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CNRS/IN2P3, UMR5822, IPNL

Abstract.

This paper explores the representation of quantum computing in terms of unitary

reflections (unitary transformations that leaves invariant a hyperplane of a vector

space). The symmetries of qubit systems are found to be supported by Euclidean real

reflections (i.e., Coxeter groups) or by specific imprimitive reflection groups, introduced

(but not named) in a recent paper [Planat M and Jorrand Ph 2008, J Phys A: Math

Theor 41, 182001]. The automorphisms of multiple qubit systems are found to relate

to some Clifford operations once the corresponding group of reflections is identified.

For a short list, one may point out the Coxeter systems of type B3 and G2 (for single

qubits), D5 and A4 (for two qubits), E7 and E6 (for three qubits), and the complex

reflection groups G(2l, 2, 5). The relevant fault tolerant groups of reflections (the Bell

groups) are generated, as subgroups of the Clifford groups, by the Hadamard gate, the

π/4 phase gate and an entangling (braid) gate [Kauffman L H and Lomonaco S J 2004

New J. of Phys. 6, 134]. Links to the topological view of quantum computing, to the

lattice approach and to the geometry of smooth cubic surfaces are discussed.

PACS numbers: 03.67.Pp, 03.67.Lx, 02.20.-a, 03.65.Vf, 02.40.Dr

1. Introduction

Quantum computing is an exciting topic calling for a rich palette of mathematical

concepts. Among them, group theory plays a considerable role being relevant for

describing quantum errors (using Pauli and other error groups [1]) and quantum fault

tolerance as well (using the Clifford group [2, 3], the braid group [4, 5] or the homological

group [6, 7]). In this paper, we add to this list by showing the great relevance of real

reflection groups (Coxeter groups), as well as unitary (complex) reflection groups, for

representing a large class of protected quantum computations in an unifying geometrical

language.

Basically, a reflection in Euclidean space is a linear transformation of the space

that leaves invariant a hyperplane while sending vectors orthogonal to the hyperplane

to their negatives. Euclidean reflection groups of such mirror symmetries possess a
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Coxeter group structure, i.e., they are generated by a finite set of involutions and

specific relations. More generally, unitary reflection groups (also known as groups of

pseudo-reflections or complex reflection groups) leave a hyperplane pointwise invariant

within the complex vector space [8, 9]. The simplest example of a Coxeter group is the

dihedral group Dihn (n > 2), which is the symmetry group of a regular polygon with n

vertices/edges: it is easy to visualize that Dihn consists of n rotations (through multiples

of 2π/n) and n reflections (about the diagonals of the polygon)‡. The symmetry group

of a regular n-simplex (a 1-simplex is a line segment, a 2-simplex is a triangle and a

3-simplex is a tetrahedron) is the symmetric group Sn+1, also known as the Coxeter

group of type An.

To motivate our approach, let us mention that those two types of groups

immediately appear for qubits. The dihedral group Dih4 (corresponding the set of

symmetries of the square) is the group of automorphisms of a pair of observables taken

in the Pauli group P1 = 〈σx, σy, σz〉, generated by the Pauli matrices and, among other

instances, Dih6 (corresponding to the set of symmetries of the hexagon) is the group of

outer automorphisms of P1. The symmetry group S4 of the tetrahedron is known to be

relevant in the optimal qubit tomography based on the Bloch sphere [10]. As we will

see below, S4 is also hidden in the (less trivial) Coxeter group B3 = Z2 ×S4 (associated

with the snub cube), the group of symmetries of all the automorphisms of P1. It is well

known that all symmetry groups of regular polytopes are finite Coxeter groups. Finite

Coxeter groups either belong to four infinite series An, Bn, Dn and I2(n) (n-gon), or are

of the exceptional type H3 (the icosahedron/dodecahedron), F4 (the 24-cell), H4 (the

120-cell/600-cell), E6, E7 and E8 (associated with the polytopes of the same name).

The type E7 was recently proposed as a candidate to model quantum entanglement in

analogy to the entropy of BPS black holes [11].

A Coxeter group arises in a simple Lie algebra as the Weyl group attached to the

root system of the algebra. Specifically, the Weyl-Coxeter group for a fiven simple Lie

algebra is generated by reflections through the hyperplanes orthogonal to the roots [12].

Not all Coxeter groups appear as Weyl groups of a Lie algebra, because some of them

lacks the property of being crystallographic, a distinctive feature of some root systems.

Not just orthogonal reflections leaving invariant an hyperplane passing through the

origin can be defined. One can also define the affine Weyl group, composed of affine

reflections relative to a lattice of hyperplanes. The lattices left invariant by some affine

(and cristallographic) Weyl group also exist in four infinite series denoted Añ, Bñ, Cñ

and Dñ, and there are six exceptional types. Affine Weyl groups are infinite Coxeter

groups that contain a normal abelian subgroup such that the corresponding quotient

group is finite and is a Weyl group. To pass from the finite Coxeter graph to the infinite

one, it suffices to add an additional involution and one or two additional relations. May

be the best illustrative example is the way from the hexagon to the hexagonal tiling.

The Coxeter group Dih6 (corresponding to the Coxeter system I2(6), also called G2) is

‡ In the Schoenflies notation of molecular physics, the group Dihn is denoted Cnv or Dn according to

whether as it is realized in terms of proper and improper rotations or proper rotations only, repectively.
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represented by two generators x1 and x2 such that that x2
1 = x2

2 = (x1x2)
6 = 1. The

corresponding Coxeter graph contains two vertices and one edge indexed with the integer

6. The Coxeter group of the hexagonal tiling is obtained by adding one involution x3

and two extra relations, viz, x2
3 = (x2x3)

3 = (x1x3)
2 = 1. The hexagonal lattice reminds

us the geometry of graphene quantum dots, which were recently proposed for creating

coherent spin qubits [13].

Let us pass to the unitary reflection groups. The irreducible ones were classified [14]

and found to form an infinite family G(m, p, n) (with p dividing m) and 34 exceptional

cases. The infinite family contains the infinite families of finite Coxeter groups as special

cases. In particular, G(n, n, 2) := I2(n). In our recent paper [3], we arrived at the

conclusion that the automorphisms of sets of mutually unbiased bases for multiple

qubits are controlled by the groups Z
l
2 ≀ A5, in which A5 is the alternating group on

five symbols and ≀ is the wreath product, i.e., the semi-direct action of the permutation

group A5 on five copies of the two-element group Z2. It was not recognized at that

time that those groups are precisely the Coxeter groups of systems G(2l, 2, 5), with the

special case W (D5) = G(2, 2, 5) (defining the Weyl group Z2 ≀A5) corresponding to the

two-qubit system.

All these remarkable relationships between the symmetries of qubit systems and

reflection groups are the origin of our motivation to undertake, for the first time, a

parallel between the properties of Coxeter systems and quantum coherence. A further

support to this idea is that, to any unitary reflection group, one can associate a

generalized braid group [15]. Braid groups, which play an important role in anyonic

symmetries, already paved their way in the quantum computing literature [5]. In the

present paper, our goal is to establish some new bridges between the geometry of groups,

encoded into the reflection groups, and quantum information processing tools.

This paper is organized as follows. In Sec 2, we provide a technical introduction

to reflection groups, with specific examples relevant for the present paper. In Sec 3, we

remind some recently established links between finite geometries and the observables of

multiple qubit systems [17]. The corresponding automorphism groups are derived and a

representation in terms of finitely presented groups of reflections is displayed whenever

it is possible. The irruption of imprimitive groups of type G(2l, 2, 5) for representing

the symmetries of complete sets of mutually unbiased bases is explained. In Sec 4, we

recall some useful concepts of group extensions used to address topics such as Clifford

groups and their relations to error groups. A particular entangling subgroup of the two-

and three-qubit Clifford groups is exhibited and its relation to topological quantum

computation, the Yang-Baxter equation and the Coxeter system of type D5 and E6 is

discussed. Finally, smooth cubic surfaces are evoked to vindicate this connection.
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2. A primer on reflection groups and root systems

2.1. Reflections

To begin with, let us start with a l-dimensional (real) Euclidean space E, endowed with

a product (., .) such that ∀a, b ∈ R and ∀x, y ∈ E, we have (x, y) = (y, x) (symmetry),

(ax+ by, z) = a(x, z) + b(y, z) (linearity), (x, x) ≥ 0 and (x, x) = 0 ⇒ x = 0 (a positive

definite form). Let us introduce the orthogonal group O(E) of linear transformations f

of E as

O(E) = {f : E → E|∀x, y ∈ E : (f(x), f(y)) = (x, y)} .

Let Hα ⊂ E be the hyperplane

H(α) = {x|(x, α) = 0} ,

then a reflection sα : E → E is defined as

sα(x) = x if x ∈ Hα and sα(α) = −α.

It is clear that sα ∈ O(E), i.e., (sα(x), sα(y)) = (x, y). There are two further important

properties

(i) The reflection sα(x) of each vector x ∈ E can be explicitely defined using the

action of the linear product

∀x ∈ E : sα(x) = x− 2
(x, α)

(α, α)
α.

(ii) Let t ∈ O(E). An hyperplane maps to an hyperplane under the action of t:

t(Hα) = Ht(α),

and a reflection maps to a reflection under conjugation in O(E):

tsαt
−1 = st(α).

Given W ⊂ O(E), W is a Euclidean reflection group if W is generated, as a group,

by reflections. It is irreducible if it cannot be rewritten as a product of two reflection

groups.

2.2. Root systems

The concept of a finite Euclidean reflection group may be reformulated in terms of linear

algebra by using its root system ∆.

For doing this, one replaces each reflecting hyperplane of the reflection group W

by its two orthogonal vectors of unit length. Let ∆ ⊂ E be the resulting set of vectors.

The vectors of ∆ satisfy two important properties

(I) If α ∈ ∆, then λα ∈ ∆ iff λ = ±1.
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(II) The set ∆ is permuted under the action of W : If α, β ∈ ∆, then sα(β) ∈ ∆.

Any element of ∆ is a root, and ∆ is named a root system.

It is noteworthy that among root systems are those that possess the extra property

of being crystallographic. Besides (I) and (II), such systems satisfy

(III) For any α, β ∈ ∆, one has 〈α, β〉 := 2 (α,β)
(α,α)

∈ Z.

The reflection groups having a crystallographic root system are called Weyl groups

and the integers 〈α, β〉 in (III) are called Cartan integers. Crystallographic groups

arise in the context of semi-simple complex Lie algebras as an intrinsic property of the

symmetries of their roots [12], and it is precisely in this context that their classification

was established §.

2.3. Coxeter systems

The algebraic structure of finite Euclidean reflection groups can be understood via the

concept of a Coxeter system. It can be used to classify finite reflection groups.

A group W is a Coxeter group if it is finitely generated by a subset S ⊂ W of

involutions and pairwise relations

W = 〈s ∈ S|(ss′)m
ss

′ = 1〉 , (1)

where mss = 1 and mss′ ∈ {2, 3, . . .} ∪ {∞} if s 6= s′. The pair (W,S) is a Coxeter

system, of rank |S| equal to the number of generators. One can associate a Coxeter

system to any finite reflection group.

Coxeter systems are conveniently represented by Coxeter graphs. A Coxeter graph

X is a graph with each edge labelled by an integer ≥ 3. The standard method of

assigning a Coxeter graph to a Coxeter system (W,S) is as follows: (i) S gives the

vertices of X, (ii) given s, s′ ∈ S there is no edge between s and s′ if mss′ = 2, (iii)

given s, s′ ∈ S there is an edge labelled by mss′ if mss′ ≥ 3. This assignment sets up a

one-to-one correspondance between a Coxeter system and its associated Coxeter graph.

Let us illustrate the above concepts with examples pertaining to quantum

computing. The Coxeter system G2 = I2(6) controls the outer automorphisms of the

Pauli group (see Sec 3.1). As already announced in the introduction, its presentation

immediately follows from the one of a rank n dihedral group

Dihn =
〈
s1, s2|(s1)

2 = (s2)
2 = (s1s2)

n = 1
〉
.

The Coxeter system A3 of Weyl group S4 appears in the tomography of qubits [10].

It is of rank three with representation

S3 =
〈
s1, s2, s3|(s1)

2 = (s2)
2 = (s3)

2 = (s1s3)
2 = (s1s2)

3 = (s2s3)
3 = 1

〉
.

§ In III, the notation 〈α, β〉 for denoting the integers occuring in the crystallographic root system

should not be confused with the bra/ket Dirac notation used in quantum mechanics when dealing with

a Hilbert space formalism. The brackets are useful for comparing the roots α and coroots α∨ = 2 α
(α,α)

thanks to the relation 〈α, x〉 = (α∨, x). The bracket notation is also conventionaly used for the finite

presentation of a group (as in Sec 2.3 and elsewhere).
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Coxeter systems of the type D5 and of exceptional type E6 and E7 occur in

topological quantum computing. For a finite representation of E6, see Eq 24.

2.4. Fundamental root systems as Coxeter systems

The equivalence between finite reflection groups and Coxeter systems follows from the

introduction of fundamental root systems. Given a root system ∆ ⊂ E, then Σ ⊂ ∆ is

a fundamental system of ∆ if (i) Σ is linearly independant, (ii) every element of ∆ is

a linear combination of elements of Σ where the coefficients are all non-negative or all

non-positive. The elements of Σ are called the fundamental roots. It can be shown that

there is a unique fundamental system Σ associated with any root system ∆ of a finite

reflection group. Elements of Σ are called positive roots.

To a fundamental root α ∈ Σ, is associated a fundamental reflection sα.

Furthermore, given the fundamental system Σ of ∆, then W (∆) = W is generated

by fundamental reflections sα. We want to associate a bilinear form (see Sec 2.1) to

every Coxeter system. Define the bilinear form B : Σ × Σ → R by

B(αs, αs′) = −cos(
π

mss′
).

In particular, B(es, es) = 1 and B(es, es′) = 0 when mss′ = 2. The bilinear form

can be shown to be positive definite for every finite Coxeter system (W,S). It may be

identified with the original inner product in E.

Given a fundamental system Σ = (α1, . . . , αl) of ∆, we then assign a Coxeter graph

X to ∆ by the rules

(i) Σ gives the vertices of X.

(ii) Given αi 6= αj ∈ Σ, there is no edge between αi and αj if mij = 2 (i.e., αi and

αj are at right angles).

(iii) Given αi 6= αj ∈ Σ, there is an edge labelled by mij if mij ≥ 3.

As a result, the Coxeter graph of root system ∆ is the Coxeter graph of the Weyl

group W (∆).

Let see how it works for the examples listed in Sec 2.3 above. To the dihedral group

Dihn is associated the root system

G2(m) =

{(
cos(

kπ

m
), sin(

kπ

m
)

)
|0 ≤ k ≤ 2m− 1

}
,

with α1 = (cos( π
m

), sin( π
m

)) and α2 = (cos(2π
m

), (sin(2π
m

)).

To the symmetric group Sl+1 is associated the root system

A1 = {ǫi − ǫj |i 6= j, 1 ≤ i, j ≤ l + 1}

and the fundamental system

Σ = {ǫ1 − ǫ2, ǫ2 − ǫ3, . . . , ǫl − ǫl+1} ,

in which {ǫj} is an orthonormal basis of Rl+1.

For an exhaustive list of root systems, see [9], p 93.
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2.5. The weight lattice of a Weyl group

As already stressed in Sec 2.2, a Weyl group is a reflection group satisfying the

crystallographic axiom III. Furthermore, to every Weyl group W one can associate

a lattice of integers which is stabilized by the action of W on the roots. Let us define

the weight lattice LW by

LW = {x ∈ E|∀α ∈ ∆ : 〈α, x〉 ∈ Z} .

Conversely, the Weyl group is uniquely determined by its weight lattice LW .

For instance, we obtain

LW (I2(4)) =

(
2 1

3 2

)
, LW (A2) =

(
2 1

1 2

)
.

A further example is given at the end of Sec 4.

2.6. Affine Weyl groups

One can start from the Weyl group of a crystallographic root system and form an infinite

group that still possesses a structure analogous to that of the Weyl group, i.e., a Coxeter

group structure. Hyperplanes are defined as

Hα,k = {t ∈ E|(α, t) = k} ,

and the reflection sα,k through the hyperplane Hα,k reads

sα,k(x) = x− (α, x)α∨ + kα∨, with corot α∨ = 2
α

(α, α)
.

By definition, the affine Weyl group Waff(∆) is generated by the set of reflections

{sα,k|α ∈ ∆, k ∈ Z}. For details and the classification of affine Weyl groups, see [9], p

101.

2.7. Unitary reflection groups

Euclidean reflection groups may be generalized as pseudo-reflection groups by replacing

the real Euclidean space by an arbitrary vector space over a field F. We shall mention

complex reflection spaces, defined over the complex field C, which we shall use later for

protected qubits.

Rather than an inner product, we shall use a positive definite Hermitian form (., .)

acting on a complex finite-dimensional vector space V . Every reflection s : V → V of

order n over C satisfies the reflection property

s(x) = x+ (ξ − 1)
(α, x)

(α, α)
α,
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for all x ∈ V , where ξ is a primitive n-th root of unity, α is an eigenvector such that

s(α) = ξα and (x, y) is a positive definite Hermitian form satisfying (s(x), s(y)) = (x, y).

Finite irreducible unitary reflection groups were classified [14]. They consist of

three infinite families {Z/mZ}, {Sn}, {G(m, p, n)}, and 34 exceptional cases (see [9],

p 161). We shall be concerned with imprimitive unitary reflection groups. A group

G ⊂ GL(V ) is said to be imprimitive if there exists a decomposition V = V1 ⊗ . . .⊗ Vk

(k ≥ 2), where the subspaces Vi are permuted transitively by G. If p|m, we can define

the semidirect group

G(m, p, n) = A(m, p, n) ⋊ Sn,

where the permutation group Sn is isomorphic with a subgroup of GLn(C) and

A(m, p, n) =
{
Diag(ω1, ω2, . . . , ωn−1, ωn)|ωm

i = 1 and (ω1 . . . ωn)m/p = 1
}
.

Many Euclidean reflection groups are special cases, including

G(1, 1, n) = Sn = W (An−1),

G(m,m, 2) = Z/mZ ⋊ S2 = Dihm = W (G2(m)),

G(2, 2, n) = (Z/mZ)n−1
⋊ Sn = W (Dn).

We shall be concerned later with a generalisation G(2l, 2, 5) of the D5 Coxeter

system (see Sec 3.5).

3. Automorphisms of multiple qubit systems as reflection groups

3.1. The single qubit case

In the sequel of the paper, we use several important concepts of group theory such as

normal subgroups, short exact sequences and automorphism groups. A reminder can

be found in Appendix 1. In this section, the link between quantum error groups and

reflection groups is studied. Most often, in the quantum computing context, tensor

products of Pauli matrices (for 1
2
-spin) are considered as error groups [2, 3]. We shall

denote Pn the n-qubit Pauli group ‖, obtained by taking tensor products of n ordinary

Pauli matrices up to a phase factor Z(Pn) = {±1,±i}. Symmetries underlying Pn,

i.e., automorphisms of Pn are related to reflection groups. Other relations to reflection

groups arise in quantum error-correcting codes and Clifford groups, as shown in the next

section. Many of our calculations make use of the group theoretical packages GAP [18]

and Magma [19].

Let us start with the single qubit case for which our claim takes a very simple form,

already advertized in the introduction. The single qubit Pauli group P1 is generated

‖ The n-qubit Pauli group is in general not isomorphic with the single qubit Pauli group in dimension

2n. The latter group is most often denoted as the Heisenberg-Weyl group [16]
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by the Pauli spin matrices σ0 (the identity matrix), σx (the shift matrix), σz (the flip

matrix) and σy = iσxσz . It is of order 16 and has for group of automorphisms:

Aut(P1) = Z
3
2 ⋊ S3 = W (B3) = Z2 × S4 = W (A1A3), (2)

in which Z2 = Z/2Z and “×” and “⋊” are, respectively, a direct and semi-direct product.

The Coxeter system W (B3) corresponds to the first description Z3
2 ⋊S3, but one can also

use the second description Z2 × S4 to produce a reducible Coxeter system W (A1A3), of

rank 4. The generating relations of the irreducible Coxeter system B3 are

x2
1 = x2

2 = x2
3 = (x1x2)

3 = (x2x3)
4 = (x1x3)

2 = 1. (3)

In the Wenninger classification of polyhedron models [20], the symbols W1 to W5

correspond to platonic solids (the regular polyhedra), W6 to W18 to Archimedean solids

(the semi-regular polyhedra), the remaining ones go from W19 to W119. The snub cube

corresponds to the symbol W17 and its automorphism group is the Coxeter groupW (B3).

It comprises 38 faces, of which 6 are squares and the other 32 are equilateral triangles.

If the snub cube would be realized in the natural world, it would certainly be very useful

for producing protected qubits!

Inner automorphisms of Inn(P1) form a normal subgroup of Aut(P1) isomorphic to

Z2 × Z2. The outer automorphism group Aut(P1)/Inn(P1) reads

Out(P1) = Dih6 = W (G2) = Z2 × Dih3 = W (A1I2(3)). (4)

It can be represented by the irreducible (rank 2) Coxeter group G2 or by a reducible

Coxeter system of rank 3 composed of its two factors A1 and I2(3). It is most surprising

that Out(P1) and Aut(P1) are the academic examples treated in [9] (p 67).

The generating relations of the Coxeter group W (G2) are

x2
1 = x2

2 = (x1x2)
6 = 1. (5)

They correspond to the symmetries of the hexagon. It may be useful to mention that

there does not exist a one-to-one relation between a group and its automorphism group,

or between a group and its outer automorphism group. In the present case one observe

that the group M21 = PSL(3, 4) has Dih6 as its outer automorphism group (M21 is not

a Coxeter group but a group of Lie type [12]). The group M21, of order 20160, is the

stabilizer of a point in the large Mathieu group M22, defined from the Steiner system

¶ S(3, 6, 22), and the stabilizer of a triad in the Mathieu group M24. This comment is

written in relation to the occurence of Mathieu group M22, as well as M20 = W (D5)

within the context of two-qubit systems (see [3] and Secs 3.5 and 4.4).

Let us pass to the other types of reflection groups, which may be associated with

single qubits. One may wish to define a reflection group from the outer automorphisms

¶ A Steiner system S(a, b, c) with parameters a, b, c, is a c-element set together with a set of b-element

subsets of S (called blocks) with the property that each a-element subset of S is contained in exactly

one block. A finite projective plane of order q, with the lines as blocks, is an S(2, q + 1, q2 + q + 1),

because it has q2 + q + 1 points, each line passes through q + 1 points, and each pair of distinct points

lies on exactly one line.
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at each location of a lattice reflection group. As announced in the introduction, to the

finite Coxeter group G2 corresponds the affine Weyl group H2̃ (also called G3), a rank

three (infinite) reflection group, with the following generating relations

x2
1 = x2

2 = x2
3 = (x1x2)

3 = (x2x3)
6 = (x1x3)

2 = 1. (6)

It is associated with a hexagonal (or triangular) tesselation of the plane. The most

relevant qubit model may well be a cluster state model [21], and one may want to think

about graphene as a possible real world realization.

3.2. The two-qubit case

The two-qubit Pauli group P2 is more involved than P1. In particular, it features

entangled states. There exists in-depth studies of them in the quantum information

literature, but the present approach is performed in the spirit of [17]. The two-qubit

Pauli group may be generated as P2 = 〈σ0 ⊗ σx, σx ⊗ σx, σz ⊗ σz, σy ⊗ σz, σz ⊗ σx〉. It

is of order 64. The group of automorphisms of P2 was already featured in [3]

Aut(P2) = U6.Z
2
2 with U6 = Aut(P2)

′ = Z
4
2 ⋊ A6 (7)

and “.” means that the short exact sequence 1 → U6 → Aut(P2) → Z2
2 → 1 does not

split. Neither Aut(P2) nor U6 are Coxeter groups. The dividing line between Aut(P2)

and a Coxeter group may be appreciated by displaying the Weyl group for Coxeter

system B6, of the same cardinality, which may be written as the semidirect product

W (B6) = Z2 ≀ S6 = Z6
2 ⋊ S6.

The group U6 is an important maximal subgroup of several sporadic groups. The

group of smallest size where it appears is the Mathieu group M22. Mathieu groups are

sporadic simple groups, so that U6 cannot be normal inM22. It appears in a subgeometry

of M22 known as an hexad.

Any large Mathieu group can be defined as the automorphism (symmetry) group of

a Steiner system [22]. The group M22 stabilizes the Steiner system S(3, 6, 22) comprising

22 points and 6 blocks, each set of 3 points being contained exactly in one block. Any

block in S(3, 6, 22) is a Mathieu hexad, i.e., it is stabilized by the group U6. There exists

up to equivalence a unique S(5,8,24) Steiner system called a Witt geometry. The group

M24 is the automorphism group of this Steiner system, that is, the set of permutations

which map every block to some other block. The subgroups M23 and M22 are defined

to be the stabilizers of a single point and two points respectively.

The outer automorphism group of the two-qubit Pauli group

Out(P2) = Z2 × S6 = W (A1A5) (8)

corresponds to the reducible Coxeter system A1A5
+.

+ The Coxeter system A5 should not be confused with the alternating group A5. The meaning of A5

should be clear from the context.
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3.3. Automorphisms of central quotients of Pauli groups

We failed to discover a general rule for the automorphism group of the multiple qubit

Pauli group Pn. But there exists a very simple formula for the automorphism group

of the central quotient P̃n
∼= Z2n

2 . It is easy to check that Aut(P̃1) = Z6, Aut(P̃2) =

A8
∼= PSL(4, 2) (of order 20160), Aut(P̃3) = PSL(6, 2) (of order 20 158 709 760). All

automorphisms are found to be outer. More generally

Aut(P̃n) = PSL(2n, 2) = A2n−1(2). (9)

The group PSL(2n, 2) is the group of Lie type A2n−1 over the field F2 [12]. For

PSL(2n, 2), the Weyl group is the one defined by the Coxeter system of type A2n−1, i.e.,

the symmetry group S2n. The group PSL(2n, 2) also corresponds to the automorphism

group of the (n− 1)-qubit CSS (Calderbank-Schor-Steane) additive quantum code [23].

The five-qubit Schor code and the seven-qubit Steane code have automorphism group

A8 and PSL(6, 2), respectively.

3.4. Geometric hyperplanes of the two-qubit system and their automorphism group

This section is of slightly different flavour than the rest of the paper. It makes use of the

finite geometries embodied by the commutation relations of observables within the Pauli

group P2. Commuting/anti-commuting relations between the Pauli operators of the two-

qubit system have been determined [17]. They have been found to form the generalized

quadrangle of order two GQ2 and to admit three basic decompositions in terms of

geometric hyperplanes. It is our purpose here to explicit the outer automorphisms of

such structures that, remarkably, are Coxeter groups.

A finite geometry is a set of points and lines together with incidence axioms. A

generalized quadrangle GQ obeys the following axioms: (i) It is a near-linear space, i.e.,

a space of points and lines such that any line has at least two points and two points

are on at most one line, (ii) given an antiflag (a line and a point not on the line) there

is exactly one line through the point that intersects the line at some other point. A

GQ is said to be of order (s, t) if every line contains s + 1 points and every point is in

exactly t+ 1 lines. The GQ is called thick if both s and t are larger than 1. If s = t, we

simply speak of a GQ of order s, that we denote GQs. The smallest thick generalized

quadrangle GQ2 contains 15 points and 15 lines, the axioms are dual for points and

lines . A geometric hyperplane of a finite geometry is a set of points such that every line

of the geometry either contains exactly one point of the hyperplane, or is completely

contained in it. For GQ2, there are three types of hyperplanes: a perp-set, a grid and

an ovoid [17]. The group of automorphisms of GQ2 is the symmetric group S6. (For the

occurence of the generalized quadrangle GQ3 see the end of Sec 4.4.)

Let us see now how finite geometries connect with the two-qubit system. Let

us consider the fifteen tensor products σi ⊗ σj of ordinary Pauli matrices σi ∈
{σ0, σx, σy, σz}, label them as follows 1 = σ0 ⊗σx, 2 = σ0 ⊗σy, 3 = σ0 ⊗σz , a = σx ⊗σ0,

4 = σx ⊗ σx, . . ., b = σy ⊗ σ0, . . ., c = σz ⊗ I2, . . ., 15 = σz ⊗ σz. One may take a point
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as an observable of the above set, and a line as a maximal set of mutually commuting

operators, so that the geometry of GQ2 is reproduced.

In Eq (8), we established that the observables in the Pauli group P2, which also

span GQ2, possess outer automorphisms forming the Weyl group of the reducible Coxeter

system A1A5. We now intend to check if the observables spanning the hyperplanes of

GQ2 still have automorphisms controlled by some Coxeter system. Let us list the three

hyperplanes H1, H2 and H3 considered in Sec (3) of [17] .

1) A perp-set H1 of GQ2, of cardinality 7, is is defined by three lines perpendicular

to the reference point a, one can choose H1 = {(1, a, 4), (2, a, 5), (3, a, 6)}. None of the

lines of H1 carries an entangled state, observables in each of the lines form the group Z2
2,

the automorphisms are outer and form the group PSL(2, 2) ∼= Z6. Let us now consider

two points of H1, not on the same line; the generated group is Dih4, which is its own

automorphism group. We know that Dih4 is the Weyl group of Coxeter system I2(4).

The group generated by an antiflag is Z2 × Dih4, corresponding to the Coxeter system

A1I2(4); outer automorphisms of the antiflag have the same group structure. The group

generated by two lines fail to have a Coxeter structure, neither its automorphism group,

but outer automorphisms form the group S4×Dih4, which is the Weyl group of Coxeter

system I2(4)D3.

2) A grid H2 of GQ2 is of size 3 × 3. Its lines have been chosen to carry all the

entangled states, i.e., H2 = {(4, 8, 12), (9, 10, 5), (11, 6, 7), (4, 9, 11), (8, 10, 6), (12, 5, 7)}.
The product of three observables in each of the first three (horizontal) lines is minus the

identity matrix, while the product of observables in each of the last three (vertical) lines

is the identity matrix. Thus, the grid forms a Mermin square, which may be used to

demonstrate the Kochen-Specker theorem in dimension 4 [17]. The group generated by a

vertical line is the (already encountered) group Z
2
2. The group generated by an horizontal

line is Z3
2, the automorphisms are outer and form the group PSL(3, 2) ∼= PSL(2, 7) (the

group of symmetries of the Klein quartic). The group generated by a antiflag is the

(already encountered group) Z2×Dih4 (the antiflag may contain a line of the horizontal

or of the vertical type). Finally, the whole grid generates the group (Z2 × Dih4) ⋊ Z2,

and the outer automorphisms form the group (S3 × S3) ⋊ Z2. The latter group is not of

Coxeter type, but its maximal normal subgroup S3 × S3 is the Weyl group of Coxeter

system A2A2.

3) An ovoid H3 of GQ2 is a set of five non-intersecting points (in graph theory,

it is called an independant set). Let us take for example H3 = {1, 2, 6, 9, 12}. The

five points belong to a maximal set of five mutually unbiased bases, so that the

automorphisms of H3 also define symmetries of mutually unbiased bases. Let us

denote mi (i = 1, . . . , 5) the elements of such a maximal set, one may form groups

of increasing size g2 = 〈m1, m2〉,. . . , g4 = 〈m1, m2, m3, m4〉 (g1 is the trivial group and

g5 = g4). The groups gi have automorphism groups Aut(g2) = Dih4, Aut(g3) = Z2 × S4

and Aut(g4) = Aut(g5) = Z2 ≀ A5, which are Weyl groups of irreducible Coxeter

systems of type I2(4), B3 and D5, respectively (see Table 1). The corresponding outer

automorphism groups are Z2, Dih6 and S5, which are attached to the Coxeter systems
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A1, I2(6) and A4.

3.5. Automorphism groups of mutually unbiased bases for multiple qubit systems

The finite geometry underlying higher-order qubits was studied in [17, 24, 25]. The

concept of a GQ generalizes to that of a polar space [24] but the n-qubit spaces (n > 2)

fail to satisfy the axioms of near-linearity [24]. The latter property may be approached

using advanced geometrical concepts such as modules over rings [26]. Here, we restrict

our interest to the geometry underlying mutually unbiased bases, because a link to

reflection groups of the unitary type may be observed. Further ramifications between

the geometry of symplectic polar spaces and group theory can be found in [27].

Let us consider a maximal independant set of the three qubit system as in Sec (3.4).

The cardinality of the set is 7 (less than the cardinality 9 = 23 + 1 of a complete set of

mutually unbiased bases in the same dimension). The groups gi, and their automorphism

groups Aut(gi) and Out(gi), built by increasing the number of generators are given in

Table 1.

gi g2 g3 g4 g5 g6

G Z2
2 (Z4 × Z2) ⋊ Z2 (Z2 ×Q) ⋊ Z2 Z2 × ((Z2 ×Q) ⋊ Z2) g6

Aut(G) Dih4 Z2 × S4 Z2 ≀ A5 Z2
2 ≀ A5 Z3

2 ≀ A5

|Aut(G)| 8 48 1920 61440 1966080

Out(G) Z2 Dih6 S5 (Z2 × Z2) ⋊ M20 (Z2 × Z4) ⋊ M
(2)
20

Table 1. Group structure of an independant set of the two-qubit (g2 to g4) and three-

qubit systems (g2 to g6). G denotes the identified group and Aut(G) the corresponding

automorphism group. Q is the eight-element quaternion group.

Every automorphism group in Table 1 is recognized to be a unitary reflection group

of the form Zl
2 ≀ A5 = G(2l, 2, 5), the corresponding outer automorphism group is the

unitary reflection group G(2l−1, 1, 5) (l ≥ 1). The latter possesses a normal perfect

subgroup M l−1
20 equal to the central quotient of G(2l, 2, 5), of order 960 and 15360,

respectively. Group M20 (see Appendix 1) is the smallest perfect subgroup for which

the derived subgroup is different from the set of commutators; this property applies to

group M
(2)
20 and one can surmise that it also applies to higher-order group of the same

series.

The above approach encompasses the automorphisms of some non-additive

quantum codes [28]. It also connects to the topological approach of quantum computing

as shown in the next section.

4. Reflection groups within Clifford groups and quantum fault tolerance

In this section, we shall demonstrate that some unitary reflection groups and entangling

Clifford gates [2] are closely related topics.
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A n-qubit quantum gate can be viewed as a homomorphism from Pn to itself; in this

respect, bijective homomorphisms (automorphisms) are expected to play an important

role for protected quantum computations. Clifford gates are a class of group operations

stabilizing Pauli operations [29, 2]. Any action of a Pauli operator g ∈ Pn on a n-qubit

state |ψ〉 can be stabilized by a unitary gate U such that (UgU †)U |ψ〉 = U |ψ〉, with

the condition UgU † ∈ Pn. The n-qubit Clifford group (with matrix multiplication for

group law) is

Cn =
{
U ∈ U(2n)|UPnU

† = Pn

}
. (10)

In view of the relation U † = U−1 for U ∈ U(2n), any normal subgroup Qn =

{UgU−1, g ∈ Qn, ∀U ∈ Cn} of Cn should be useful for stabilizing the errors. A group

extension 1 → Qn → Cn → Cn/Qn → 1 carries some information about the structure of

the error group Pn and its normalizer Cn in U(2n). Using this strategy, we shall arrive

very close to Aut(Pn), and we shall endow it with a new representation in terms of

Clifford gates.

Our clear-sighted reader will already have noticed that the dihedral groups Dih4

and Dih6, and the wreath products Z
l
2 ≀ A5 encountered in the previous section, are

entangling in the sense of [2] (they contain an entangling gate). Notably, reflection

groups G(2l, 2, 5) get connected to topological quantum computation à la Yang-Baxter,

a topic recently investigated in [5].

Before handling these topological gates, we recall the following founding result [29].

Let H be the Hadamard gate, P the π/4 phase gate, and let CZ = Diag(1, 1, 1,−1)

be the entangling two-qubit controlled-Z gate. Then any n-qubit (n ≥ 2 ) gate U in Cn

is a circuit involving H , P and CZ, and conversely.

4.1. The single qubit Clifford group, GL(2, 3) and G2

The one-qubit Clifford group possesses a representation in terms of the gates H and P

as C1 = 〈H,P 〉. Its order is |C1| = 192. The center is Z(C1) ∼= Z8, the central quotient

is C̃1 = S4 and the commutator subgroup is C′
1
∼= SL(2, 3).

Let us display two important split extensions. One is related to the magic group

〈T,H〉 ∼= GL(2, 3), where T = exp(iπ/4)PH , which was introduced in [30]

1 → GL(2, 3) → C1 → Z4 → 1. (11)

A second important split extension sends back to the reflection group Dih6 encountered

in Eq (4)

1 → P1 → C1 → Dih6 → 1. (12)

The Clifford group C1 modulo the Pauli group P1 corresponds to the outer automorphism

group of P1 (the word modulo means that we are dealing with the group quotient C1/P1).

This interesting outcome (relating issues about the outer automorphism group of the

Pauli group and issues about the quantum gates, via the entangling dihedral group Dih6

of the G2 Coxeter system) turns out to still hold for the two-qubit system.
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4.2. The two-qubit Clifford group, U6 and A1A5

As for the two-qubit Clifford group, the representation is C2 = 〈C1 ⊗ C1,CZ〉. One has

|C2| = 92160 and Z(C2) = Z(C1). The central quotient C̃2 satisfies

1 → U6 → C̃2 → Z2 → 1. (13)

The group U6 = Z
4
2 ⋊ A6 was found in Eq (7) to be the stabilizer of an hexad in

M22. Group C̃2 is twice larger than Aut(P2) but both posses U6 as an extension group.

Another relevant expression is the Clifford group C2 modulo the Pauli group P2 as the

direct product

C2/P2 = Z2 × S6, (14)

a group also isomorphic to Out(P2), as found in Eq 8. The reducible Coxeter

system A1A5 underlies these group isomorphisms. Another relevant isomorphism is

S6
∼= Sp(4, 2). The symplectic groups Sp(2n, 2) are well known to control the symmetries

of n-qubit Clifford groups [31].

4.3. The three-qubit Clifford group and E7

To generate the three-qubit Clifford group, one can use the representation C3 =

〈H ⊗H ⊗ P,H ⊗ CZ,CZ ⊗H〉. The following split extension is well known [31]

C̃3 = Z
6
2 ⋊ W ′(E7), with W ′(E7) = Sp(6, 2). (15)

One has |Z(C3)| = 8 and
∣∣∣C̃3

∣∣∣ = 92 897 280. It should be clear that, when one passes from

two to three qubits, the Weyl group W ′(E7) = Sp(6, 2) replaces W (A5) = S6. Based

on cardinalities, one can suspect that a relation, generalizing (12) and (14), relating

the outer automorphism group and C3 modulo P3 still holds, i.e., C3/P3 = Out(C3) =

Z2×Sp(6, 2). This relation suggests the possible existence of irreducible Coxeter systems

hidden in C2 and C3, that would play a similar role than the Weyl groupG2 of the hexagon

plays for the single qubit system. This hypothetical system can be foreseen by reading

Sec 3.5 and will be uncovered in the next section.

4.4. Topological entanglement, the Yang-Baxter equation, the Bell groups and Coxeter

system E6

Topological quantum computing based on anyons was proposed as a way of encoding

quantum bits in nonlocal observables that are immune of decoherence [4, 32]. The

basic idea is to use pairs |v, v−1〉 of “magnetic fluxes” for representing the qubits and

permuting them within some large enough nonabelian finite group G such as A5. The

“magnetic flux” carried by the (anyonic) quantum particle is labeled by an element of

G, and “electric charges” are labeled by irreducible representation of G [33].

The exchange within G modifies the quantum numbers of the fluxons according to

the fundamental logical operation

|v1, v2〉 →
∣∣v2, v

−1
2 v1v2

〉
, (16)
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a form of Aharonov-Bohm interactions, which is nontrivial in a nonabelian group. This

process can be shown to produce universal quantum computation. It is intimately

related to topological entanglement, the braid group and unitary solutions of the Yang-

Baxter equation [5]

(R⊗ I)(I ⊗ R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R), (17)

in which I denotes the identity transformation and the operator R: V ⊗ V → V ⊗ V

acts on the tensor product of the two-dimensional vector space V . One elegant unitary

solution of the Yang-Baxter equation is a universal quantum gate known as the Bell

basis change matrix

R = 1/
√

2




1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1


 . (18)

This gate is an entangling [2] and also a match [34] gate. In the words of [5], matrix R

“can be regarded as representing an elementary bit of braiding represented by one string

crossing over one another”. In this section, we shall not examine further the relation to

the braid group, but explore the relation of the gate R to unitary reflection groups such

as D5 and higher-order systems such as those encountered in Sec 3.5.

This can be done by replacing the gate CZ in the definition of the Clifford group

by the new entangling gate R and by building the Bell group as follows

B2 = 〈C1 ⊗ C1, R〉 . (19)

The Bell group B2 is a non-normal subgroup of C2. It presents a structure quite similar

to C2: the central quotient, as the one of its parent, only contains two normal subgroups

Z4
2 and M20 = Z4

2 ⋊ A5 (The alternating group A5 replaces A6, and M20 replaces U6 of

Eq 13.) The new important feature is that B̃2 involves the Weyl group of the irreducible

Coxeter system D5, already encountered in the automorphisms of a complete set of

mutually unbiased bases. The central quotient B̃2 reads

B̃2 = Z
4
2 ⋊ S5 = W (D5). (20)

The Pauli group P2 is normal in B2 and a relation similar to (14) holds

B2/P2 = Z2 × S5. (21)

Let us pass to the generalization of B2 to the three qubit Bell group

B3 = 〈H ⊗H ⊗ P,H ⊗ R,R ⊗H〉 . (22)

Now, B3 is a non-normal subgroup of the three qubit Clifford group C3. Its central

quotient may be written in a form replacing (15)

B̃3 = Z
6
2 ⋊ W ′(E6), with W ′(E6) = SU(4, 2) ∼= PSp(4, 3), (23)
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in which SU(4, 2) := SU(4,F2), the special unitary group of four by four (determinant

one) matrices over the field F2, is isomorphic to the projective symplectic group

SU(4, 3) := PSp(4,F3) over the field F3.

The (exceptional) irreducible Coxeter system E6 controls the structure of the Bell

group B3. The Coxeter system is of rank six and the generating relations are

x2
1 = x2

2 = . . . = x2
6 =

(x1x2)
2 = (x2x3)

2 = (x1x4)
2 = (x1x5)

2 = (x2x5)
2 =

(x3x5)
2 = (x1x6)

2 = . . . (x4x6)
2

(x3x1)
3 = (x4x2)

3 = (x4x3)
3 = (x5x4)

3 = (x6x5)
3 = 1. (24)

The weight lattice of the Weyl group W (E6) is as follows

LW (E6) :=




4 3 5 6 4 2

3 6 6 9 6 3

5 6 10 12 8 4

6 9 12 18 12 6

4 6 8 12 10 5

2 3 4 6 5 4




The Weyl group W (E6), of order 51840, stabilizes the E6 polytope discovered in

1900 by T. Gosset. The isomorphism of W ′(E6) to SU(4, 2) indicates a link of the

three-qubit Pauli group to the generalized quadrangle GQ3 of the symplectic geometry

of dimension 4 over the field F3 (see [27], p 125). This generalizes our result concerning

the symplectic generalized quadrangle GQ2 associated with the two-qubit Pauli group

P2. The isomorphism of W ′(E6) to the groups SU(4, 2) and PSp(4, 3) provides an

example of a group with two different BN pair structures (see [27] for the meaning of

this group structure).

5. Discussion

Reflection groups form the backbone of the representation theory of Lie groups and Lie

algebras, which were proposed by E. P. Wigner through a study of the Poincaré group

to understand the space-time symmetries of elementary particles. In this essay, we have

unraveled specific symmetries of multiple qubit systems (sets of 1
2
-spin particles) and

found them to be governed by specific Coxeter systems (such as D5 and E6) and complex

reflection groups (such as G(2l, 2, 5)). These symmetries have particular relevance to the

topological approach of quantum computation [5] and to entangling groups of quantum

gates [2].

We would like to view the reflection groups W (D5) and W (E6) as well as the

associated central quotient of Bell groups B̃2 = Z4
2 ⋊ S5 = W (D5) (see Eq (20)) and

B̃3 = Z6
2 ⋊W ′(E6) (see Eq (23)) in an unifying geometrical perspective. Let us start by

looking at the list of non-solvable maximal subgroups of W (E6). One recovers W ′(E6)

(order 25920 and length 1), W (D5) (order 1920 and length 27), W (F4) (order 1152 and
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length 45) and A6.Z2
2 (order 1440, length 36). These numbers are akin to the structure

of smooth cubic surfaces.

A smooth cubic surface K3 of the three-dimensional projective space contains a

maximum of 27 lines in general position . This results goes back to the middle of 19th

century with contributions by A. Cayley, L. Cremona and many others [35, 40]. One can

find sets of six mutually skew lines, and very special arrangements of Schläfli’s double

sixes of lines (whose incidence is nothing but a 6×6 grid with the points of the diagonal

missing). One can also form configurations of tritangent planes, i.e., planes that intersect

the surface along the union of three lines. The symmetry group of the configuration

of the 27 lines on K3 is W (E6), the stabilizer of a line on the cubic surface is W (D5)

[36] and the ratio of cardinalities is |W (E6)|/|W (D5)| = 27. Each of the 45 tritangent

planes is stabilized by the Weyl group W (F4), and each of the 36 double sixes possesses

the non-split product A6.Z
2
2 as group of automorphisms (see also Eq (7)). Thus, the

geometrical structure of K3 perfectly fits the structure of W (E6) into its non-solvable

maximal subgroups. See also [41].

We leave as an open question how to endow a smooth cubic surface with a quantum

structure and where/how to meet/engineer the corresponding symmetry in the real

world. As a final note, the quest for fault tolerance in quantum computing seems to

lead to intriguing relationships between several areas (group theory, algebraic geometry

and string theory) so far not fully explored.
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Appendix 1

On group commutators and group extensions

An on-line introduction to group theory may be found in Ref [42].

A normal subgroup N of a group G is invariant under conjugation: that is, for each

n in N and each g in G, the conjugate element gng−1 still belongs to N . Noticeable

examples are as follows. The center Z(G) of a group G (the set of all elements in

G, which commute with each element of G) is a normal subgroup of G. The group

G̃ = G/Z(G) is called the central quotient of G. Our second example is the subgroup

G′ of commutators (also called the derived subgroup of G). It is the subgroup generated

by all the commutators [g, h] = ghg−1h−1 of elements of G. The set K(G) of all

commutators of a group G may depart from G′ [38].
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Normal subgroups are the cornerstone of group extensions. Let P and C be two

groups such that P is normal subgroup of C. The group C is an extension of P by H if

there exists a short exact sequence of groups

1 → P f1→ C f2→ H → 1, (25)

in which 1 is the trivial (single element) group.

The above definition can be reformulated as: (i) P is isomorphic to a normal

subgroup N of C, (ii) H is isomorphic to the quotient group C/N .

In an exact sequence the image of f1 equals the kernel of f2; it follows that the map

f1 is injective and f2 is surjective.

Given any groups P and H the direct product of P and H is an extension of P by

H .

The semidirect product P⋊H of P and H is as follows. The group C is an extension

of P by H (one identifies P with a normal subgroup of C) and: (i) H is isomorphic to a

subgroup of C, (ii) C=PH and (iii) P∩H = 〈1〉. One says that the short exact sequence

splits.

The wreath product M ≀H of a group M with a permutation group H acting on n

points is the semidirect product of the normal subgroup Mn with the group H , which

acts on Mn by permuting its components.

Let G = Z2 ≀ A5, in which A5 is the alternating group on five letters, then G′ is a

perfect group with order 960 and one has G′ 6= K(G). Let H = Z5
2 ⋊A5, one can think

of A5 having a wreath action on Z5
2 . The group G′ = H̃ = M20 [37] is the smallest

perfect group having its commutator subgroup distinct from the set of the commutators

[38]. Some unitary reflection groups (see Sec 3.5) specify wreath actions in an essential

way, seeing that G(2l, 2, 5) = Zl
2 ≀A5.

On group of automorphisms

Given the group operation ∗ of a group G, a group endomorphism is a function φ from

G to itself such that φ(g1 ∗ g2) = φ(g1) ∗ φ(g2), for all g1, g2 in G. If it is bijective, it is

called an automorphism. An automorphism of G that is induced by conjugation of some

g ∈ G is called inner. Otherwise it is called an outer automorphism. Under composition

the set of all automorphisms defines a group denoted Aut(G). The inner automorphisms

form a normal subgroup Inn(G) of Aut(G), that is isomorphic to the central quotient

of G. The quotient Out(G) = Aut(G)/Inn(G) is called the outer automorphism group.

On maximal non-solvable subgroups

A subgroup H of G is said to be a maximal subgroup of G if H 6= G and there is no

subgroup K of G such that H < K < G. A normal subroup N of G is a maximal

normal subgroup iff the quotient G/N is a simple group (By definition a simple group

G only contains the normal subgroups {1} and G itself).
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Let H a subgroup of G, and let G = G0 ⊳G1 ⊳ · · ·⊳Gn = H be a series of subgroups

with each Gi a normal subgroup of the previous one Gi−1. A group G is said to be

solvable if the series ever reaches the trivial subgroup {1} and all the quotient groups

Gi/Gi+1 are abelian. An equivalent definition is that every subgroup of the series is the

commutator subgroup of the previous one. Otherwise G is called a non-solvable group.

Non-solvable maximal subgroups of the reflection group W (E6) have a geometrical

significance displayed in the conclusion of the present paper.
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