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Abstract. The use of unsupervised artificial neural network
techniques like the self-organizing map (SOM) algorithm has
proven to be a useful tool in exploratory data analysis and
clustering of multivariate data sets. In this study a vari-
ant of the SOM-algorithm is proposed, the GEO3DSOM,
capable of explicitly incorporating three-dimensional spa-
tial knowledge into the algorithm. The performance of the
GEO3DSOM is compared to the performance of the stan-
dard SOM in analyzing an artificial data set and a hydro-
chemical data set. The hydrochemical data set consists of
131 groundwater samples collected in two detritic, phreatic,
Cenozoic aquifers in Central Belgium. Both techniques suc-
ceed very well in providing more insight in the groundwater
quality data set, visualizing the relationships between vari-
ables, highlighting the main differences between groups of
samples and pointing out anomalous wells and well screens.
The GEO3DSOM however has the advantage to provide an
increased resolution while still maintaining a good general-
ization of the data set.

1 Introduction

Regional monitoring of groundwater quality often yields
large multidimensional data sets in which each sampling lo-
cation is characterized by its geographic coordinates, longi-
tude, latitude and height. Exploratory data analysis (EDA)
and clustering can help in summarizing available data, ex-
tracting useful information and formulating hypothesis for
further research.
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Traditionally multivariate techniques like principal com-
ponent analysis (PCA) and factor analysis (FA) are used in
the process of exploratory data analysis and clustering (e.g.
Güler et al., 2002; Lambrakis et al., 2004; Love et al., 2004).
Both PCA and FA are based on linear combinations of the
original variables in order to reduce the dimensionality of
the data set (Davis, 1986).

Recently, artificial neural network techniques, such as Ko-
honen’s Self-Organizing Map (SOM), have also been used in
EDA. The Self-Organizing Map may be used to project mul-
tidimensional data onto a two dimensional grid in a topology
preserving way, capturing complex, non-linear relationships
between variables (Kohonen, 1995).

Besides applications of the algorithm in financial, medical,
chemical and biological research (an overview is presented
in Kaski, 1997), SOM’s are also used in remote sensing
(Richardson et al., 2003; Mercier et al., 2006), geophysics
(Poulton et al., 1992; Ozerdem et al., 2006), geochemistry
(Lacassie et al., 2004; Penn, 2005) and reservoir charac-
terization (Chang et al., 2002). Applications of the SOM-
algorithm in hydrogeological research can be found in Hong
and Rosen (2001) where technique is applied to diagnose the
effect of storm water infiltration on groundwater quality vari-
ables and to capture the complex nonlinear relationships be-
tween groundwater quality variables. Sanchez-Martos et al.
(2002) used SOM in the classification of a hydrochemical
data set from a detritic aquifer in a semi-arid region, into
distinct classes of different chemical composition. Lischeid
(2003) applied the self-organizing map algorithm to an inten-
sively monitored watershed to investigate spatial and tempo-
ral trends in water quality data.

Openshaw and Turton (1996) was among the first to ap-
ply self-organizing maps to the exploratory data analysis and
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clustering of geospatial data and numerous applications of
the technique in geospatial data analysis have proven to be
successful (Takatsuka, 2001; Skupin and Hagelman, 2003;
Koua et al., 2006). However, the inclusion of spatial or-
dering in the clustering or classification algorithm remains
an important issue, especially in hydrogeochemical research.
The chemical composition of groundwater at a certain lo-
cation can be thought of as the result of geochemical pro-
cesses combined with groundwater flow related phenomena
as mixing, advection and diffusion. In aquifers these pro-
cesses seldom result in abrupt changes in hydrochemistry,
but rather show a gradual change. Based on the premise that
samples located close together are more likely to be related
to each other than samples with a large distance between
them, the incorporation of geographical coordinates in the
EDA-algorithm provides a way of accounting for the spa-
tial correlation in the exploratory data analysis. Bação et al.
(2005a) discusses this topic in relation to the SOM-algorithm
and compares the standard SOM-analysis in which the geo-
graphic coordinates are considered as any other variable to
the GEOSOM, a modified version of the SOM, designed to
explicitly incorporate spatial information. Application of the
GEOSOM on two artificial data sets and a real-world demo-
graphic data set revealed the ability of the GEOSOM to in-
crease the spatial resolution of the clustering.

The GEO-SOM as presented by Bação et al. (2005a)
is limited to two-dimensional geo-referenced data. In
this study, the GEOSOM is extended to incorporate
three-dimensional geo-referenced data, hence the name
GEO3DSOM. The objective of the GEO3DSOM algorithm
is to extent the exploratory data analysis capabilities of the
standard SOM to incorporate the geographic location of the
samples in three dimensions, based on the premise that sam-
ples located in each others vicinity are likely to be related
to each other. A thorough discussion on the algorithms pro-
posed is presented in the next section. Comparison between
the standard SOM and the GEO3DSOM is carried out by
applying both techniques to a theoretical data set and a hy-
drochemical data set from two phreatic, sandy aquifers in
Central Belgium.

2 Methods

2.1 Standard SOM

Artificial Neural Networks (ANN) are computer algorithms,
inspired by the functioning of the nervous system of the hu-
man brain, capable of learning from data and generalizing.
This learning process can be described as supervised or un-
supervised learning. In the supervised learning process, the
ANN is shown several input-output patterns during training
to enable the trained ANN to make generalizations based
on the training data and to correctly produce output patterns
based on new input (Jain et al., 1996). Neural networks are

widely applied in hydrologic research (e.g. ASCE, 2000), es-
pecially in time-series prediction (e.g. Coppola et al., 2003;
Alvisi et al., 2006)

The SOM-algorithm is based on unsupervised learning,
which means that the desired output is not known a priori.
The goal of the learning process is not to make predictions,
but to classify data according to their similarity. In the early
1980s Kohonen proposed a neural network architecture in
which the classification is done by plotting the data in n-
dimensions onto a, usually, two-dimensional grid of units
in a topology-preserving manner (Kohonen, 1995). The for-
mer means that similar observations are plotted in each others
neighborhood on the 2-D-grid. The network architecture and
the learning algorithm are illustrated in Fig. 1.

The neural network consists of an input layer and a layer
of neurons. The neurons or units are arranged on a rectangu-
lar or hexagonal grid and are fully interconnected. Each of
the input vectors is also connected to each of the units. The
learning algorithm applied to the network can be divided into
six steps (Kohonen, 1995; Kaski, 1997):

1. Anm×n matrix is created from the data set withm rows
of samples andn columns of variables. The matrix thus
consists ofm input vectors of lengthn. The classifica-
tion of the input vectors is based on a similarity mea-
surement, for instance Euclidean distance. In order to
avoid bias in classification due to differences in mea-
suring unit or range of the variables, a normalization is
carried out. This can be done by setting mean equal to
zero and variance equal to 1 or by rescaling the range of
each variable in the[0, 1] interval.

2. Each unit is randomly assigned an initial weight or ref-
erence vector with a length equal to the length of the
input vectors (n).

3. An input vector is shown to the network; the Euclidean
distances between the considered input vectorX and all
of the reference vectorsMi are calculated according to:

X = (x1, x2, . . . , xn) ∈ R
n

M = (m1, m2, . . . , mn) ∈ R
n

‖X − M‖ =

√

√

√

√

n
∑

i=1

(xi − mi)2 (1)

4. The best matching unitMc, the unit with the greatest
similarity with the considered input vector, is chosen
according to:

‖X − Mc‖ = min
i

{‖X − Mi‖} (2)

This step is illustrated in Fig. 1b, where the Euclidean
distance between the input vector (0;0.1;0.02) and the
reference vectors is calculated. The best matching unit
is the upper left unit (distance = 0.102).
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5. The weights of the best matching unit and the unit
within its neighborhoodN(t) are adapted so that the
new reference vectors lie henceforth closer to the input
vector. The factorα(t) controls the rate of change of the
reference vectors and is called the learning rate.

Mi(t+1)=

{

Mi(t)+α(t)[X(t)−Mi(t)] ∀∈N(t)

Mi(t) ∀ /∈ N(t)
(3)

This is illustrated in Fig. 1c where the weights of the
upper left unit and the units within the neighborhood
N(t) with radius r, indicated by the dashed line, are
adapted. The rate of adaptation of the units is controlled
by the neighborhood functionh, which decreases from
one at the winning unit to zero at units located farther
away than radiusr. The most common used functions
are bell-shaped (Gaussian) or square (bubble).

6. Steps 3 until 5 are repeated until a predefined maximum
number of iterations is reached. During these iterations
bothα andN(t) decrease, forcing the network to con-
verge.

After training, each of the input vectors is assigned to its
best matching unit and the grids can be visualized. There
are two types of grids commonly used to visualize and ana-
lyze the result of the SOM procedure: component planes and
U-matrix (Vesanto et al., 1999). The U-matrix or distance
matrix shows the Euclidean distance between neighboring
units by means of a grey scale. Typically darker colors rep-
resent great distances and lighter shades represent small dis-
tances. In this visualization method clusters are represented
by a light area with darker borders, meaning that the refer-
ence vectors in a cluster and the input vectors assigned to
them are more similar to each other than to reference vec-
tors outside the cluster. Additionally the labels of the input
vectors can be plotted onto the U-matrix to identify the input
vectors forming a cluster.

The component planes are the second visualization tech-
nique. In these maps the component values of the weight
vectors are represented by a color code. Each of the compo-
nent planes visualizes the distribution of one variable in the
data set (Ultsch and Herrmann, 2005). By visually compar-
ing those maps, variables with similar distributions can be
detected and it helps in visually finding correlations between
variables.

The Self-Organizing Map algorithm is closely related to
K-means clustering. A SOM with a number of units equal
to the number of clusters in the data set and a neighborhood
equal to zero will act as a traditional clustering technique
(Kaski, 1997). A SOM may, however, be used in two very
distinct ways: a large SOM, also known as emergent SOM,
with many units, used for exploratory data analysis and clus-
ter detection (Ultsch and Herrmann, 2005), and a small SOM
for cluster centroid determination (Bação et al., 2005b). In
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Fig. 1. SOM-algorithm
(a) Initialization reference vectors of the units
(b) Calculation of Euclidean distance between input vector and ref-
erence vectors of the units
(c) Assignment of input vector to its BMU and update of reference
vectors of the units within neighborhood N(t).
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Fig. 2. Theoretical dataset.

this study, both SOM and GEO3DSOM are used for ex-
ploratory detection of clusters. When using K-means and
fuzzy C-means-clustering, cluster centroids will always be
detected based on the objective criterium of sum-of-squared
distances. In emergent SOM’s on the other hand, clearly sep-
arated groups of units may or may not be detected. Small
SOM’s used for centroid determination will act as a robust
K-means initialization in the first training iterations and due
to the decrease of learning radius and neighborhood during
training, the SOM will perform exactly as a K-means clus-
tering in the final steps of the learning process (Bação et al.,
2005b). Compared to K-means clustering and fuzzy c-means
clustering, SOM has, in addition to the ability of SOM to di-
rectly visualize the results of the clusters in terms of the orig-
inal variables, the advantage that the number of clusters does
not need to be specified a priori. The advantage of K-means
clustering and fuzzy c-means clustering on the other hand,
is the ease of implementation since there are less parame-
ters to be chosen. On the performance of clustering of SOM
compared to other techniques a debate still exists in literature
(overviews can be found in Bação et al., 2005b, and Mingoti
and Lima, 2006). Provided the SOM is parameterized cor-
rectly, SOM will outperform K-means clustering since SOM
is less sensitive to local optima compared to K-means Bação
et al. (2005b).

2.2 GEOSOM & GEO3DSOM

In the standard SOM-algorithm, geographic coordinates in-
cluded in the data set are considered as any other variable.

The importance of the spatial variables during training of the
map can be adjusted by assigning a weighting factor to these
variables during the preprocessing stage. This procedure can
be used to incorporate spatial information in the algorithm,
although it has to be noted that samples located far from the
center of the data set are ill represented in the SOM. In order
to overcome this problem, Bação et al. (2005a) proposed the
GEOSOM.

In the GEOSOM the spatial information of the data sam-
ples is explicitly included in the algorithm by altering the
selection of the best-matching unit during the training into a
two-step process. Firstly the unit is selected which lies ge-
ographically closest to the input vector. This means that the
best-matching unit is searched based only on the geographic
variables.

Secondly the unit with the smallest Euclidian distance,
based on the complete input vector, within a predefined
neighborhood of the geographically closest unit is chosen as
best-matching unit. Subsequently the weight vectorMc of
the best-matching unit and the weight vectorsMi within the
neighborhoodN(t) are updated.

The size of the neighborhood to choose the best-matching
unit from the units surrounding the geographically closest
unit is determined by the variablek, the geographical toler-
ance. Ifk equals zero, the best-matching unit is the geograph-
ically closest unit. Settingk greater than zero, results in the
search of the best-matching unit among the units within a ra-
diusk in output space of the geographically closest unit. Ifk

approaches the size of the map, the result is equal to that of
the standard SOM-algorithm.

The GEOSOM is only capable of including two ge-
ographic coordinates in the selection of the geographi-
cally closest unit, namely the X and Y coordinate. The
GEO3DSOM is an extended version of the GEOSOM, capa-
ble of incorporating the third dimension, Z, in the selection
of the geographically closest unit.

In order to give each geographic coordinate equal weight
in the training process, each of the coordinate variables is
rescaled so that their ranges are comparable, e.g. between
[0, 1].

The GEO3DSOM-algorithm is implemented in Matlab®

compatible with the SOM-toolbox (Vesanto et al., 1999).

3 Results

In the following section the standard SOM and the
GEO3DSOM are applied to a theoretical data set and a real
world hydrochemical data set.

3.1 Theoretical data set

The dataset consists of 1000 points of a cube, regularly
spaced with an interval of 0.1 between[0.1, 1]. A variable
D was added to this dataset with a value of 0 or 1. The

Hydrol. Earth Syst. Sci., 11, 1309–1321, 2007 www.hydrol-earth-syst-sci.net/11/1309/2007/



L. Peeters et al.: Analysis of spatial hydrogeologic data using GEO3DSOM 1313

X Y

Z D

Fig. 3. U-matrix (left) and component planes (right) of the standard SOM-analysis of the theoretical data set.

X Y

Z D

Fig. 4. U-matrix (left) and component planes (right) of the standard GEO3DSOM-analysis of the theoretical data set.

distribution of variable D is shown in Fig. 2. This distribution
results in 8 pre-defined groups (Table 1).

This data set is analyzed with both the standard SOM and
the GEO3DSOM. The parameters used in the analysis are
summarized in Table 2.

In both SOM-analysis the grid consists of 20 by 15 units,
hexagonally ordered on a toroid shape. The use of rectangu-
lar array with a large number of units allows a good repre-
sentation of the topology of the data set, while the hexagonal
ordering provides more neighbors to each unit and border ef-
fects are avoided by using the continuous, finite shape of a
toroid (Ultsch and Herrmann, 2005).
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Table 1. Pre-defined groups in the theoretical data set.

X Y Z D Pre-defined groups

0.1–0.55 0.1–0.55 0.1–0.55 1 1
0.55–1 0.1–0.55 0.1–0.55 0 2

0.1–0.55 0.55–1 0.1–0.55 0 3
0.55–1 0.55–1 0.1–0.55 1 4

0.1–0.55 0.1–0.55 0.55–1 0 5
0.55–1 0.1–0.55 0.55–1 1 6

0.1–0.55 0.55–1 0.55–1 1 7
0.55–1 0.55–1 0.55–1 0 8

Table 2. Parameters of SOM and GEO3DSOM-analysis.

Parameter Standard SOM GEO3DSOM

size 20×15 20×15
grid hexagonal hexagonal
type toroid toroid
h bubble bubble
training mode sequential sequential

rough training
epochs 50 50
rinitial 15 15
αinitial 0.7 0.7

fine training
epochs 50 50
rinitial 4 4
αinitial 0.1 0.1

k – 2

Figures 3 and 4 show respectively the results of the stan-
dard SOM-analysis and the GEO3DSOM-analysis. The
U-matrices show the Euclidean distances between the ref-
erence vectors of the units by means of a gray scale (black:
large distance, white: small distance). The units of the U-
matrices are labeled with the cluster number of the sample
assigned to the unit, according to Table 1.

Visual inspection of the U-matrices shows that both SOM-
analysis are able to extract the clusters from the data. In
the U-matrix of standard SOM-analysis a clear separation
between groups is only visible between the clusters with
D=1 and the clusters withD=0. Although the samples are
grouped according to the pre-defined groups, no distinct bor-
ders between these groups are present. The U-matrix of the
GEO3DSOM-analysis on the other hand, clearly shows that
each cluster is separated from another one by a zone of high
Euclidian distance between reference vectors.

The accompanying component planes can be used to ex-
plore the differences between the clusters. From both Figs. 3
and 4 it can be seen that the area with the samples of cluster 4

Table 3. Quality measures for the theoretical data set.

Quality measure standard SOM GEO3DSOM

qe 0.115 0.145
te 0.128 0.070
ge 0.100 0.097

assigned to it, is characterized byX>0.55,Y>0.55,Z<0.55
andD=1.

In order to asses the quality of the SOM-analysis in repre-
senting the data set, three quality measures can be computed;
the quantization error (qe), the topographic error (te) and the
geographic error (ge). The quantization error measures the
resolution of the SOM and is calculated as the average Eu-
clidian distance between an input vector and the reference
vector of its best matching unit (Kohonen, 1995). The to-
pographic error quantifies the preservation of the topology
of the data by calculating the proportion of all data vectors
for which first and second best matching unit are not adja-
cent units (Kohonen, 1995). Finally, the geographic error
is a measure for the ability of the SOM to represent the geo-
graphic distribution of the data samples. It is calculated as the
geographic distance, the Euclidean distance calculated based
on theX, Y andZ coordinates, between an input vector and
its best matching unit. Table 3 summarizes the quality mea-
sures for the standard SOM-analysis and the GEO3DSOM-
analysis.

The quantization error for the standard SOM is lower
than for the GEO3DSOM, meaning that the representation of
samples is better in the standard SOM. The GEO3DSOM, on
the other hand, scores better in terms of topographic and geo-
graphic error. The representation of data by the GEO3DSOM
is thus better capable of capturing the topology of the data
and the geographic information included in the data.

3.2 Hydrochemical data set

The hydrochemical data set is obtained from a monitoring
network of the Flemish Government in two regional, sandy,
phreatic aquifers, made available through Databank Onder-
grond Vlaanderen (DOV, 2006). The data set consists of 47
observation wells, each equipped with three well screens at
different depths, resulting in a data set of 131 samples. Fa-
cilities in the monitoring well are designed to allow indepen-
dent sampling of discrete depth intervals without mixing of
groundwater of different depths.

The first aquifer, the Diest sands aquifer is of Late
Miocene age and consists of coarse, glauconiferous sands
and sandstones (Laga et al., 2001). The Brussels sands
aquifer is of Middle Eocene age and is a heterogeneous for-
mation consisting of an alteration of highly and poorly cal-
careous sands, which are locally silicified (Laga et al., 2001).

Hydrol. Earth Syst. Sci., 11, 1309–1321, 2007 www.hydrol-earth-syst-sci.net/11/1309/2007/
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Fig. 5. Study area (after DOV, 2006).

Locally the Brussels sands are overlain by the younger sandy
formations of Lede (Middle Eocene) and St. Huibrechts Hern
(Early Oligocene). Both aquifers are covered with Quater-
nary eolian deposits consisting mainly of sands in the north
and loam in the south.

Figure 5 shows the geological map of the study area and
location of piezometers used in this study.

A sampling campaign was carried out in the spring of 2005
and from the 20 measured variables, a subset of 12 variables
are considered in this analysis. Geographic coordinates, X, Y
and the Z position above sealevel of the filter of each sample
are included in the data set.

Histograms of the variables (Fig. 6) show that most of the
variables are not normally distributed, but rather have a bi-
modal (Ca2+ , pH and HCO−3 ), skewed (e.g. K+, Mg2+,
O2 and NO−

3 ) or even a lognormal distribution (Fe2+/3+ and
Mn2+). In order to avoid bias in the normalization or to make
assumptions regarding the distribution of the variables, all
parameters, including X, Y, Z are rescaled to a[0, 1] inter-
val, according to:

xnew =
xold − min(X)

max(X) − min(X)
(4)

A standard SOM analysis and a GEO3DSOM-analysis are
carried out on the normalized data set. The parameters used
in both analysis are summarized in Table 4.

The number of units, the number of iterations and the k-
value are determined based on a sensitivity analysis. The re-
sults of this sensitivity analysis are rendered in Fig. 7. In the
sensitivity analysis only the value of the variable under study
is changed, while the other variables are set to the values
given in Table 4. The number of grid nodes to be used in a
SOM-analysis can be considered as a trade-off between rep-
resentation accuracy and generalization accuracy. A small

Table 4. Parameters of SOM and GEO3DSOM-analysis.

Parameter Standard SOM GEO3DSOM

size 20×15 20×15
grid hexagonal hexagonal
type toroid toroid
h bubble bubble
training mode sequential sequential

rough training
epochs 500 500
rinitial 10 10
αinitial 0.5 0.5

fine training
epochs 500 500
rinitial 2 2
αinitial 0.2 0.2

k – 4

number of grid nodes will result in a high quantization er-
ror and well-defined clusters, while a large number of nodes
result in a low quantization error and, in the most extreme
case, a cluster for each data sample. Figure 7a shows the
evolution of quantization, topologic and geographic error for
maps with different numbers of units. The grid configuration
is rectangular for each of the maps, based on a 3 by 4 config-
uration. Each of the resulting maps were visually evaluated
for their clustering ability. The quantization error rapidly
decreases with increasing number of grid nodes, while the
topologic and geographic error converge to a stable value
(Fig. 7a). The best compromise between clustering ability

www.hydrol-earth-syst-sci.net/11/1309/2007/ Hydrol. Earth Syst. Sci., 11, 1309–1321, 2007
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Fig. 6. Histograms of the hydrochemical data set.

Table 5. Quality measures for the hydrochemical data set.

Quality measure standard SOM GEO3DSOM

qe 0.127 0.139
te 0.076 0.160
ge 0.028 0.024

and quantization error was found for the 20 by 15 nodes con-
figuration (300 nodes). Figure 7b shows the influence of the
number of iterations on the quantization, topologic and ge-
ographic error. The number of iterations shown are the to-
tal number of iterations after rough and fine training. After
1000 iterations (500 rough training and 500 fine training) the
topologic and geographic error are stabilized, while the quan-
tization error only decreases slightly. The sensitivity analysis
with regards to the k-value (Fig. 7c) reveals that with increas-
ing k-value, the geographic error increases rapidly and the
quantization error decreases. Once again a compromise has
to be found between the weight given to the geographic co-
ordinates and the overall quantization. After visual examina-
tion of the ability of the different maps to represent the data,
a k-value of 4 produced the best results both with respect to
low quantization and geographic error and with respect to vi-
sualizing and grouping of the data. The choice of 4 for the
geographic tolerancek implies that the search of the BMU

is restricted to the units lying within a radius of 4 units sur-
rounding the geographically closest unit.

The results of both analysis are depicted in Fig. 8 (stan-
dard SOM) and Fig. 9 (GEO3DSOM). The visualized results
are (a) component planes, (b) U-matrix labeled with geol-
ogy (B: Brussel sands, S: St. Huybrechts Hern sands, D: Di-
est sands, Q: Quaternary deposits), (c) false coloring of the
SOM based on the U-matrix and finally (d) spatial distribu-
tion well screens, colored using the false coloring. The spa-
tial distribution of the groups is organized per well screen,
with screen 1 being the shallowest screen and screen 3 the
deepest. The false coloring of the units of the self-organizing
map is carried out in such a way that units with similar weight
vectors have similar colors, using a naive contraction model
based on the U-matrix according to the algorithm proposed
by Himberg (2000). The resulting color coding is then ap-
plied to the representation of the well screens. In this way a
fuzzy ordering of the well screens is carried out, linking them
through the false colored SOM with the component planes,
without having to manually delineate groups.

Table 5 renders the quality measures for both analysis. For
the standard SOM the quantization error is slightly lower
than theqe of the GEO3DSOM. The topologic error on the
other hand is significantly lower for the standard SOM than
for the GEO3DSOM. The performance of the standard SOM
in capturing and representing the structure of the data set
is higher than the performance of the GEO3DSOM. This is

Hydrol. Earth Syst. Sci., 11, 1309–1321, 2007 www.hydrol-earth-syst-sci.net/11/1309/2007/



L. Peeters et al.: Analysis of spatial hydrogeologic data using GEO3DSOM 1317

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8
qe (SOM)
te (SOM)
qe (GEO3DSOM)
te (GEO3DSOM)
ge (GEO3DSOM)

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

Number of iterations

qe (SOM)
te (SOM)
qe (GEO3DSOM)
te (GEO3DSOM)
ge (GEO3DSOM)

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4
c) k-value vs qe & ge for GEO3DSOM

k-value

qe
ge (x10)

a) Number of units vs qe, te & ge for SOM and GEO3DSOM

Number of units

b) Number of iterations vs qe, te & ge for SOM and GEO3DSOM

Fig. 7. Results of the sensitivity analysis with respect to(a) the number of units,(b) the number of iterations and(c) the value of the
geographical tolerancek for SOM and GEO3DSOM.

noticeable on the component planes (Fig. 8a and Fig. 9a),
where distributions of the variables on the component planes
of the standard SOM are rather smooth compared to those of
the GEO3DSOM. This is mainly due to the better topological
representation of the standard SOM.

The geographic error of the GEO3DSOM, however, is
15% smaller than in the standard SOM, implying that the
geographic representation of the GEO3DSOM resembles the
data set more closely.

On the U-matrices (Figs. 8b and 9b), it is also noticeable
that the U-matrix of the GEO3DSOM divides the SOM in
a large number of well separated groups, while the number
of groups in the standard SOM is smaller and the borders
between groups are less distinct. The more distinct borders
between groups in the GEO3DSOM U-matrix results in a
higher resolution for the false coloring compared to the stan-
dard SOM coloring (Figs. 8c and 9c).

Both SOM-variants succeed in distinguishing between
samples originating from the Diest and the Brussels aquifers,
as can be deduced from the geology-labeled U-matrices
(Figs. 8b and 9b). The component planes reveal that pH and
concentrations of calcium and bicarbonate are relatively high
in the Brussels aquifer. This difference is due to the presence
of calcite in the Brussels sands, while calcite is almost absent

in the Diest sands (Laga et al., 2001; Lagrou et al., 2004). In
the false coloring of the GEO3DSOM this geology related
subdivision is clearly visible through a distinct difference in
coloring. In the coloring of the SOM however the distinc-
tion between Diest and Brussels samples is, if present, only
noticeable through subtle color differences.

The Quaternary samples can also be differentiated from
the rest, albeit less clear, since the Quaternary samples are
characterized by an overall very low mineralization, with the
exception of nitrate and chloride which can be locally very
high. Since these well screens are rather shallow and the
Quaternary deposits consist of sands and gravels, the com-
position of groundwater is very close to the composition of
rain water, hence the low pH, and very susceptible to an-
thropogenic influences like chlorine and nitrate contamina-
tion. In both SOM variants the region with Quaternary sam-
ples is apparent from the false coloring. A smaller varia-
tion in groundwater chemistry can be detected in the Brus-
sels aquifer, where the most northern and the north eastern
samples are characterized by lower Mg2+ concentrations. In
the coloring of the SOMs this is noticeable through subtle
difference in shades of green.

Further subdivision of the SOM’s is possible based on the
concentrations of oxygen, nitrate, iron and manganese. In
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Fig. 8. Results of the SOM-analysis of the hydrochemical data
set.
(a) U-matrix and component planes
(b) labeled U-matrix
(c) false coloring of U-matrix
(d) spatial distribution of well screens, using false coloring.

both aquifers there are zones with low oxygen concentra-
tions and elevated iron and manganese. These groups consist
of the deeper samples (Figs. 8d and 9d) and nitrate concen-
trations are on average lower in these groups. Due to the
ubiquitous presence of iron and manganese bearing minerals
like glauconite and iron-oxides in the Diest aquifer (Lagrou
et al., 2004), the iron concentrations are rather high in the

Diest aquifer when oxygen concentrations are low. This sub-
division of the data is determining the color coding of the
standard SOM, while in the GEO3DSOM this feature is sub-
ordinate to the coloring based on pH, Ca2+ and HCO−

3 .

In the Brussels sands aquifer there are three well screens,
located in the same well, with anomalous high manganese
concentrations and low oxygen and nitrate concentrations.
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Fig. 9. Results of the GEO3DSOM-analysis of the hydrochemical data set.
(a) U-matrix and component planes
(b) labeled U-matrix
(c) false coloring of U-matrix
(d) spatial distribution of well screens, using false coloring.

Both SOM-variants succeed in isolating and identifying
these outlying values.

4 Conclusions

The self-organizing map algorithm has proved to be a very
valuable tool in the visualization and interpretation of large,
multivariate data sets.

To incorporate spatial information in a self-organizing
map analysis, GEO3DSOM is developed and its performance
in clustering of both an artificial and a real life data set is
compared to the standard SOM.

The performance of the standard SOM in correctly repre-
senting the structure of the data set and in minimizing the
error between the input vectors and its best matching unit is
higher than the performance of the GEO3DSOM on these
criteria. The standard SOM is therefore very suitable for an
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exploratory data analysis in order to capture relationships be-
tween variables and the structure of data.

The GEO3DSOM on the other hand outperforms the stan-
dard SOM in providing a grouping of the data in a spatially
coherent way. Analysis of both the artificial and the real
life data sets showed that the GEO3DSOM is capable of a
more detailed grouping of both regularly and irregularly dis-
tributed spatial data, compared to the standard SOM with
geographical coordinates included in the data set. As is
to be expected, the information about the data set at hand
obtained through the component planes and the U-matrices
by both versions of the SOM is very similar. The pseudo-
coloring applied to both variants of the SOM-algorithm how-
ever shows some clear differences between both techniques.
The explicit incorporation of the geographic coordinates in
the GEO3DSOM algorithm results in greater differences
between groups in the U-matrix. This results in an in-
creased resolution in the pseudo-coloring of the units. In
the GEO3DSOM both the geology related subdivision and
the vertical subdivision is apparent from the coloring, while
in the standard SOM the coloring is dominated only by the
vertical subdivision based on oxygen, iron and manganese.
Within the samples having elevated oxygen and nitrate con-
centrations, a subtle differentiation between Brussels and Di-
est samples can be seen, while this differentiation is com-
pletely absent in the group of samples with low oxygen and
nitrate concentrations. Both coloring schemes do however
identify the presence of outliers in the Brussels sands aquifer.
In conclusion it can be stated that both techniques succeed
very well in providing more insight in the quality data set,
highlighting the main differences and pointing out anoma-
lous wells. Incorporation the spatial correlation through in-
cluding the geographic coordinates in the BMU-selection
procedure of GEO3DSOM, however, provides the advantage
of an increased resolution, while still maintaining a general-
ization of the data set.
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Baç̃ao, F., Lobo, V., and Painho, M.: Self-organizing maps as sub-
stitute for K-means clustering, in: International conference on

computational science, edited by: Sunderarm, V. S., van Al-
bada, G., Sloot, P., and Dongarra, J. J., International conference
on computational science 2005, Lecture Notes in Computer Sci-
ence, Springer-Verlag Berlin, Berlin, 3516, 476–483, 2005b.

Chang, H. C., Kopaska-Merkel, D. C., and Chen H. C.: Identifica-
tion of lithofacies using Kohonen self-organizing maps, Comput-
ers and Geosciences, 28(2), 223–229, 2002.

Coppola, E., Szidarovsky, F., Poulton, M., and Charles, E.: Artifi-
cial neural network approach for predicting transient water lev-
els in a multilayered groundwater system under variable state,
pumping and climate conditions, J. Hydrol. Eng., 8(6), 348–360.
2003.

Davis, J. C.: Statistics and data analysis in geology, John Wiley &
Sons, Inc, New York, 1986.

Databank Ondergrond Vlaanderen: http://dov.vlaanderen.be, 2006.
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