. It follows that the edge matching distance is a lower
bound for the edit distance between attributed graphs.

2 Experiments

2.1 Protocol

In this paragraph, we assess the correlation concerning the responses to k-NN
queries when using edit distance, graph probing or probe matching distance as
dissimilarity measures. The setting is the following: in a graph dataset we select
anumber N of graphs, that are used to query by similarity the rest of the dataset.
Top k responses to each query obtained in the first place using edit distance,
graph probing and probe matching distance. These k responses are compared
using Kendalland correlation coefficient while the k distance values are evalu-
ated using Pearson correlation. We consider a null hypothesis of independence
between the two responses and then, we compute by means of a two-sided sta-
tistical hypothesis test the probability (p-value) of getting a value of the statistic
as extreme as or more extreme than that observed by chance alone, if HO is
true. Kendall’s rank correlation measures the strength of monotonic association
between the vectors x and y (X and y may represent ranks or ordered categor-
ical variables). Kendall’s rank correlation coefficient 7 may be expressed as

T= %, where

S = (sign(zli] — yli]).sign(yli] - z[i])) 2)

i<j
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2.2 Data Set Description

The last database used in the experiments consists of graphs representing dis-
torted letter drawings. In this experiment we consider the 15 capital letters of
the Roman alphabet that consists of straight lines only (A, E, F, ...). For each
class, a prototype line drawing is manually constructed. To obtain arbitrarily
large sample sets of drawings with arbitrarily strong distortions, distortion oper-
ators are applied to the prototype line drawings. This results in randomly shifted,
removed, and added lines. These drawings are then converted into graphs in a
simple manner by representing lines by edges and ending points of lines by
nodes. Each node is labeled with a two-dimensional attribute giving its position,
since our approach only focuses on nominal attributes, a quantification is per-
formed by the use of a bi-dimensional mesh Fig.1. More information concerning
these data set is detailed on table 1.

Table 1. Characteristics of the data set used in our computational experiments

Base D
Number of classes (N) 15
| Training | 3796
| Test | 1266
| Validation | 1688

Average number of nodes| 4.7
Average number of edges| 3.6

Average degree of nodes | 1.3
Max number of nodes 9
Max number of edges 7

Using N = 400, K = 30, we present in Tab.3,Tab.4 and Fig.2, the results
obtained in terms of 7 and cor values. From the 400 tests (Tab. 2 ), only 45
have a p-value greater than 0.05, so we can say that the hypothesis HO of in-
dependence is rejected in 88.75% cases, with a significance level of 0.05. The
observed correlation obtained for k-NN queries, strengthen our decision to use a
faster (and simpler) dissimilarity measure than edit distance in order to perform
a graph classification. Moreover, the Probe Matching Distance outperfom the
Graph Probing in terms of linear relation with the edit distance while keeping a
reasonnable time complexity Tab.3.



G,

) s
A B
A
Y (71e] (11,16 G
G «
!
'
|
(s

4) u
,‘9)(\8%) (Ifl) - ‘D ”’G]‘ @
X

Fig. 1. From symbols to graphs using a 2D mesh
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Table 2. Summary of P-values

Minimum| Ist quantile| Median | Mean |3rd quantile| Maximum

p — values| 0.000 0.000 |2.682e-6|5.018e-5| 1.455e-3 | 8.278e-1

Table 3. Summary of correlations for the Graph Probing Dissimilarity Measure

Minimum|1st quantile| Median | Mean |3rd quantile|Maximum

7 1-0.93170 | 0.05542 |0.73330(0.48350( 0.99900 | 1.00000

cor| 0.3541 0.7384 | 0.8951 | 0.8484 | 1.0000 1.0000

Table 4. Summary of correlations for the Probe Matching Distance

Minimum|1st quantile| Median| Mean |3rd quantile| Maximum

T | -0.7216 0.2853 |0.742910.5704| 1.0000 1.0000

cor| 0.1571 0.7358 |0.9785(0.8619| 1.0000 1.0000
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Fig. 2. Histogram of correlations
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CIZTM—— (0]

ipg
252287 pixels; ROB; 204K

[T -0l

2620175 pixels; RGE, 179K

ing

Result:

ead_{during, during, overiap]_{ov...hand_{, {during] foo,_foveriap)_{during, overiap]

o0

o I
I
1

Fig. 4. Graph matching between two graphs g1, and g2. Gmap represents gl and g2 in a single
graph with the addition of ”cost” edges to map node of gl in g2
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