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Abstract. The paper compares two independent approacheseteorology, the soil moisture content has a great impact on
to estimate soil moisture at the regional scale over athe transfer of energy from the surface into the atmosphere
4625 kn? catchment (Liebenbergsvlei, South Africa). The since it controls the evapotranspiration fluxes (Entekhabi et
first estimate is derived from a physically-based hydrologicalal., 1996).

model (TOPKAPI). The second estimate is derived from the An accurate estimation of soil moisture is difficult to ob-
scatterometer on board the European Remote Sensing satéhin since it is highly variable in both space and time (West-
lite (ERS). Results show a good correspondence betweearn and Bbschl, 1999). The two main sources of soil mois-
the modelled and remotely sensed soil moisture, particularlyture information come from ground-based and remote sens-
with respect to the soil moisture dynamic, illustrated overing estimations. In the field, data can be obtained from gravi-
two selected seasons of 8 months, yielding regresiforo- metric sampling, this gives the most accurate measurement
efficients lying between 0.68 and 0.92. Such a close similar-of the soil water content but is obviously not suitable for
ity between these two different, independent approaches iautomation. Probes (Neutron or Time Domain Reflectom-
very promising for (i) remote sensing in general (ii) the use etry) can be calibrated to also provide an accurate and possi-
of hydrological models to back-calculate and disaggregatebly automated estimation of soil moisture. Ground observa-
the satellite soil moisture estimate and (iii) for hydrological tions have helped to document soil moisture patterns at plot
models to assimilate the remotely sensed soil moisture. to hillslope scales (less than 1 Rpin different regions of the
world (e.g. Grayson et al., 1997; McNamara et al., 2005; De
Lannoy et al., 2006; Bbrard et al., 2006). However, when
catchment scales are of interest, one is rapidly confronted
with scaling issues (Western andiBthl, 1999) since ground
The content of water in the first active metres of soil plays measurem.ents provide soil moisture (_astimation limited (i) to
a central role in the regulation of the hydraulic and energySMall spatial support (from few centimetres for probes, to
transfers between the soil, the surface and the atmospheré.M for gravimetric sampling) and (ii) to relatively small ar-
Soil moisture is thus widely recognized as a key variable in®2S (extension in the order of a few hectares) since the im-
numerous environmental disciplines especially in meteorol-Pleémentation of a probe network of large extent is subject to
ogy, hydrology and agriculture. For hydrological and agri- ©PVious logistical and economic constraints. o
cultural purposes, the estimation of soil moisture is crucial Rémote sensing of soil moisture from satellites is a
since it controls (i) the quantity of water available for the Promising alternative to ground measurements. Microwave
growth of vegetation (Rodriguez-Iturbe, 2000), as well as thefféquencies are most often used, both in active (scatterome-
recharge of deep aquifers (Hodnett and Bell, 1986); (ii) theter_or SAR) and passive (radiometer) mstruments_, to est|_mate
saturation of soils which controls the partitioning of rainfall SOil moisture (see Wagner et al., 2007 for a detailed review).

between runoff and infiltration (Merz and Plate, 1997). In 1he advantage of microwave remote sensing is that it pro-
vides extended soil moisture estimations, gridded on aver-

) aged surface (footprint) from tens of metres to 50 km resolu-
Correspondence to: T. Vischel tion, scales more suitable for catchment hydrology. However
BY (theo.vischel@hmg.inpg.fr) microwave estimations are only representative of the top few
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Fig. 1. Location of the Liebenbergsvlei catchment (4625knSouth Africa.

centimeters of soil, provided that the vegetation is not tooolution typical of remotely sensed soil moisture fields, (ii)
dense, and the data availability is often dependent on a lowemotely sensed soil moisture estimates to be assimilated
frequency repeat cycle at a point (from 1 day to several week#nto hydrological models. Wagner et al. (2003) point out the
depending on the satellite). necessity of comparing remotely sensed soil moisture with
Due to the uncertainties associated with the estimatiodndependent data derived from ground observations, models

of soil moisture, Kostov and Jackson (1993) suggest tha@nd/or other remote sensing techniques. Blyth (2002) men-
the ideal approach for estimating soil moisture is to com-tions the necessity of modelling the soil moisture in detail
bine soil moisture measurements with hydrological models@nd intercomparing models and data. Pellenqg et al. (2003)
by using assimilation techniques. In fact, remotely sensedirgue that it is essential to accurately understand all the pro-
soil moisture is often directly assimilated into hydrological c€sses involved in the soil moisture variability and their scale
models (Otté and Vidal-Madjar, 1994; Pauwels et al., 2002; interactions. For that purpose, Western et al. (2002) point
Parajka et al., 2006) or into land surface schemes (BrucklePut the potential of process-based hydrological models that
and Witono, 1989; Houser et al., 1998; Reichle et al., 2001:explicitly represent the dynamic and the spatial scales of the
Walker et al., 2001) in order to initialize, drive, update and/or Processes that control the soil moisture.

re-calibrate models, with the main objective of improving the  In the present study, we compare two independent ap-
simulations of river discharges or atmospheric fluxes respecproaches of soil moisture estimation on a regional size catch-
tively. However, very few studies in the literature detail the ment in South Africa (Liebenbergsvlei, 4625 kmThe first
comparison between the estimations of soil moisture from reestimates are derived from the physically-based distributed
mote sensing with the estimations from hydrological modelshydrological model TOPKAPI (Liu and Todini, 2002). The
(Biftu and Gan, 2001; Parajka et al., 2006). One must how-second set of estimates are derived from the scatterometer on
ever be able to know a priori the compatibility between the board the European Remote Sensing satellite ERS.

model and remotely sensed soil moisture estimations to bet- The region, data and hydrological model are presented in
ter evaluate the effective potential of (i) hydrological mod- Sect. 2. In Sect. 3, the capacity of the TOPKAPI model to
els to provide back-calculated estimations of soil moisturemimic the discharges on the studied catchment is evaluated.
for evaluating remotely sensed soil moisture, followed by theln Sect. 4, the modelled and remotely sensed soil moisture
use of physical disaggregation tools to improve the low res-estimates are compared. The results are discussed in Sect. 5.

Hydrol. Earth Syst. Sci., 12, 751-767, 2008 www.hydrol-earth-syst-sci.net/12/751/2008/
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Fig. 2. (a) Catchment characteristicgh) Estimations a priori of the TOPKAPI model parameters.

2 Region, data and hydrological model 5min. time step ground rainfall measurement for the period
1993-2002.

Two flow gauges (CH8020 and CH8026, labelled 1 and 2
in Fig. 3) are available at the outlet of the catchment and fur-
The Liebenbergsvlei catchment (4625%ris located in the  ther upstream, with uneven data availability and quality be-
Free State province of South Africa (Fig. 1). The climate is tween 1993 and 2001. External flows arrive from Lesotho via
semi-arid, characterized by a mean annual rainfall betweemn inter-basin transfer, beginning in September 1997. These
600 and 700mm and a mean annual potential evaporatioiter-basin transfer flows are recorded at a station located
between 1400 and 1500 mm. The landscape is characterizegt the outlet of the transfer tunnel (CH8036, labelled 3 in
by (i) hillslopes and steep relief in the southern part of theFig. 3). The quality of the flow data at stations 1 and 2 (in
catchment which corresponds to the border of the Lesothaerms of data availability) has improved since 2002, but the
and the Maluti mountains, (i) grassland and cropland overrecent flow data were not used because the dense rain gauge

the bulk of the catchment since farming is the main activity network was no longer operational after the year 2002.
in the region. These features are shown in the two first digital

maps of Fig. 2a (Digital Elevation Model-DLSI, 1996; and 2.2.2 Satellite derived soil moisture data
Landcover/use-GLCC, 1997). Information about soil prop- _ _ _ . .
erties is also available (Fig. 2a, Soil type-SIRI, 1987; Soil The remotely sensed soil moisture estimates used in this

2.1 Characteristics of the Liebenbergsvlei catchment

texture-Midgley et al., 1994).
2.2 Hydrologic data set

2.2.1 Rainfall and flow data

study are derived from scatterometers on-board of the satel-
lites ERS-1 and ERS-2 (Wagner et al., 2003). The ERS
scatterometer is a C-band radar (5.3 GHz) operated at ver-
tical polarization and a spatial resolution of 50 km at a 25 km
grid spacing. Global coverage is achieved by the satellite ev-
ery 3 or 4 days on average, but since the ERS scatterometer

Hydrological data are available on the catchment (Fig. 3). Ais in operational conflict with the ERS Synthetic Aperture
network consisting of 45 tipping bucket rain gauges providedRadar, only a part of the coverage is effectively available for

www.hydrol-earth-syst-sci.net/12/751/2008/
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Fig. 3. Hydrological data availability on the Liebenbergsvlei catchment, South Africa.

scatterometer measurements. The repeat cycle at one pointéglopted for the data used here is based on the change detec-
thus 7 days on average, varying irregularly from 3 to 10 daystion method proposed by Wagner et al. (1999a). To account
ERS-1 and ERS-2 have acquired backscatter data since tHer effects of roughness and heterogeneous land cover, sea-
launch of ERS-1 in 1991 up to the present. However, ERS-Zsonally varying minimum and maximum backscatter curves
data availability has been affected by the failures of the gyro-(crc?ry and a\,%et) are determined based on the nine-year mea-
scopes in January 2001 and of the tape record in June 2003urement period 1992—-2000. The two limiting reference val-
for which reason only data for the years 1992 to 2000 haveues are assumed to be representative of the vegetated land
been available for this study. surface under respectively dry and saturated soil conditions.
The scatterometer soil moisture retrieval algorithm takes' € Mmeasured backscatter coefficients are then compared to

0 . . - . . .
into account the effects of land cover, surface roughness anddry andoyer, res“'t'”g in the definition offtopsoﬂ_;nogture
seasonal vegetation development on the radar signal. AftefOntentsm; (<5cm) interpreted as a surface soil moisture

some regional studies (Wagner et al., 1999a, b, c) the algol-€- 2 relative quantity) ranging between 0 and 1 (respec-

. T — 0, i i -
rithm was successfully applied on a global scale and has reliVély: 0-100%), scaled between zero soil moisture and satu

sulted in the first global remotely sensed soil moisture datd@tioN- Atany timer, m; is then defined as:

set for the period 1992—-2000 (Wagner et al., 2003). The o0 (1) — 60
data have been released in 2002 and can be obtained frop, (1) = O—Odry (1)
http://www.ipf.tuwien.ac.at/radar/. The data have been eval- Owet ~ Odry

uated at local (Pellarin et al., 2006), regional (Crow and he eff ol h Ken i
Zhan, 2007) and global (Dirmeyer et al., 2004) scale. No ' he effects of plant growth and decay are taken into account

study has yet evaluated the quality of the scatterometer softrough the application of varying seasonaﬂg{ and.OWEt
moisture data at local to regional scales in Africa. The ERSvalues as proposed by Wagner et al. (1999b). This method

scatterometer grid points over the Liebenbergvlei are repre€XPlOits the multi-incidence capabilities of the ERS scat-
sented by the red crosses on Fig. 3. terometer to describe the effect of enhanced volume scatter-

-~ ~ingin the vegetation layer and the corresponding decrease of

content of the surface soil layer due to the strong varia-

tion of the dielectric constant of the soil with water content. 2.3  The hydrological model TOPKAPI

However other factors influence the scatterometer backscat-

ter signal. Soil moisture retrieval methods must mainly takeTOPKAPI is an acronym which stands for TOPo-
into account the effects of vegetation, surface roughness angraphic Kinematic APproximation and Integration and is a
heterogeneous land cover. The retrieval method techniquehysically-based distributed rainfall-runoff model. In the

Hydrol. Earth Syst. Sci., 12, 751-767, 2008 www.hydrol-earth-syst-sci.net/12/751/2008/
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Table 1. Expressions and/or typical values of the coefficigrdnda of Eq. (3) for each component store in a cell.

Reservoir b; o
. Ce. X . LK, tan(B;
Soil b; = L&y with Cy, = ﬁ o= og
X ' (Q-Vi 7'9’1') L? with
where:

2<a; <4
Wherew; is a pore-size distribution parameter
(Brooks and Corey, 1964)

— X is the cell horizontal dimension

— L;is the soil depth

— K, is the saturated hydraulic conductivity
—tan(B;) is the tangent of the ground slopg
— 65, is the saturated soil moisture content
—6y,is the residual soil moisture content

Co. X .
Overland bi = <5 with C,, = n%«/tan(ﬂ,-) o=y = %
—n,, is Manning’s rougﬁness coefficient
—tan(B;) is the tangent of the ground slopge
Ce, W .
Channel bi = x e With C¢; = %‘/tan(ﬂci) @=ac=3

— X. is the channel lengthX(, = X or X, = +/2X)
— W; is the width of the channel

—n¢; is Manning’s roughness coefficient
—tan(B, ) is the tangent of the channel slopg

original version proposed by Liu and Todini (2002), TOP- 4. Local transmissivity, like horizontal subsurface flow in
KAPI consists of five main modules comprising soil, over- a cell, depends on the integral of the total water content
land, channel, evapotranspiration and snow modules. The  of the soil in the vertical.

first three are modules in the form of non-linear reservoirs

controlling the horizontal flows. The reservoir equations 5- In the soil surface layer, the saturated hydraulic conduc-
are approximated by the kinematic wave model differential  tivity is constant with depth and, due to macro-porosity,
equations at a point. The well-known point-scale differential IS much larger than in deeper layers.

equations are then analytically integrated in space to the fi-
nite dimension of a grid cell, which is taken to be a pixel of
the digital elevation model (DEM) that describes the topogra-

phy of the catchment. The evapotranspiration module impleThe absence in the TOPKAPI model of an explicit repre-

mented for this study has been slightly modified comparedye yiation of infiltration-excess runoff processes (Hortonian
to the original module presented in Liu and Todini (2002). processes) might be of concern for a semi-arid catchment

The show module component is ignored in the present studyie the Liebenbergsvlei. However, as discussed later (see
as the influence of snow can be neglected for the Liebengecy 5) recent field experiments have shown that such an as-
bergsvlei catchment. sumption is in fact realistic on the Liebenbergsvlei.

6. During the transition phase, the variation of water con-
tent in time is constant in space.

2.3.1 Model assumptions 2.3.2 Ordinary Differential Equations controlling the reser-

) . voir flows
The TOPKAPI model is based on six fundamental assump-

tions (Liu and Todini, 2002): The equations of each of the three reservoirs (soil, overland
and channel) that comprise a cetlan be written as a classi-

1. Precipitation is constant in space and time over the mte-Cal differential equation of continuity:

gration domain (namely the single grid cell or pixel and
the basic time interval, usually few hours). dvi _ oin _ ot @
t - X i
2. All precipitation falling on the soil infiltrates, unless the ) ) )
soil is already saturated (Dunne, 1978). where all the variables are observed at timé; is the total
volume stored in the reservoifd—‘f is the rate of change of
3. The slope of the groundwater table coincides with thewater storageQ!" is the total inflow rate to the reservoir,
slope of the ground. Q?“I is the total outflow rate from the reservoir.

www.hydrol-earth-syst-sci.net/12/751/2008/ Hydrol. Earth Syst. Sci., 12, 751-767, 2008
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Table 2. Variables computed at each celbetween time andAz: see Fig. 4 for flow paths.

Initial value:  Inflow rates during ODE solution: Outflow rates during Flow partitioning:
Volume atr [z, t+Af] Volume att+Ar ¢, t+Af] Flow rate to next cell during
[t, t+ A1)
Soil Vs, (1) 's’l‘ =P X2+ Q_?,.p + Qtj,.p Vs, (t + Ar) Qg“t To next soil resevrlyg)(ir
_ Ql!? B VJ,‘ (t+AAt;7VSi 0) Q?[Ut_ QSEIXCGSS_ )1(20 ?[Ut
Overland  V,, (1) Q',Q = Qgxeess Vo, (t + Ar) QS,-Ut To next soil reservoir
= max(0, Q?iut — Qsmax) = oin _ Vo, (14+AD =V, (1) QS,.”‘— % f,’}“
with Qs max = XK, L; tan(B) oi At
Channel V(1) on = o 4 %ng—i— %QS}“ Ve, (t 4 A1) oot To next channel
— Qin _ V"i (Z+AI)—V(-‘. ® Q?,’ut
G At

The kinematic wave approach used to resolve the contiputed for each reservoir from the ODE finite difference solu-
nuity and mass balance in TOPKAPI (by neglecting the dy-tion showing the reservoir and cell connectivity are reported.
namic acceleration terms in the energy equation) leads to dable 2 is associated with Fig. 4 which illustrates the fluxes
nonlinear relationship betwee@?“t andV;, turning Eq. (2) and connections for a typical modelled cell. Liu and Todini
into to an ordinary nonlinear differential equation (ODE) of (2002) declare that the flow direction drainage in TOPKAPI

the form: is only possible in four directions (north, east, south or west).
yp

av; _ However the limitation of the drainage to 4 directions can

o o' — bV 3) lead to an unrealistic representation of the relief variability.

) o ) ) } Indeed, the filling of the sinks in the Digital Elevation Model
whereb; is constant in time (it frequently varies spatially) treatment results in a strong smoothing of the relief variabil-
and is a function of the geometrical and physical charactersy, pecause of the limitation of the drainage in only 4 direc-
istics of the reservoir. The parametgralso depends on the {jons (D4). For this reason, the TOPKAPI model was adapted
exponent coefficient which originates from either the infil- {5 pe compatible with 8 direction drainage (D8), which in-
tration equations describing soil reservoir behaviour, or fromg,des the 4 extra pixels beyond the diagonals. This was
Manning’s equations used in the overland and channel resegchieved by using a calculation procedure (separate from the
voir specifications (see Liu and Todini, 2002 for more details 5|5 pased one) to obtain the slopes of the soil and overland
about the theoretical basis). For thg three reservoirs (sOilyeservoirs as distinguished from the slopes of the channel,
overland and channel), the expressionsonda are re-  gach using D8. The slopes of the soil and overland reser-
ported in Table 1. Depending on the type of resendlfiis  \girs were computed according to a neighbourhood function
a combination of the forcing variables (interconnecting flows ;51 representative of the mean slope within the cell and
between the elemental storage reservoirs within the cell anghys more representative of the transfers inside the cell (in
from upper connected cells, also including rainfall and evap-anq over the soil). The slopes used to transfer the flows in
otranspiration in the case of the soil reservoir; Table 2). the channel drainage network were computed from cell to

At each simulation time step, the inflow ra@ is com-  cgj| in 4 down-stream direction using differences in altitude.
puted, assumed to be a constant over the interval, then the

ODE equation is solved by numerical integration. In this ap-2.3.3 Evapotranspiration

plication of TOPKAPI a combination of a quasi-analytical

solution (proposed by Liu and Todini, 2002) with a numeri- The evapotranspiration module was slightly modified from
cal integration procedure based on the Runge-Kutta-Fehlberthe original version of Liu and Todini (2002). In the chan-
method (see e.g. Gerald and Wheatley, 1992) was used. Thigel, the evaporation is extracted at the rate of the potential
fast, numerically stable and accurate hybrid scheme was useglaporation of a free surface of water. On the hillslopes, the
to integrate the appropriate variations of Eq. (3) over the timeactual evapotranspiration is computed as a proportional ratio
interval At, dependent on the initial volume stored in the of the reference crop evapotranspiration depending on a con-
reservoir at timer, to obtain the volumé/;(r+Atr) stored  stant crop factok. and the current saturation of the reservoir
at t+Atr. This solution of Eq. (3) differs from the method computed at each time step.

recommended by Liu and Todini (2002) and was chosen af-

ter carefully examining the ability of the various solutions

to numerically satisfy the continuity equations at each time

step and in each cell. In Table 2 all the variables that are com-

Hydrol. Earth Syst. Sci., 12, 751-767, 2008 www.hydrol-earth-syst-sci.net/12/751/2008/
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Fig. 4. Water balance in the TOPKAPI model (note that for clarity, the evapotranspiration losses are not represented on the figure).

3 Comparison between modelled and observed logical spherical variogram with range of 30 km and a zero
discharges nugget (guided by Wesson and Pegram, 2006).
As no evapotranspiration data are available for the simu-
3.1 Modelling features lated periods on the catchment, the mean annual evapotran-

spiration over the region was used and disaggregated at a
daily time step, according to a mean seasonal signal deter-
ined by McKenzie and Craig (1999).

3.1.1 Selected period

From the data set presented in Sect. 2.2, two seasons of eigm
months were selected during which the rainfall and flow data3 2 TOPKAPI parameter adjustment
were both continuous and of good quality. The first sea-~"
son (Season 1) between November 1993 and June 1994 w%s2 1 A priori estimation of the parameters
used to adjust the parameters of the TOPKAPI model, with™ = prion estimati P

more emphasis on the flows at station 2, because the flowg f its phvsical basis. th del i b
were more trustworthy. It is worth noting here that the mea- ecause ol 1s physical basis, the model parameters can be

surement error of station 2 is estimated at less than 5% b)t;stlmated a priori from the catchment characteristics (Liu

the South African Department of Water Affairs and Forestry and Todini, 2002). The a priort values or range of values
(Brink Du Plessis, 2007, personal communication). The secOf the parameters of the model is reported in Table 3, as well

ond season (Season 2) between November 1999 and Jur?é’ trr]]e datla andZ)r I|teratrl]1re1r4eferences that ;Nire#g)iiflgln-
2000 is used in Sect. 3.2 as a model verification period. In er the values. Among the 14 parameters of the

both seasons the modelled soil moisture is compared with th .odglt,) 7;’“6 S?{ﬁt'a”y Va”"’;btlr?' As a:.cltlnmple.mkt)alnt to Tabli 3,
corresponding remotely sensed soil moisture in Sect. 4. 'g. 20 SNOWS € maps ot In€ spatially variavle parameters
and their link to the data available over the Liebenbergsvlei

3.1.2 Model resolution catchment (Fig. 2a). A Geographical Information System
was used in junction with the DEM in order to (i) compute

The model spatial resolution was imposed by the desirehe slope (ground slope tg$) and channel slope tgg)) of

to use a freely available DEM at 1km (DLSI, 1996; see each cell (ii) delineate the stream network and (iii) compute

Sect. 2.1). A 6 h time step was chosen which is small enougtihe Strahler orders of each channel reach (Strahler, 1957).
to model the main discharge variations, since the catchment he ordering method of Strahler is used to infer the values of

response time is estimated to be between 1 and 2 days.  the channel roughness Manning's coefficientsin Liu and
Todini (2002), channel orders of 1, 2, 3 and 4 were assigned

3.1.3 Forcing variables values of 0.045, 0.04, 0.035 and 0.035 for the Upper Reno
catchment in ltaly. In the absence of any information about

For the two seasons considered in this study, the 6 h time stefhe channel reach properties, these values were assumed to be

rainfields were Kriged at 1 km resolution by using a climato- suitable as starting values for the Liebenbergsvlei catchment.

www.hydrol-earth-syst-sci.net/12/751/2008/ Hydrol. Earth Syst. Sci., 12, 751-767, 2008
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Table 3. Values of the TOPKAPI model parameters estimated a priori from data and literature, and values of multiplying factors used for the
calibration procedure.

Parameter Value a priori Origin and references Calibrated multiplying factor value

Spatially variable (cf. Fig. 2b)

Ground Slope tap 1.7E-4-1.81E-1 DEM (DLSI,1996)

Channel Slope taB. 4.0E-5-3.1E-1 DEM (DLSI,1996)

Depth of surface soil layer (m) L 0.33-0.81 Soil type map (SIRI,1987) fac 1.0

Saturated hydraulic conductivity (m'$) K 1.67E-6-5.18E-4  Soil texture map (Midgley etal., 1994)  facg, 60.
+ Maidment (1993)

Residual soil moisture content 0y 0.02-0.09 Soil texture map (Midgley et al., 1994)
+ Maidment (1993)

Saturated soil moisture content Os 0.41-0.44 Soil type map (SIRI,1987)

Manning’s surface roughness coeff. no 0.025-0.1 Landuse map (GLCC, 1997) fac, 1.
+ Chow et al. (1988)

Manning’s channel roughness coeff. ne 0.035-0.045 Strahler order method (Liu and Todini 2002) ,fac 1.7

Constant

Horizontal dimension of cell (m) X 1000 DEM (DLSI,1996)

Non-linear soil exponent ag 25 Liu and Todini (2002)

Max. channel width at outlet (m) Wmax 40 Field pictures

Min. channel width forAyresholg(mM) Wmin 5 -

Area required to initiate channel &n Athreshold 2500000 -

Crop factor ke 1. Landuse map (GLCC, 1997)

The values of the overland roughness Manning’s coefficient Because of the uncertainty in the estimation of the catch-
n, were derived from the landuse/cover map (GLCC, 1997),ment’s characteristics from a priori datasets, a calibration
using the tables in Chow et al. (1988). Maps of soil depthswas required.

L and saturated soil moistuég were already available over

the catchment in the data set of soil properties (SIRI, 1987)3.2.2 Calibration procedure

The residual soil moisturé, and the hydraulic conductiv-

ity at saturationk; were derived from the soil texture map The method used to calibrate the model was inspired by
(Midgley et al., 1994) according to parameter tables for thethe Ordered Physics-based Parameter Adjustment method
Green-Ampt infiltration model (Maid_me_nt, _1993). AsinLiu (oppA) proposed by Vieux et al. (2004). This method aims
and Todini (2002), the pore-size distribution parame{er o calibrate the physically distributed hydrological model pa-
was uniformly set to the value 2.5. A sensitivity analysis (N0t rameters in a specific order. First the parameters control-
presented here) showed that varying the valug;afi the re-  |ing the production of the runoff are adjusted such that a dis-
alistic range of its values (between 2 and 4 according to '—iucharge volume objective function is minimized. Then the
and Todini, 2002) had only a small influence on the simula-parameters controlling the runoff routing are adjusted such
tions. As a first approximation, and because of the relativelyinat 5 discharge timing objective function is minimized. Ac-
homogeneous cropland/grassland landcover, the crop factQiording to a sensitivity analysis of the model parameters (not
ke was assumed to be spatially uniform over the catchmengpown here, but also in accordance with the work of Liu et
and equal to 1. al., 2005), the most important parameters controlling the pro-
The other parameters concern the channel geometry. Thgction in TOPKAPI are the soil depth and the soil con-
threshold value of the area over which the water is considere@uctivity K, while the timing of runoff is mainly controlled
to be drained in a channedqresnoid Was fixed at 25 krhaf- by the Manning roughness of the chanmghnd of the over-
ter checking the limit of the streams with those shown onjang surfacen,. In the absence of any quantitative infor-
1:250000 maps. The minimum and maximum width of the mation, the initial soil moistureV, inia;, Which was shown
channel (respectivelWmin and Wmax) were fixed at respec- g have a strong influence on the simulations, was also cal-

tively 5m and 35 m (estimated from photographs taken at thgprated. Ten values of mean catchment saturation between
flow stations). A linear relationship between the drained areaj oy, and 90% were tested.

and the channel width at a point proposed by Liu and Todini
(2002) was used to determine the channel width along th
catchment.

In order to have realistic patterns of initial soil moisture
Fields that preserve the most likely spatial distribution of soil
moisture on the catchment, the model was run with the a pri-
ori parameters and zero rainfall input, but with the initial soil
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Fig. 5. Modelled and observed hydrographs. Calibrafi@nand verification(b, c, d) of the model at two stations and for two distinct 8
month seasons.

saturation of the catchment set at 100% (meaning that eachsing the regression coefficienk?) in order to match the
cell was 100% saturated). During the process of drainagdiming of observed and modelled discharges at a 6 h time
with zero input, at each 6 hourly simulation time step, the step.

mean catchment saturation was calculated. From these sim- In order to reduce the computation time required by the
ulations, 10 soil moisture maps were extracted as the cellgalibration procedure, the calibration was carried out using
drained, corresponding as closely as possible to mean satur#ie flows estimated at station 2 (see Fig. 3). At this station,
tion levels between 90% and 1%. These 10 residual moistur¢he drainage area is 3563 kKmwhich effectively preserves

maps were used as reference soil moisture maps for the varthe main soil heterogeneity of the entire catchment.
ous levels of initialisation.

As suggested by Vieux et al. (2004) and by most of the
studies dealing with the calibration of distributed hydrolog- Figure 5a shows the results of the calibration. There is a

ical models, the parameters are not tuned independently f0g, correspondence between observed and modelled hydro-
each cell, but the parameter map is calibrated by using a mulg o yhs (Nash efficiency of 0.788). In Table 3 the values of the
tiplicative factor applied uniformly in space. For our appli- ¢4 calibrated multiplying factors are reported. It is worth
cation the four multiplicative factors to be applied werefac 4ting that all the values of the parameters estimated a priori

(for the soil depth), fag, (for the hydraulic conductivity), \yere quite appropriate except for the channel roughness and
fac,, (for the overland roughness) and fa¢for the channel ¢ 54| conductivity which have been increased respectively
roughness). by a factor of 1.7 and 60; this aspect will be discussed in
The trio of parameters (fac fack,, Vs_initial) @nd the pair ~ Sect. 5. The initial soil moisture was also adjusted by cal-
of parameters (fac, fag, ) were calibrated independently, ibration, using the 10 sets of initial conditions, to a mean
after verifying that they were effectively independent, mean-value of 40% over the catchment.
ing that their variation influenced exclusively (respectively) As a verification of the relevance of the calibration proce-
the production and the timing of runoff. The triplet (fac  dure and its effect on other discharge time series, the cal-
fack,, Vi _initial) Was adjusted in order to minimize the Root ibrated model was applied to the entire catchment. For
Mean Square Error (RMSE) objective function comparing the same season (Season 1) the observed and modelled
modelled and observed discharge volumes aggregated atdischarges at the outlet of the catchment (Station 1) are
monthly time step. Then the pair (fac fac,.) was adjusted plotted in Fig. 5b. Globally, there is once again a good

3.3 Results
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correspondence between observed and modelled flows, howvherem; is the surface soil moisture estimate from the ERS
ever at some points, the observed data seem to be unreliabeatterometer defined in Eq. (1. represents a characteris-
since some peaks recorded at Station 2 do not appear as thég time length depending to the soil properties (mainly soil
should at the outlet and the recession shape of the main pealepth, diffusivity and moisture state). To maintain the crucial
discharge seems somewhat unrealistic. In order to check thmdependence of the physically based approach of TOPKAPI
verification procedure on more reliable data, the model wasand the remotely sensed soil moisture estimates, it was de-
then applied to an independent season (Season 2). Duringided not to refine the estimation of the param@tdor the
this season, the discharges are influenced by the inter-basparticular study area by using the soil data. Thus the value
transfer flows arriving from Lesotho. In order to reliably of T7=20 days, suggested by Wagner et al. (1999c¢) as an av-
compare the modelled and observed discharges, the externatage value, was retained. More detailed discussions of the
flows observed at Station 3 were injected at the pixel in theSWI method can be found in Ceballos et al. (2005) and Pel-
channel located the closest to Station 3. Again in the absencharin et al. (2006).
of any information about the initial soil moisture, the value of A surrogate for SWI can easily be defined for TOPKAPI
40% calibrated for Season 1 using station 2 was assumed toy computing the relative soil saturation at each catchment
be applicable for Season 2. Results are plotted in Fig. 5¢c andell, for each time step of the simulation.
d. Again, acceptable simulations of the hydrographs were Two different scales are considered to make the compari-
obtained even if the main peak discharges are unexpectediyon between the modelled and remotely sensed soil moisture.
underestimated. One can however note that the timing of the'he first is the catchment scale, at this scale: (i) the mean
flows is remarkably good, especially at the beginning of thecatchment SWI is computed from the hydrological model
season, when in the absence of rainfall, the flows are mainl)by averaging over the catchment the SWI computed at each
explained by the external flows that are routed from the up-cell, (ii) the mean catchment SWI is computed from the scat-
per part of the catchment; these appear pulsed because of hierometer data, by averaging over the catchment the SWI
dropower generation. The modelling of the discharges wasomputed for the scatterometer grid points in and surround-
judged to be done well enough to reliably compare the mod-ing the catchment (the average being weighted according to
elled soil moisture to the remotely sensed data. Thiessen polygons). The second scale is the scatterometer
footprint scale, which is smaller than the catchment scale.
This corresponds to the original scatterometer resolution de-
fined by a circle of diameter 50 km. The footprint SWI is
computed from the hydrological model by averaging the SWI
4.1 Definition of a remotely sensed and modelled Soil Wa-computed at each cell within the footprint. In order to make
ter Index (SWI) a robust comparison, only the three footprints shqwmg the
largest areal coverage of the catchment were considered.
As already noted in Sect. 2.2, the remotely sensed soil mois-
ture estimation is representative of the relative water contenf-2 Results
of the first 5cm of topsoil effectively “seen” by the scat-
terometer. However, for the purpose of the present study#-2.1 At catchment scale
which is to compare the soil moisture as modelled by TOP-
KAPI and the remotely sensed soil moisture, the variable of! & modelled and remotely sensed mean catchment SWI
concern is the soil moisture in the entire soil layer. are compared in Fig. 6 for the two modelled seasons, at the
In order to provide a reliable comparison, the soil mois- lime step of ten days imposed by the ERS sampling interval.
ture in the whole soil layer must thus be obtained from the There is a very good correspondence between the two SWI
surface soil moisture estimated by the satellite. In addition€Stimates, as illustrated by the regression coefficietits ¢f
to the surface soil moisture available in the global ERS soil0-759 for the first season and 0.923 for the second season.

moisture product, a Soil Water Index (SWI) is provided that According to the regression equation, a relative bias is ob-
aims to estimate the soil moisture profile in the soil horizon S€rved (which seems to be independent of the season) that is
from the ERS product. The method used here to estimatdkely to be due to the uncertainties _assou'ated WIth each qf
SWI was proposed by Wagner et al. (1999¢). It is a simplethe two appro_ache_s whose comparison will be discussed in
conceptual infiltration model based on an exponential filter,S€ct- 5. Despite this, the order of magnitude of the remotely
temporally smoothing the signal of the (instantaneously esSensed and the modelled SWi s still very similar. As aninter-
timated) relative surface soil moisture to give the Soil Water€Sting example, the value of the initial soil moisture, which

4 Comparison of remotely sensed and modelled soil
moisture

Index, SWI: was calibrated at 40% for the catchment model, could have
been estimated by using the remotely sensed value. This re-

st (t) e~ =)/ T sult is very encouraging since the initialization of hydrolog-
SWI (1) == SEEIE for <t (4) ical models after a dormant period remains a constant prob-

lem in hydrology.

i
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At catchment scale
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Fig. 6. Comparison between the modelled and the remotely sensed SWI computed at catchment scale. The open circles are the TOPKAP!
estimates at time corresponding to the scatterometer estimates (filled circles).

4.2.2 Atfootprint scale to runoff production and routing. A good agreement was
found between observed and modelled hydrographs of the
Figures 7 and 8 show respectively the remotely sensed angdiebenbergsvlei catchment for both the calibration and the
the modelled SWI at footprint scale and the associated scatteferification period. The comparison between the modelled
plots. The results show that the good correspondence alreadihd the remotely sensed soil moisture estimates was done
found at catchment scale is retained at the smaller scale of thgsing the computation of the Soil Water Index ( SWI) which
footprint. The correlations are still fair (greater than 0.68), is the relative soil moisture throughout the soil depth. As the
while according to the regression equations, the bias betweesatellite only provides soil moisture for the topsoil layer (first
the two independent SWI estimates is relatively stable ands cm), a conceptual infiltration model developed by Wagner
appears to be independent of season and location. et al. (1999c) was applied to the remotely sensed surface soil
moisture estimates in order to estimate an SWI. The compar-
ison between the modelled and remotely sensed SWI was
shown to be good with regression coefficient varying be-
tween 0.678 and 0.923. Even if a constant bias of around
19% is identified, the dynamic of the soil moisture behaviour

The paper aimed to compare, for the purpose of corroboiS very coherent between the two approaches.

ration, not validation, two independent approaches used to

estimate soil moisture at the scale of a region-sized catch5.2 Discussion

ment (Liebenbergsvlei, 4625 KmSouth Africa). The first

estimation was derived from physically based hydrological5.2.1 Comments on the bias between the modelled and re-
modelling of the catchment using the TOPKAPI model (Liu motely sensed soil moisture

and Todini, 2002) and the second was derived from the re-

motely sensed observations of the scatterometer on boards there is no possibility of obtaining the “true” value of soil
the ERS satellite. A calibration procedure of the TOPKAPI moisture at catchment scale, it is difficult to precisely assess
model has been carried out consisting of the adjustment ofhe reasons for the bias identified between the modelled and
the four most sensitive parameters of the model accordingemotely sensed soil moisture. It is clear however that the

5 Discussion and conclusion

5.1 Summary

www.hydrol-earth-syst-sci.net/12/751/2008/ Hydrol. Earth Syst. Sci., 12, 751-767, 2008



762 T. Vischel et al.: Comparison of soil moisture fields estimated by catchment modelling and remote sensing

At footprint scale
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Fig. 7. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scatterometer footprint scale.

two compared approaches have their own uncertainties thatation model tables that are associated with the local scale
potentially lead to explain this bias. of a column of soil and for vertical infiltration fluxes. The
alternative behaviour of the horizontal hydraulic conductiv-
5.2.2 Uncertainties associated with hydrological modellingity has already been reported in the literature, particularly
by the developers and users of TOPMODEL (Beven and
The results of the calibration showed that the values of thekirkby, 1979; Beven, 1997) and is mainly attributed to the
parameters of the TOPKAPI can be estimated a priori with afact that the lateral fluxes controlled by the topography are,
good reliability from information about the topography and in the subsurface, likely to occur in preferential paths (macro-
the soil properties associated to parameter tables from thgores, root pipes, soil cracks etc.). The calibration procedure
literature. The two exceptions were the channel roughnessends to show that rapid flows in preferential paths are ef-
multiplied by a factor 1.7 to get the right flow timing, and the fectively dominant in the Liebenbergsvlei catchment. An-
hydraulic conductivity at saturation, which had to be mul- other reason might be that the production of runoff can also
tiplied by a factor of 60, instead by a factor of 10 as sug- be due to infiltration excess mechanisms (or Hortonian pro-
gested by Liu and Todini (2002), to account for macroporescesses). Such processes are indeed likely to occur especially
and preferential paths in the horizontal direction. in semi-arid areas, as in the Liebenbergsvlei catchment. The
The increase of the channel roughness values clearly  difficulty of the model to respond to observed precipitation
due to the uncertainty of the DEM that does not reflect pre-in the beginning of the wet season is probably linked to the
cisely the slopes of the drainage network that are particuproduction of Hortonian runoff, when the soils are dry and
larly flat in the lower part of the catchment. Obviously one potentially crusted and the vegetation is not fully developed.
can argue that the multiplying factor &f; is not physically ~ However, the assumption of the predominance of subsurface

realistic. However, one has to be aware that the values oflows and the associated saturation excess runoff production
K, estimated a priori were derived from Green-Ampt infil-
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At footprint scale
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Fig. 8. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scatterometer footprint scale (Scatter plots and
regression equations).

seems to be realistic in the area for the major part the sedate discharges of season 2. The low performances of the
son. Some field experiments have been conducted at the hillmodel applied on season 2 can be attributed to the arbitrary
slope scale in the region which tend to confirm that saturatiorchoice of the initial soil moisture, the Hortonian processes
excess production of runoff is predominant (Colin Everson,that may have a longer influence for season 2 than season 1.
2007; personal communication). These experiments sugge&ut a more probable reason is that the calibration conducted
that the TOPKAPI hypothesis and the calibrated hydraulicon station 1 in season 1 only has few chances to give a robust
conductivity are quite realistic on the Liebenbergsvlei catch-representation of the mean behaviour of the catchment over
ment. It is also worth noting that a part of this increase of thea long period, especially on the Liebenbergsvlei catchment
hydraulic conductivity could be explained by the precision where rainfall and runoff are subject to a strong inter-annual
of the DEM: (i) in terms of resolution, since the 1 km res- variability.

olution usgd here has. been identified by 'Martina (2004) as | order to figure out how the choice of the parameters’
the upper limit of physical scale above which the TOPKAPI y4jyes can influence the results of the comparison of the SWI,
model parameters no longer match the physics and also (iikjg. 9 shows for season 1 the impact on the simulated dis-
in terms of precision of the cgll heights and correspondingcharge and SWI of a change in the values of the two main
slopes, that can have a strong influence on the parameter vaharameters influencing the runoff and the soil moisture pro-
ues (the reader is referred to Wechsler et al., 2007 for an ingyction in the model. In association with Fig. 9, in Table 4
teresting review of the hydrological model uncertainties as-gre reported the values of the criteria characterizing (i) the
sociated with a DEM). model performance according to the discharge and (ii) the
Generally speaking, it is accepted that there is uncertainticomparison of the simulated SWI with the remotely sensed
in the definition of a unique set of optimal parameters. TheSWI. This sensitivity analysis shows by examining the re-
optimal parameter set calibrated on Season 1 gives relativelgponses, that of the values of the parameters influencing the
poor results when used in the verification process to simu-discharge simulationk; mainly influences the volume of
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Table 4. Sensitivity analysis on the effect of the parametggsandL on the simulated discharge and SWI. The Nash efficiency is computed
on the calibration period over the subcatchment. The coefficient of determirRdtiand the regression equation are computed by comparing

the simulated and the remotely sensed SWI. This table is associated with Fig. 9 that shows the corresponding curves of simulated discharge
and soil moisture.

NashQ period1 subcatchment R2 SWI period1 catchment

Regression line SWI

y=ax-+b
a b
20 0.600 0.780 0.81 16.4
40 0.759 0.771 0.78 17.3
facy, 60 (optimal) 0.788 0.759 0.75 18.1
80 0.719 0.748 0.72 18.7
100 0.605 0.737 0.69 19.2
0.6 0.227 0.629 0.88 10.3
0.8 0.669 0.72 0.82 14.2
facy, 1 (optimal) 0.788 0.759 0.75 18.1
1.2 0.755 0.765 0.68 21.4
1.4 0.744 0.749 0.62 24.1
Sensitivity analysis
Effect of Ks Effect of L
! — facg =20 ’ — fac =06
140 — fag =40 — fa =08
| -~ fac=60 -~ fac=10
! — fac, =80 200 — fac =12
120, fac, =100 fac =14
% 80 ‘%
40 E}‘ " “
20 N W\ A |
L fiad WA N
19753 12/93 01/94 02/94 0\3/94\ 04/94 05/;‘1 1%7e3 12/93 h‘o‘.ly; : %4 ‘\o?/gl.& 04701 05701
= o g
80 -~ fac, =60 9% -~ fac=10
— facy =80 — fac =12
fac, =100 80 fac =1.4
— 60 -
2 2 e
ORN 40‘N
iQ/QE 12/93 01/94

02/94 03/94 04/94 05/94 %q/QE

12/93

01/94 02/94 03/94 04/94 05/94

Fig. 9. Sensitivity analysis on the effect of the paramet&gsand L on the simulated discharge and SWI. This Figure is associated with

Table 4 in which are reported the criteria characterizing (i) the model performance according to the discharge and (ii) the comparison of the
simulated SWI with the remotely sensed SWI.

runoff, while L mainly influences the values of the main ues of the parameters, the correlation between the modelled
peaks of discharge. The modelled soil moisture is also natand remotely sensed soil moisture remains f&if always
urally influenced by the parameter values. The soil ddpth higher than 0.6). It means that, even if there is an uncertainty
mainly controls the variability of the soil moisture and both in the parameter values, the general conclusions of the study
L and K; influence the bias value. But, whatever the val- remain unchanged.
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5.2.3 Uncertainties associated with remote sensing a reliable estimation of the precipitation amount at the

catchment scale.
The soil moisture retrieval method from the ERS scatterom-

eter data is from its conception a change detection metho®.3 Perspective
which compares individual backscatter measurements to sea-
sonally varying minimum and maximum backscatter refer- The results obtained at this stage are very encouraging for (i)
ence values observed in long time series (Wagner et al.hydrological modelling and the possibility of using remotely
1999a, b, c). The retrieved absolute soil moisture valuessensed soil moisture to validate the models and also to ini-
thus depend on the assumptions about which soil moistur&alize them; assimilation of the remotely sensed soil mois-
states are represented by the two backscatter reference vdire data into hydrological models during simulations is also
ues. The standard assumption for the thin remotely sensedn exciting possibility, (ii) remote sensing and the possibil-
surface layer ;) is that minimum backscatter represents ity of using physically based hydrological models to validate
a completely dry soil and maximum backscatter water sat-and disaggregate the soil moisture estimations down to fine
urated soil (Wagner et al., 1999b). For the soil profile (SWI) spatial scales.
minimum backscatter is in general related to a soil with wa- Further research will aim to improve the modelling of
ter content at wilting point and maximum backscatter to athe vertical fluxes that explicitly represent the vertical water
soil with a soil moisture content halfway between field ca- transfers in the soil and will allow direct comparison between
pacity and total water capacity (Wagner et al., 1999c). Thethe remotely sensed soil moisture at the surface (first 5cm of
validity of these assumptions depends on the weather condisoil) without being dependent on the conceptual infiltration
tions during the reference period and the regionally varyingmodel used in the present study to infer the soil moisture pro-
climate. Therefore, the absolute values of the scatterometdile from the surface remotely sensed soil moisture. Such a
soil moisture productsi{, and SWI) are deemed less reliable complete physically based model should help to better under-
than the observed temporal trends. This notion was furthestand the processes that control the soil moisture patterns at
corroborated by the results of this study. In fact, in most stud-regional scale and will be applied as a physically based soil
ies the scatterometer data are scaled to fit the reference saioisture back-calculation and disaggregation tool.
moisture data best (Drusch et al., 2004; Pellarin et al., 2006).

Despite the uncertainties of each one of the approachegicknowledgements. This research was funded by the Water
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