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Abstract. L (Linear) moments are used in identifying
regional flood frequency distributions for different zones
Tunisia wide. 1134 site-years of annual maximum stream
flow data from a total of 42 stations with an average record
length of 27 years are considered. The country is divided into
two homogeneous regions (northern and central/southern
Tunisia) using a heterogeneity measure, based on the spread
of the sample L-moments among the sites in a given region.
Then, selection of the corresponding distribution is achieved
through goodness-of-fit comparisons in L-moment diagrams
and verified using an L moment based regional test that com-
pares observed to theoretical values of L-skewness and L-
kurtosis for various candidate distributions. The distributions
used, which represent five of the most frequently used distri-
butions in the analysis of hydrologic extreme variables are:
(i) Generalized Extreme Value (GEV), (ii) Pearson Type III
(P3), (iii) Generalized Logistic (GLO), (iv) Generalized Nor-
mal (GN), and (v) Generalized Pareto (GPA) distributions.
Spatial trends, with respect to the best-fit flood frequency
distribution, are distinguished: Northern Tunisia was shown
to be represented by the GNO distribution while the GNO
and GEV distributions give the best fit in central/southern
Tunisia.

1 Introduction

Peak or flood flow is an important hydrologic parameter in
the determination of flood risk, management of water re-
sources and design of hydraulic structures such as dams,
spillways, culverts and irrigation ditches. The estimate of
the design event must be fairly accurate to avoid excessive
costs in the case of overestimation of the flood magnitude or
excessive damage and even loss of human lives while under-
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estimating the flood potential. There is a need, therefore, to
estimate how often a specific flood event will occur, or how
large a flood will be for a particular probability of exceedence
or recurrence interval. This might be achieved through flood
frequency analysis procedures, which involve the estimation
of distributional parameters and the extrapolation of cumula-
tive distribution functions to generate extreme flood values.

Flood frequency analysis is performed either for a single
site, when extensive historic peak flow data are available, or
on a regional basis, when there is little or no historic flow data
at a particular site. In this latter case, all data from other local
basins within the same region are pooled to get an efficient
estimate of parameters of a chosen distribution and hence a
more robust quantile estimate. Bobee and Rasmussen (1995)
reported that the use of regional information allows a reduc-
tion of sampling uncertainty by introducing more data, as
well as a reduction of model uncertainty by facilitating a bet-
ter choice of distribution.

Recently, research efforts focused more on regional rather
than the conventional at-site flood frequency analysis. Hosk-
ing and Wallis (1993) organized regional flood frequency
analysis into 4 stages: (i) screening of the data, (ii) identifica-
tion of homogeneous regions, (iii) choice of a regional prob-
ability distribution, and (iv) estimation of the regional flood
frequency distribution. Recent research efforts also focused
on the use of L-moment diagrams for the identification of
flood frequency distributions, such as the studies performed
in Bangladesh (Abdul karim and Chowdhury, 1995), New
Zealand (Pearson, 1991), Australia (Nathan and Weinmann,
1991), Canada (Pilon and Adamowski, 1992, Van-Thanh and
Van Nguyen, 2006), United States (Wallis, 1988; Vogel and
Wilson, 1996), China (Jingyi and Hall, 2004), India (Rakesh
and Chandranath, 2006) and the globe (Onoz and Bayazit,
1995). In fact, there appear to be a general world-wide agree-
ment among agencies and governments to re-evaluate their
flood frequency standard procedures using L-moment based
techniques.
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In this context, this study uses L-moment diagrams to se-
lect the flood frequency distribution that best fits the annual
maximum flood flows in Tunisia. The paper first presents a
survey of similar previous L-moment-based studies all over
the world. Then, the study area and the data used in the
numerical analysis are described. Next, the flood frequency
identification procedure is presented. Finally, the results of
the analysis are discussed and summarized.

2 Literature review

2.1 Global survey of flood frequency models

Many statistical distributions for flood-frequency analysis
have been investigated in hydrology. Annual flood series
were found to be often skewed, which led to the development
and use of many skewed distributions, with the most com-
monly applied distributions now being the Gumbel (EV1),
the Generalized Extreme Value (GEV), the Log Pearson Type
III (LP3), and the 3 parameter Lognormal (LN3) (Pilon and
Harvey, 1994). The proponents of each distribution have
been able to show some degree of confirmation for their par-
ticular distribution by comparing theoretical results and mea-
sured values. However, there is no theoretical basis for justi-
fying the use of one specific distribution for modeling flood
data and long term flood records show no justification for the
adoption of a single type of distribution (Benson, 1968).

Different studies were undertaken on distribution selection
for flood data in different countries all over the world. Beard
(1974) estimated the 1000 year floods at 300 stations in USA
with 14 200 station-years of data by eight different models
and concluded, based on split sample experiments, that the
two parameter lognormal (LN2) and the log Pearson Type
III (LP3) were the best. Gunasekara and Cunnane (1992)
repeated the split sample experiments of Beard (1974) with
synthetic data consisting of samples of 40 events. They con-
cluded that the GEV distribution with probability weighted
moments (PWMs) estimated parameters was the best at-site
method to estimate the 100 and 1000 year floods and the LP3
with regional skew yielded comparable results.

McMahon and Srikanthan (1981) used the moment ra-
tio diagrams to compare various distributions with the data
from 172 streams in Australia and concluded that LP3 was
the only one suitable. Farquharson et al. (1987) fit a GEV
distribution to annual flood flow data at 1121 gauging sta-
tions in 70 different countries using probability weighted mo-
ments. McMahon et al. (1992) and Finlayson and McMahon
(1992) analyzed annual maximum flood flow data at 974 sta-
tions around the world using ordinary product moment di-
agrams. The authors tested several probability distributions
and concluded that the LP3 distribution provided the best fit
to observed flood flow data. However, other testing methods
should have been used in this study because the estimates
of ordinary product moment ratios such as the coefficient of

variation and skewness contain significant bias (Vogel and
Fennessey, 1993), especially for small and highly skewed
samples.

2.2 Standard distributions adopted by national institutions
in the world

Based on large scale studies of their own flood data, many
countries adopted standard methods to be used by govern-
ments or private agencies to achieve uniformity in flood fre-
quency analysis and estimation. A working group in the USA
(US Water Resources Council (Benson, 1968) recommended
the LP3 distribution whereas a similar study in the United
Kingdom (NERC, 1975) proposed the GEV distribution as a
standard. The generalized gamma distribution was recom-
mended in the former USSR (Kritsky and Menkel, 1969)
while the P3 and the LP3 distributions were generally rec-
ommended in West Germany. The LP3 distribution was also
advocated by the Institution of Engineers in Australia (Insti-
tution of Engineers, Australia (IEA, 1977).

More recently, a worldwide survey of flood frequency
methods, prepared for the World Meteorological Organiza-
tion in 1984 and involving 55 agencies from 28 countries,
reported the use of six distributions namely EV1, EV2, GEV,
LN2, P3, and LP3. The survey, which was summarized by
Cunnane (1989), revealed that EV1, LN2, P3, and LP3 were
the most common distributions while only one country used
the GEV distribution in spite of its recent popularity.

2.3 L-moments and flood frequency analysis

In the last century, probably one of the most significant scien-
tific contributions to statistical hydrology is the L-moments
of Hosking (1990). The advantages of the L-moments are
that (i) they characterize a wider range of distributions than
conventional moments, (ii) they are less sensitive to outliers
in the data, (iii) they approximate their asymptotic normal
distribution more closely, and (iv) they are nearly unbiased
for all combinations of sample sizes and populations (Hosk-
ing and Wallis, 1990).

Wallis (1988), Cunnane (1989) and Hosking (1990) il-
lustrated that, compared to the product moment ratio dia-
gram, the L-moment ratio diagrams possess a better ability
to discriminate between distributions. Vogel and Fennessey
(1993) reported that conventional product moment estima-
tors should be replaced by L-moment estimators for most
goodness-of-fit applications in hydrology. They showed
that L-moment diagrams perform always better than ordi-
nary product moment diagrams, regardless of the sample
sizes, probability distributions, or skews involved. Cong et
al. (1993) reported that L-moment goodness-of-fit tests are
more robust than classical single-site goodness-of-fit tests
since they use regional rather than single-site data to discrim-
inate between alternative distributions.
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Table 1. Previous L-moment based flood frequency studies.

Location Number of stations Recommended distribution Reference

Eastern United States 55 GEV Wallis (1988)
Central Victoria, Australia 53 GEV Nathan and Weinmann (1991)
South Island, New Zealand 275 EV1, EV2, and GEV. Pearson (1991)
New Brunswick, Canada 53 GEV Gingras and Adamowski (1992)
Nova Scotia, Canada 25 GEV Pilon and Adamowski (1992)
Southwestern United States 383 LN2, LN3, GEV, and LP3 Vogel et al. (1993a)
Australia 61 GEV, GAP, LP3, and LN3 Vogel et al. (1993b)
United States 1455 LN3, GEV, and LP3 Vogel and Wilson (1996)
Wabash Basin, Indiana 93 P3 and GEV Rao and Hamed (1997)

Numerous studies have used L-moment diagrams in re-
gional flood frequency analysis, most of which are summa-
rized in Table 1. In spite of this recent tendency of using
L-moments world-wide, Klemes (2000a, b) articulated some
cautionary notes about their use in hydrological frequency
analysis. He claimed that L-moments artificially impose a
structure upon a data set and de-emphasize the importance
of observed extremes, which leads to the underestimation of
extreme design events. However, Alila and Mtiraoui (2002)
argued that if the annual floods in a sample are distributed
identically and the outliers are caused by sampling variabil-
ity (for instance, a 100-year event in a 10-year sample) they
should not be given an undue weight. If any historic infor-
mation can be found for any high outlier, a reasonably well-
established method, referred to as “flood frequency analysis
with historic information”, could be used (Pilon and Harvey,
1994). Unfortunately, however, in the absence of any historic
information, such high outliers are often either removed from
the sample or simply ignored and, consequently, the use of
conventional moments would either over- or underestimates
the T-year flood event. Therefore, in this case, it is more ra-
tional to use a method that is less sensitive to outliers in the
data, such as L-moments.

As a conclusion, L-moments provide undeniable advan-
tages over conventional moments in using flood frequency
analysis for the estimation of flood quantiles. This is partic-
ularly true when considering regional trends in higher order
moment statistics. The use of L-moments permits the delin-
eation of regional trends that otherwise might be obscured by
biases and sampling variability [variability (Cathcart, 2001).

3 Study area

Tunisia is a relatively small (162 155 km2) North African
country, located at the northeastern tip of Africa at the center
of the Mediterranean Sea. Linked on the west to the rest of
North Africa by the mighty ridges of the Atlas Mountains, it
stretches out to the south into the Sahara, of which it occupies
a small part.

Opening on its northern and eastern fronts to the Mediter-
ranean Sea, Tunisia enjoys a clement and mild although no-
toriously capricious climate. By its latitude it is situated
halfway between the temperate zone and the tropical zone,
forming thus a meeting place at which cold air masses are
confronted by the masses of warm air coming from the trop-
ical regions. It has a rather unstable climate. When it is
swept at the equinoxes by tides of opposing depressions, the
result is severe cold fronts along with violent storms and fre-
quent downpours. With a general profile stretching length-
wise from north to south, Tunisia shows some climatic varia-
tions accentuated by its diversified geographical aspect. The
Atlas Mountains stretching from east to west create a vari-
ety of large climatic areas distinct from each other mainly by
their rainfall.

Rainfall in Tunisia might be crudely characterized by its
shortage, irregularity and erratic distribution, all leading ei-
ther to periods of drought or intensive rainy periods, with
storms causing disastrous flooding. The North receives
an adequate and fairly reliable rainfall of approximately
600 mm. The central area has an annual mean of 200 mm,
whilst the south receives less than 100 mm of rainfall. These
averages are subject to very wide annual fluctuations of 1 to
6 for central Tunisia and 1 to 12 for the South.

Generally the country is divided into three main climatic
and geographical regions (Fig. 1):

– The High Tell or Northern Tunisia, characterized by its
fertile soil and its high degree of moisture. It is an area
of high mountains surrounding plains irrigated by the
Medjerda River and its tributaries. The western Tell is
continued by the northeastern Tell, a maritime area on
account of its being deeply penetrated by the Gulf of Tu-
nis and its climatic influences. This is an area of plains
and hills crossed by large rivers.

– Central Tunisia is the region that covers the high and
low steppes stretching out to the eastern coast. The
high steppes represent a region of lofty mountains and
wide hollow dips, cut across by large creeks (wadis).

www.hydrol-earth-syst-sci.net/12/703/2008/ Hydrol. Earth Syst. Sci., 12, 703–714, 2008
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 Physiographic zones of Tunisia. 
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Fig. 1. Physiographic zones of Tunisia.

The vegetation is made up of forests, often stunted, and
fields of alfalfa grass. The continental climate con-
tributes to the barrenness of the region. Further to the

east the low steppe stretches over wide alluvial plains
and hills cut across by large creeks running down the
Atlas Mountains.
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– Southern Tunisia, bordered on the west by Algeria and
on the east by Libya, is jutting out into the Sahara, of
which it occupies a part.

4 Data used

A total of 49 annual flood series representing natural hydro-
logic regimes, obtained from the publications of the Tunisian
Ministry of Agriculture and Water Resources, were used for
the identification of the appropriate flood frequency distribu-
tion.

Discharges were estimated by observing water levels and
employing pre-calibrated rating curves to convert measured
stages to observed flow rates. Rating curves were determined
through velocity measurements using a current meter and
graphic integration of the velocity distribution over the entire
cross-section. Regulated stations, influenced by the existence
of hydraulic structures, were eliminated.

The annual flood data series need to be independent, ran-
dom, homogeneous, and without trends. These properties
were verified by four nonparametric tests using the Consol-
idated Frequency Analysis (CFA) package of Environment
Canada (Pilon and Harvey, 1994). This package allows the
user to perform nonparametric tests of homogeneity, trend,
independence and randomness; determine T-year events for
samples and adjust the appropriate probability distribution.
Tests considered include the Spearman tests of independence
and trend, the run test for general randomness, and the Main-
Whitney split sample test for homogeneity.

Only 37 gauged stations met the screening criteria of hav-
ing a minimum record length of 10 years, representing unreg-
ulated natural flow regimes, and passing all of the nonpara-
metric tests at the 5% level of significance. Nevertheless, all
data series were preserved in the analysis by lowering the
level of significance to 1% and eliminating inconsistent data
values.

5 Procedure used to select a distribution

Initially, the study area was divided into the three main phys-
iographic regions (Fig. 1), for which separate flood frequency
analysis procedures were performed. The procedure adopted
to select appropriate flood frequency distributions, first, uses
the three statistical measures for regional flood frequency
analysis of Hosking and Wallis (1993): (i) a discordance
measure for identifying unusual sites in a region, (ii) a het-
erogeneity measure, for assessing whether a proposed region
is homogeneous, and (iii) a goodness of fit measure, for as-
sessing whether a given distribution provides an adequate
fit to the regional annual maximum flood flow data. Then,
flood frequency distributions are selected from L-moment
diagrams that compare observed to theoretical values of L-
skewness and L-kurtosis for various candidate distributions.
In the selection process, either the weighted sample average

or the line of best fit through the data points is used in the
comparison with theoretical curves, depending on the out-
come of the hetetrogeneity test, as was recommended by Peel
et al. (2001).

5.1 Discordance and heterogeneity tests

First, data screening was performed using the discordance
measure of Hosking and Wallis (1993) to eliminate gross er-
rors and inconsistencies. For each flood series, sites with
Di>3, believed to be grossly discordant with the group as
a whole, were dropped. This resulted in decreasing the sta-
tions’ number from 49 to 42 (Table 2). Homogeneity test-
ing was performed then, through the heterogeneity measure
H, which is based on the spread of the sample L-moments
among the sites in a given region. Hosking and Wallis (1993)
proposed a homogeneity test (H test) based on the fact that
time series at all sites within a homogeneous region have the
same population L-moment statistics (L-coefficient of vari-
ation, L-skewness and L-kurtosis). The assessment of het-
erogeneity is obtained by comparing L-moments of observed
data and those of Monte Carlo simulation (Hosking and Wal-
lis, 1993).

The weighted average distance (V ) from the site to the net-
work weighted mean on L-skewness and L-kurtosis diagram
is used as a measure of the between-site variability of sample
L-moments, and a homogeneity measure given by Hosking
and Wallis (1993) is adopted:

H =
Vobs− µv

σv

(1)

Here,µv andσv are respectively the mean and standard de-
viation of the 500 values (large number) of their synthetic
counterpart andVobs is the real network value of V. This lat-
ter, which represents V3 in Hosking and Wallis (1993), is
expressed in terms of L-skewness and L-kurtosis.

Hosking and Wallis (1993) suggested, through Monte
Carlo experiments, that the region under testing should be
regarded as “acceptably” homogeneous ifH<1, “possibly”
heterogeneous if 1≤H<2, and “definitely” heterogeneous if
H≥2.

Homogeneity was investigated only with respect to skew-
ness and kurtosis because these dimensionless statistical
characteristics are commonly used to identify candidate re-
gional flood frequency distributions. Homogeneity in the co-
efficient of variation was not considered because this statistic
was shown to vary, among other things, with the size of the
catchments and therefore constancy can not be achieved in
any geographical region (Gupta et al., 1994).

6 Goodness-of-fit test

The goodness-of-fit test used compares the observed regional
L-kurtosis to the theoretical values of various candidate
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708 H. Abida and M. Ellouze: Probability distribution of flood flows in Tunisia

Table 2. Characteristics of the data used.

No. Wadi Station name Basin drainage Record Period Discordancy measure Di mean discharge maximum discharge
area (km2) (years) (m3/s) (m3/s)

1 Tine Cassis 418 1968–1978 0.37 125.7 478
1982–1998

2 Joumine Dj. Antra 234 1975–1985 1 113.3 337
1982–1998

3 Mellila H. Bourguiba 83 1989–1998 9.24∗ 48.9 331
4 Melah Ouchtata 315 1975–1983 0.84 262.1 531

1988–1997
5 Joumine Mateur 1096 1954–1998 1.21 133.4 239
6 Maden Boubrima 145 1959–1989 2.56 99.8 295

1992–1998
7 Barbar Joueouda 108.6 1982–1998 0.12 286.2 849
8 Zouaraa S. Barrak 875 1979–1991 3.28∗ 390.5 1230
9 Rarai Rarai suṕerieur 91,3 1975–1998 0.31 69.9 250
10 Rarai Rarai plaine 370 1975–1998 1.1 178.9 422
11 Medjerda Ghardimaou 1480 1949–1998 0.19 322.7 2370
12 Mellègue K13 9014 1923–1998 1.71 768.6 4770
13 Rmel Pt. Rte. Sakiet 407 1995–1977 0.11 96.6 429
14 Sarrath Pt. Rte. Tejerouine 1520 1975–1998 0.28 302.9 945
15 Haidra S. Abdelhak 328 1970–1998 1.4 126.3 564
16 Tessa Sidi Mediene 1952 1975–1986 1.29 1057.8 3800

1993–1998
17 Souani Pt. Rte. Souani 278 1985–1994 0.37 394.4 1350
18 Izid Barrage 61 1986–1997 0.34 32.6 92
19 Ghezalah Fernana 137 1946–1998 0.28 124.6 373
20 Medjerda Jendouba 2410 1953–1998 0.54 343.4 2420
21 Siliana Dj. Laouej 2066 1975–1998 4.41∗ 752.9 2060
22 El Bey Pt. Rte. No. 41 464 1975–1998 0.29 182.2 917
23 Mkhachbia Amont 18,5 1978–1979 0.34 8.6 34

1983–1995
24 Mkhachbia Aval 106 1983–1998 0.73 83 600
25 Bazina Bazina 18,5 1983–1995 3.83∗ 10.1 34.6
26 Medjerda Slouguia 20 995 1975–1998 0.88 269.2 735
27 El Abid Pt. Rte. No. 9 81 1975–1998 0.09 71.6 380
28 Miliane Tuburbo Majus 748 1975–1981 0.39 179.3 1500

1978–1998
29 El Hamma Aval 221 1967–1998 0.29 57 205
30 Bouarada Bouarada 103 1967–1996 0.33 69.5 630
31 Miliane Cheylus 1147 1975–1977 0.09 259.1 1800

1977–1997
32 Miliane Madleine 1946 1975–1991 0.21 258.6 1300

1997–1998
33 Skhira Kef Labiod 188 1969–1970 0.36 74.2 300

1977–1998
34 El Bey S. Said Aval 31,7 1988–1998 0.2 8.3 37.1
35 El Baten Bir Bouregba 70 1988–1998 2.01 124.4 586
36 Rmel Si Abdallah 684 1945–1970 1.29 298 1500
37 El Oudiane Oudiane 68 1958–1968 5.64∗ 71.67 149
38 Merguellil Haffouz 675 1975–1998 4.87∗ 1197.6 2240
39 Hatob Ain Saboun 813 1975–1998 0.59 279.0 1510
40 Hatab Khanget Zazia 2200 1957–1998 0.76 412.5 1530
41 Negada Bled Lassoued 5290 1975–1998 0.99 230.8 1860
42 Negada Lassoud 16330 1975–1998 6.08∗ 246.8 548
43 Chaffar Chaffar 236 1927–1998 0.16 176.8 1130
44 Sidi Salah Sidi Salah 211 1986–1998 2.67 37.9 346
45 Zita Telemen 3.2 1985–1998 0.33 16.8 103
46 Oglat Hamma Hamma 735 1975–1996 1.25 50.6 460
47 Dijir Dijir 146 1975–1998 0.16 75.1 381
48 Oum Zessar Oum Zessar 278 1975–1980 0.77 146.5 1470

1985–1998
49 Sidi Aich Sidi Aich 1780 1964–1966 0.45 357.9 2640

1971–1995

* Data series did not pass the discordancy measure.
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Table 3. Properties of the stream flow data.

Region Number of Maximum record Number of Average record
stations length (years) site years length (years)

Tunisia 42 76 1134 27
Northern Tunisia 14 50 361 25.8
Central Tunisia 21 76 561 26.7
Southern Tunisia 7 72 205 29.3

Table 4. Homogeneity and goodness-of-fit tests results.

Simulation
Region

Average L-skewness Average L-kurtosis
H-value

Z-value

experiment (L-Cs) (L-Ck) GLO GEV GNO GPA GAM

1 Tunisia 0.392 0.258 2.27 0.71 1.21+ −1.85∗+ −4.65 −3.33

2
Northern Tunisia 0.330 0.216 2.45 1.12 0.23 −2 −1.91 −1.76
Central Tunisia 0.382 0.249 1.82 0.58 −1.07 −1.13 −2.95 −2.21
Southern Tunisia 0.487 0.331 0.27 −0.25 −1.46 −1.33 −2.81 −1.48

3
Northern Tunisia 0.328 0.209 1.73 1.21 0.32+ −1.51∗+ −1.99 −1.92
Central/Southern Tunisia 0.422 0.280 1.05 0.20−1.42+ −1.83∗+ −4.24 −2.70

* Distribution selected based on Lowess in L-moment diagram.
+ Distribution selected based on weighted average in L-moment diagram.

distributions (Hosking and Wallis, 1993):

ZDIST =

{

t̄4 − τDIST
4

}

σt̄4

(2)

Wheret̄4 is the regional average L-kurtosis of the observed
network in the homogeneous region andτDIST

4 is the theoreti-
cal L-kurtosis, andσt̄4

is the standard deviation oft̄4 obtained
by repeated simulations of the homogeneous region with the
DIST frequency distribution as a parent. Based on Monte
Carlo simulation performed by Hosking and Wallis (1993),
the goodness-of-fit of a particular distribution should be con-
sidered acceptable at the 90% confidence level if|Z| ≤1.64.
The Z-test uses regional data as opposed to single-site in-
formation. Therefore, it is more reliable than single-site
goodness-of-fit testing. The Z-test discriminates between
five of the most frequently used distributions in the analy-
sis of hydrologic extreme variables, namely: (i) Generalized
Extreme Value (GEV) Pearson type III (P3), (iii) General-
ized Logistic (GLO), (iv) Generalized Normal (GN), and (v)
Generalized Pareto (GPA) distributions.

6.1 Graphical goodness-of-fit from L-moment diagrams

An L-moment ratio diagram of L-kurtosis versus L-skewness
compares sample estimates of the dimensionless ratios with
their population counterparts for a range of statistical distri-
butions. It has the advantage of comparing the fit of sev-
eral statistical distributions with observed data using a sin-
gle graphical instrument. L-moment diagrams are useful for

discerning groupings of sites with similar flood frequency
behavior, and identifying the statistical distribution likely to
adequately describe this behavior. The distances separating
sample points from the curve for a certain distribution can be
taken as a measure of the goodness of fit. Peel et al. (2001)
demonstrated that the graphical selection process of a dis-
tribution from the L-moment ratio diagram depends on the
homogeneity of regional data. If the regional data are ho-
mogeneous, the selection should be based on comparison of
theoretical curves with the weighted sample average. On the
other hand, for very heterogeneous regional data the line of
best fit through the data points known as LOWESS (LOcally
WEighted Scatterplot Smoothing) should rather be consid-
ered. In this study, the delineated regions correspond to the
three chosen areas described above, which cannot be claimed
to be homogeneous. Therefore, similarity between theoreti-
cal distribution curves and LOWESS was adopted in the se-
lection of the most suitable flood frequency distribution from
the L-moment diagram for any particular region.

7 Results and discussions

The regional weighted average L-skewness and L-kurtosis
were computed for the three considered regions, based on
flood data series for only 42 stations, and the corresponding
results are shown in Table 4. Computations of L-skewness
and L-kurtosis values for the entire territory were also per-
formed. The values obtained were very close to those of

www.hydrol-earth-syst-sci.net/12/703/2008/ Hydrol. Earth Syst. Sci., 12, 703–714, 2008
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Fig. 2. The final classification of homogeneous regions adjusted for L- Skewness and L- Fig. 2. The final classification of homogeneous regions adjusted for L-skewness and L-kurtosis.

northern Tunisia, since 75% of the stations were located in
the north. The smallest L-moment values were obtained for
the north while the highest were associated with the south.
These differences are generally small in spite of the con-
trasting climatic and physiographic differences, which affect

flood flows from a region to another in Tunisia. However,
small differences in L-skewness and L-kurtosis values usu-
ally result in substantial differences in the tail characteris-
tics of flood frequency distributions and therefore in different
flood quantile estimates.
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Fig. 3. L-Moment Ratio Diagram for Tunisia. Fig. 3. L-moment ratio diagram for Tunisia.

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. L-moment ratio diagram for northern Tunisia.
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Fig. 5. L-Moment Ratio Diagram for Central/southern Tunisia. Fig. 5. L-moment ratio diagram for central/southern Tunisia.

Table 4 also presents H-values and recommended best-fit
distributions for all regions considered, based on L-moment
ratio diagrams on one hand, and the Z-test of Hosking and
Wallis (1993) on the other. H-values, reflecting homogeneity
increased from south to north. Only Southern Tunisia was
found to be definitely homogeneous (Table 4, experiment 2).

However, based on stream flow data (Table 3 and Fig. 2),
it can be shown that, compared to other regions, southern
Tunisia has fewer gauging stations. Thus, central and south-
ern Tunisia were treated as a single unit (Central/Southern
Tunisia). This resulted in reducing the number of study re-
gions from 3 to 2. Simulations were repeated for the two
identified regions.

The obtainedH values (Table 4) were 1.73 and 1.05 for
northern and central/southern Tunisia, respectively, imply-
ing possibly homogeneous zones in terms of L-skewness and
L-kurtosis. Heterogeneity was avoided by a trial and er-
ror procedure through regrouping stations and modifying the
boundaries of the previously delineated regions. The out-
come of this exercise that is the final delineation is presented
in Fig. 2.

Figures 3 to 5 compare the observed relationships between
L-kurtosis and L-skewness of annual maximum flood flows
with the theoretical probability distributions: GLO, GEV,
GPA, P III, and GNO Shown on the same figures are the
locally weighted scatterplot smoothings (LOWESS) of L-
skewness/L-kurtosis data, with the corresponding correla-

tion coefficients. The average Weighted L-Skewness and L-
Kurtosis for the region was also represented in the diagram.

As was recommended by Peel (2001), selection of the
appropriate probability distribution from the L-moment di-
agram was based on weighted average and lowess for homo-
geneous and heterogeneous zones respectively. Lowess was
used for the first numerical experiment, dealing with Tunisia
as a whole which was shown to be definitely heterogeneous.
Comparing Lowess to the theoretical curves (Fig. 3), GNO
distribution was found to give the best fit.

Considering the third experiment, the two regions were
found to be possibly homogeneous. Therefore, the distribu-
tion identification was based on both Lowess and weighted
average. Figure 4, which displays results for Northern
Tunisia, shows that GNO distribution gives the best agree-
ment with Lowess, while two potential distributions (GNO
and GEV) can be selected based on the weighted aver-
age. The same conclusions were found to be valid for Cen-
tral/Southern Tunisia (Fig. 5). Results of the Z-test (Table 4)
confirmed the choice of GNO and GEV, especially for North-
ern Tunisia. The final outcome of both L-moment diagram
and Z statistical test is therefore the GNO distribution for
Northern Tunisia and both GEV and GNO distributions for
Central/Southern Tunisia.

Flood quantiles for stations 11, 19 (Northern Tunisia),
and 20, and 43 (Central/Southern Tunisia) were simulated
based on both selected distributions (GNO and GEV) and
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Table 5. Regional and single-site flood estimates for four selected stations.

Station Return period Observed
Regional flood (GEV) Regional flood (GNO) Single site flood
Q (m3/s) Ei (%) Q (m3/s) Ei (%) Q (m3/s) Ei (%)

11

5 455.0 448.7 −1.4 455.6 0.1 470.0 3.3
10 635.0 636.1 0.2 640.9 0.9 647.6 2.0
20 699.0 819.1 17.2 854.1 22.2 890.8 27.4
50 2110.0 1304.8 −38.2 1455.7 −31.0 1095.8 −48.1

19

5 181.0 183.7 1.5 198.9 9.9 141.4 −21.9
10 221.0 187.0 −15.4 165.4 −25.1 252.4 14.2
20 262.0 263.1 0.4 279.7 6.7 232.7 −11.2
50 306.0 308.7 0.9 320.1 4.6 294.5 −3.7

20

5 484.0 511.3 5.6 534.3 10.4 437.1 −9.7
10 669.0 652.8 −2.4 643.2 −3.9 749.1 12.0
20 826.0 916.1 10.9 1021.4 23.7 1058.5 28.1
50 2300.0 1631.6 −29.1 1476,5 −35.8 1370.1 −40.4

43

5 271.0 259.0 −4.4 234.7 −13.4 190.8 −29.6
10 392.0 295.7 −24.6 274.9 −29.9 402.4 2.6
20 661.0 583.0 −11.8 435.3 −34.1 429.8 −35.0
50 1090.0 905.6 −16.9 877.5 −19.5 672.9 −38.3

the corresponding results are displayed in Table 5. Shown
on the same table are observed and single site floods. The
non- parametric method was used to compute the observed
quantiles in order to ovoid any commitment to a particular
parent distribution for frequency analysis (Pilon and Harvey,
1994). Table 5 also shows relative errors between observed
and simulated floods given as:

Ei(%) =
(QT )observed− (QT )simulated

(QT )observed
× 100 (3)

Compared to single-site floods, those obtained by the re-
gional approach, were shown to be in much better agree-
ment with observed data. Relative errors were found to be
12%, 15% and 21% using the GEV, GNO models and the
single-site method respectively. Relative errors were found
to be relatively high for return periods exceeding 20 years,
especially for stations 11 and 20. This may be due to their
relatively short record lengths (less than 50 years).

8 Conclusions

Flood frequency analysis procedure was adopted to identify
appropriate distributions for delineated zones within Tunisia.
Hosking and Wallis (1993) statistical measures were used to
eliminate grossly discordant sites from the analysis, deter-
mine the extent of heterogeneity for a given study region, and
test the goodness-of-fit of a particular flood frequency distri-
bution to observed data. Distributions were selected from L-
moment diagrams, based on a comparison between the line
of best fit through the data points and theoretical distribution
curves.

Unlike similar previous work, such as the studies by Vogel
et al. (1993b) and Vogel and Wilson (1996), in which flood
frequency distributions were determined for all of Australia
and the United States respectively, Tunisia, in this study, was
divided into two sub-regions, for which separate flood fre-
quency analysis procedures were applied.

H-values for the study regions, describing homogeneity,
generally increase from south to north. Northern Tunisia
was found to be represented by GNO distribution, while both
GNO and GEV distributions were shown to be most suitable
for the center and the south of the country.

Finally, compared to single-site analysis, the proposed
regional flood frequency model was shown to yield better
flood estimates.

Edited by: M. Mikos
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