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Abstract. This paper deals with the description and assess-
ment of uncertainties in land use data derived from Remote
Sensing observations, in the context of hydrological stud-
ies. Land use is a categorical regionalised variable report-
ing the main socio-economic role each location has, where
the role is inferred from the pattern of occupation of land.
The properties of this pattern that are relevant to hydrologi-
cal processes have to be known with some accuracy in order
to obtain reliable results; hence, uncertainty in land use data
may lead to uncertainty in model predictions. There are two
main uncertainties surrounding land use data, positional and
categorical. The first one is briefly addressed and the second
one is explored in more depth, including the factors that in-
fluence it. We (1) argue that the conventional method used
to assess categorical uncertainty, the confusion matrix, is in-
sufficient to propagate uncertainty through distributed hydro-
logic models; (2) report some alternative methods to tackle
this and other insufficiencies; (3) stress the role of metadata
as a more reliable means to assess the degree of distrust with
which these data should be used; and (4) suggest some prac-
tical recommendations.

1 Introduction

Land use is an important variable influencing both hydrologi-
cal and hydrogeological processes. In particular, it affects the
volumes of surface runoff and the velocity of flow, which in
turn influence infiltration and soil erosion. Additionally, land
use is a major factor controlling evapotranspiration, hence
it also has an impact on diffuse recharge. Therefore, un-
certainties in land use data may propagate through models
and diminish the reliability of their predictions. A sound as-
sessment of these uncertainties, if incorporated into decision-
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making, would increase the legitimacy of policy decisions
based on those predictions, while also fostering greater stake-
holder acceptance of the outcome from these decisions.

The goal of this paper is to raise awareness among prac-
titioners who deal with land use data in hydrological studies
on i) the uncertainties they bear; ii) the limitations of the con-
ventional methods used to assess these uncertainties; and iii)
alternative methods to describe them. After clarifying some
concepts on the land use v. land cover and raster v. vector dis-
tinctions, the uncertainties in land use data are characterised
and separated into positional and categorical uncertainties.
Then, the factors that may influence them are examined, and
finally, conclusions are presented together with some practi-
cal recommendations.

1.1 Land use v. land cover

In this paper, land use is considered a categorical regionalised
(i.e., spatially distributed) variable that may adopt as many
different values as there are defined classes, the actual value
being dependent on location. Land use classes describe the
main socio-economic role of a given location, such as res-
idential, industrial, agricultural, forestry, recreational, and
conservancy. These roles shape and at the same time are
shaped by the pattern of occupation of land, i.e., by the land
cover. The latter refers to what is physically on the Earth
surface such as vegetation, water or sand. Strictly speaking,
land cover should be confined to vegetated and built-up ar-
eas. Consequently, classes like bare soil or sand (desert) de-
scribe land itself rather than land cover. However, in practise
the scientific community is used to describe those situations
under the term land cover (FAO, 1997).

The intimate relationship between land use and land cover
often fuels confusion between both terms. In fact, they are
used interchangeably in many maps, where natural and semi-
natural areas are described as land cover, while agricultural
and urban areas are described as land use. However, land
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use is the function of land cover for human activities, hence
they are not synonyms. Furthermore, both domains lack a
one-to-one correspondence. For instance,recreational is a
land use class that may be applicable to different land cover
classes like e.g.water (an all sports lake),urban (a funfair),
or forest(a peri-urban park). Confusing both terms leads to
increased ambiguities and incongruities in class definition;
therefore they should be kept separate (Meinel and Henners-
dorf, 2002).

Notwithstanding, this paper deals with common maps cur-
rently used by hydrologists, which include both land use and
land cover terms in their legend. Hence it is assumed that
land use terms appearing in the legend can be inferred from
the pattern of occupation of land. This assumption is nec-
essary because the focus of this paper is on those land use
data that are assimilated into models at the catchment or river
basin scale. These are usually derived from Remote Sensing
(RS) data, and in the latter, human activity (people manufac-
turing, harvesting, shopping or playing) cannot be directly
observed, at least with current civil satellites. An overview
of land use/land cover mapping can be found in Lins (1996).

1.2 Land use data formats and models

Land use data usually come in the form of maps that depict
the distribution over a region of the set of land use classes
included in the map legend. The latter must consist of a
fixed number of mutually exclusive and collectively exhaus-
tive classes (each one represented by a particularlabel), so
that any given terrain unit can be assigned a label. Land use
maps are typically derived from RS ortho-rectified (i.e. ge-
ometrically corrected to some cartographic projection) im-
agery, either aerial ortho-photos or satellite multispectral
ortho-images.

1.2.1 Raster maps

When multispectral satellite imagery is used, it is common
to apply a semi-automated classification to the image. This
process uses pattern recognition methods to group individ-
ual data samples, orsignatures, into classes. A signature
is an n-element sample where each element usually is the
value taken by a given individual pixel in each ofn channels
or bands. Signatures act as the coordinates of pixels in an
n−dimensional space. The non-uniform arrangement of sig-
natures (which usually tend to cluster into more or less dis-
continuous regions) within this space is used in the analysis
to demarcate the regions of that space occupied by each class
of interest. The common digital representation of maps de-
rived from satellite images is arasteror grid made of square
cells, where the value at each cell orpixel is the label re-
turned by the automated classifier at that pixel. Eventually,
this assignment may change after a post-classification step
where a smoothing filter is applied to the raw classified im-
age in order to enhance the accuracy and spatial coherency

Fig. 1. Fictitious land use map with three classes.

of the resulting map. In others cases, rather than having a
single choice for each map cell, each class is mapped sepa-
rately as a membership function ranging from 0 (no member-
ship to the class) to 1 (full membership). Such would be the
case of fuzzy k-means classification, an example of which
can be found in Burroughs et al. (2001). Irrespective of the
processing sequence followed, the basic (areal) units used in
this kind of maps are individual pixels. Thus the concep-
tual framework underlying this representation isfield-based,
since it considers land use a regionalised variable distributed
over geographic space, that is, ageographic field. An ex-
ample of a fictitious land use map, which will be used to
illustrate some points, is shown in Fig. 1. It corresponds to
a 19×12 km region centred at Canon city, Colorado, USA,
and it has been derived by applying amaximum likelihood
classifier(MLC) to a Landsat TM image subset that can be
found in the Tutorial Data CD #2 of the ENVI (a popular RS
image processing package) distribution.

1.2.2 Vector maps

When derived from aerial photography, land use units are
usually delineated manually byphotointerpretation. This
process consists in the identification of semantically homo-
geneous regions in the ortho-photo based on the visual differ-
ences that different land use classes create. The usual digital
representation of maps derived from ortho-photos is apoly-
gon vector layer, i.e., a mosaic of non-overlapping contigu-
ous units orpolygonsrepresenting patches of land whose la-
bel, unlike raster cells, is necessarily different than the ones
of adjacent units. The termvector in this context refers to a
data structure that uses the segments connecting a topologi-
cally ordered series of points as the basic building blocks for
representing the boundaries of polygons. These polygons,
being unitary and different from their surroundings, can be
regarded as representing geographic objects, thus the con-
ceptual framework underlying this representation isobject-
based.
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The present widespread availability of very high resolution
(<5 m pixel size) RS imagery is fostering the abandonment
of pixel-based methods to derive land use maps, which are
being replaced bygeographic object-based imaged analysis
(GEOBIA) methods (Hay and Castilla, 2007). The reason is
that, in these images, pixels are too small to be representative
of classes whose biophysical description refers to a setting
that necessarily encompasses more than a few square me-
tres. GEOBIA methods, unlike the conventionalpixel-based
ones, use image-objects as the basic units of the analysis.
The latter are delimited – typically by an image segmentation
algorithm- regions of the image that are internally coherent
and relatively different from their surroundings (Castilla and
Hay, 2007). By using this kind of units, additional features
that cannot be obtained from individual pixels (such as those
derived from the shape of the regions and their mutual rela-
tions) may be included in the analysis. With such enhanced
capabilities, GEOBIA has the potential to supersede not only
conventional pixel-based methods, but also photointerpreta-
tion (Castilla et al., 2007). Therefore it is likely that in the
future, most land use data will be derived this way and pre-
sented in vector format.

1.2.3 Implications of vector to raster conversion

This paper focuses on uncertainties in raster land use maps
derived from digital classification of RS data. Raster maps
are more commonly used in water-related studies than vector
maps, since gridded data can be readily assimilated into dis-
tributed hydrologic models. Notwithstanding, we also briefly
address uncertainty in land use maps in vector format, since
they are occasionally used in this context by converting them
to raster before assimilation. In this respect, users should
be aware that vector to raster conversion, albeit a straight-
forward process, has some implications on the reliability of
the results. The conversion not only involves a change of
data format, but also of conceptual framework. The object-
based model has a higher abstraction level than the field-
based model (e.g., it uses relational features between objects
that are not applicable in the field-model), hence what could
be regarded as an error in the latter is simply a necessary
generalisation in the former, as explained next.

An important generalisation mechanism inherent to poly-
gon maps is theminimum mapping unit(MMU), i.e. the min-
imum size (or sometimes width, when referred to elongated
units) that a land parcel must exceed in order to be repre-
sented in the map. Isolated land use units having a size below
this threshold are aggregated into the surrounding unit. Af-
terwards, there is no trace in the map of the smaller units. An
exception is the case ofmosaic polygons, which have a com-
pound label representing a mosaic of patches from different
classes, all smaller than the MMU. In these kinds of poly-
gons, the percentage cover from each class may be reported,
but information regarding their actual distribution within the
polygon is missing as a parsimonious exchange for clarity.

In general, each MMU will yield a different map, and the
larger the MMU, the greater the proportion of the map extent
catalogued asmosaic(Castilla, 2003). The conclusion is that
when a polygon map is gridded for use in a model, and the
grid cell size is several times smaller than the MMU, then
we cannot be certain that all the cells within a given poly-
gon actually belong to the declared land use class, even if the
reported accuracy of the polygon map was 100%. The only
clues to assess this uncertainty are the MMU and cell size,
and the complexity of the mapped landscape.

2 Characterising uncertainty in land use data

In this paper,uncertaintyis an indication of the degree of dis-
trust with which the data should be regarded or used. Conse-
quently, the higher the uncertainty about a given datum, the
more likely is that the actual land use of the piece of terrain
to which this datum refers to is not the one reported; and
at the same time, the more serious are the consequences of
wrongly assuming that land use at that location is the one re-
ported. Uncertainty so defined influences the extent to which
the predictions made by a model using this data are to be be-
lieved, and ultimately the strength with which those predic-
tions may support or justify a given environmental decision.
We note that under this definition, uncertainty is not only de-
pendent on the data but also on the user. The same dataset
can be regarded with different degrees of distrust depending
on how it will be used, meaning that some errors may be rel-
evant for the intended application, while others may have no
impact. In the case of hydrological modelling, uncertainty in
land use data depends on the sensitivity of model output to
varying land use data input. Therefore a sensitivity analysis,
typically based on Monte Carlo simulation, may be used to
assess the impact of land use data uncertainty on the hydro-
logic model (e.g., Eckhardt et al., 2003).

Land use may be considered as categorical regionalised
variable that describes the main type of activity each land
unit (i.e. the footprint of each pixel) is devoted to. As such,
land use data uncertainty may be characterised using the inte-
grated framework provided by Brown et al. (2005) (Table 1).
Regarding its method of determination, the activity is in-
ferred from the particular combination of recurrent elements
(such as trees or buildings) that are typically present in the
places where this activity is carried out. This setting yields
a particular joint reflectance profile when observed from far-
away. Such a profile can in turn be measured (after account-
ing for atmospheric interactions) by imaging spectrometers
mounted on satellites. Hence, land use is ascertained from
pixel signatures through a process calledimage classifica-
tion, which consists in demarcating the regions of the multi-
dimensional data space associated with each class of interest
ci (i=1,...,m). The classification is carried out with the aid of
a set ofdiscriminant functions gi (one for each ofm classes),
such that given a signatureX, gi(X) is greater than the other
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Table 1. Characterisation, following the method by Brown et al. (2005), of land use data quality and uncertainty.

Variable name Land use

Method of determination Semi-automated classification
Data category D3 (categorical variable that varies in space and time)
Type of empiric uncertainty M1 (mean classification error derived from a contingency matrix)
Instrument quality I2 to I3 (instruments well fitted to not well matched, depending

on spectral and spatial resolution)
Sampling strategy S2 (limited number of both training and verification samples)
Overall method O3 (Reliable method common within discipline)
Longevity of uncertainty information L1 (change over time)

gj whenX belong toci . In other words,X is classified as
a member of classci if and only if gi (X) ≥gj (X) for all
j=1,2,...m (Landgrebe, 1999). For example, the map shown
in Fig. 1 is the result of applying a maximum likelihood clas-
sifier (where the discriminant functions return the probabil-
ity that the signature belongs to each class assuming that the
statistics for each class in each band are normally distributed)
to the six optical bands of the Landsat TM image.

Within Brown et al. (2005) framework, land use belongs
to data category D3, and its empiric uncertainty is assessed
quantitatively through the statistics derived from a contin-
gency table of errors (M1 empirical uncertainty category).
The instrument quality, here referring to the remote sensors
that record the data from which land use is inferred, is diffi-
cult to assess, because these data are only contingently re-
lated to theintensionaldefinition (i.e., the set of features
distinguishing a class from all others) of land use classes.
Instead, a surrogate definition, based on spectral rather than
biophysical features, is constructed using a set of typical sig-
natures ortraining pixelscollected from representative well
known locations. For example, the training pixels used for
the map of Fig. 1 are those included in the fileclasses.roiof
the cantm folder of the ENVI Tutorial Data CD #2. Then
the region(s) of the multidimensional data space occupied by
each class are demarcated according to this definition. Sig-
natures inside that region(s) constitute theextensionaldefi-
nition (the set of instances belonging to it) of the class. The
expected result of this indirect method is that the projection
of this extensiononto geographic space, i.e. the set of ter-
rain plots that belong to each class, coincides to a great deal
with the one that would have been obtained should the proper
intension(related to human activities) be applied to exhaus-
tive field observations. The degree of success is later verified
from a set of reserved (not used for training)test pixelsfrom
known locations. Regardless of the particular classifier em-
ployed (an overview of the different methods can be found in
Richards and Jia, 1999), image classification is considered a
reliable and common method for deriving land use data from
RS data, so it can be assigned to Brown et al. (2005) category
O3.

Finally, regarding the temporal dimension of land use data
uncertainty, it can be considered as belonging to category L1
(it changes over time). Land use maps are snapshots taken
when primary data (e.g., aerial photographs) were collected.
Age decreases the reliability of the information portrayed
in the map, since there can be changes that affect land use,
such as wildfires, the construction of new infrastructures, and
shifts from rural to urban or from agriculture to forestry. The
more frequently these changes occur, the more urgent the
need for updating. Since the likelihood of changes is not uni-
form throughout the landscape (e.g., it is higher in the urban-
rural buffer), age affects unevenly the reliability of these data.
Similarly, it is unusual that all data are coetaneous for a given
mapping project, especially field surveys, so again the tem-
poral reliability is likely to vary from one sheet to another.
An important consequence of temporal uncertainty is that, as
the database is updated, past deductions have to be revised
as they may no longer be valid. This is known as the “belief
maintenance problem” (Frank, 2003). For example, a con-
servancy area may have been assessed in an earlier study as
having a low erosion risk, but after a wildfire that assessment
may not be true anymore.

3 Positional uncertainty

There are two main uncertainties contended with when deal-
ing with land use data,positional and categorical(usually
termedthematicwithin Geographic Information Science lit-
erature) uncertainty. This distinction is debatable, since a
label disagreement at given location could be interpreted as
being due to either positional (e.g. a systematic coordinate
error) or categorical error. However, this separation will be
followed here, for two reasons. First, it is common in the lit-
erature. Second, it is useful, for it distinguishes two types of
uncertainty that are associated to two domains very different
in nature, namely the cartographic domain and the classifica-
tion domain.

In raster maps, positional uncertainty relates inversely to
the degree of confidence we may have that the actual location
of the plot of terrain represented by a given cell corresponds
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acceptably to the coordinates of that cell. Hence, positional
uncertainty depends mostly on the quality of the geometric
correction (ortho-rectification) performed on the satellite im-
age from which the map was derived. Positional accuracy is
usually estimated by the Root Mean Square Error (RMSE)
of selected points (such as crossroads) clearly identifiable in
the image and whose precise coordinates are known from a
higher accuracy source (e.g. a finer scale topographic map
or differential GPS measurements). RMSE is computed as
the square root of the mean of the squared errors, and is cal-
culated combining bothx and y directions. Such estima-
tion assumes that positional errors are randomly distributed
throughout the imaged scene, which may well not be the
case, especially in rugged terrain due to relief distortions.

In general, positional uncertainty is far less serious than
the categorical one. For example, in a vegetation mapping
study, Green and Hartley (2000) calculated positional error
introduced by georeferencing, digitising and subjective inter-
pretation, and found that the latter process accounted for 90%
of the total error. In practice, RMSE is considered acceptable
when it is less than the pixel size, a fact that is referred to as
subpixel accuracy. In this situation, i.e., when an image has
been geocorrected at subpixel accuracy, the true location of
the centre of any given pixel can be safely assumed to lie
somewhere within a 3×3 block of pixels surrounding that
point (Goodchild, 1994). For a review on geometric correc-
tion of RS images, see Toutin (2004).

In vector maps, positional uncertainty relates inversely to
the degree of confidence we can have that the boundary be-
tween two given polygons lies in the right place. As pre-
viously noted, this uncertainty is inseparable from the cate-
gorical one. The reason is that the boundaries being sought
and delineated are only those that differentiate the land use
classes in the chosen classification scheme (Bie and Beckett,
1973). Therefore the uncertainty attached to boundary place-
ment is proportional to (1) how different the classes separated
by the boundary appear in that area; and (2) how abrupt the
transition from one class to the other is, i.e., how sharp the
boundary is. Since in any given RS image some boundaries
are softer than others, uncertainty should be estimated inde-
pendently for each arc in the map.

This estimation could be made through the definition of
a probabilistic epsilon band (Honeycutt, 1987) within which
the ‘true’ boundary between two polygons has a 99% prob-
ability of being located. The rationale behind epsilon bands
is as follows. Assuming a correct classification of polygons,
one could argue that a point precisely on the boundary could
equally well belong to either class (Blakemore, 1984). Mov-
ing away from the boundary towards the centre of the poly-
gon increases the probability of a correct classification, while
at the same time the probability that this location is where
the boundary should lie decreases. The manner in which this
probability drops off depends again on both boundary and
class distinctiveness.

Regrettably, the epsilon band, being boundary-dependent

and arc-specific, is rarely, if ever, computed. Following the
example in Green and Hartley (2000), a general procedure
for the estimation of the error due to subjective interpretation
could be obtained by overlaying several photointerpretations
of the same area carried out by different equally-skilled inter-
preters. After intersecting the vector layers produced by each
interpreter, some boundaries will be very consistent, whilst
others will vary markedly, resulting in dozens of sliver (i.e.,
spurious) polygons. The width of the epsilon band corre-
sponding to a given soft boundary would be the mean dis-
tance between the inner and outer wrapping lines encompass-
ing the set of sliver polygons existing along that boundary.

Unfortunately, not only is the above procedure hardly
feasible within the context of a mapping project, but it is
grounded on an unrealistic assumption. That is, given a piece
of land independently mapped by several interpreters using a
common scale and legend, it assumes that overlaying the re-
sultant maps will resemble an egg-yolk representation (Cohn
and Gotts, 1996). In the latter, each polygon is like a fried
egg that has a yolk (i.e. a core area free of sliver polygons)
and a white (the set of sliver polygons surrounding that core),
the white being the epsilon band. Such representation as-
sumes that any two high quality photointerpretations of that
piece land would create the same set of geographic objects,
but with slightly different boundaries. However, it will not
be unusual to find some polygons drawn by interpreter A that
are crossed in the middle by an arc delineated by interpreter
B, and vice versa.

A more feasible alternative for assessing the positional un-
certainty of arcs is to express it as a combined measure of
boundary distinctness both from the radiometric and seman-
tic points of view. For a given arc, radiometric distinctness
could be estimated as the mean gradient magnitude of pixels
crossed by the arc. Semantic distinctness could be equated
to the value of some biophysical similarity index between
the classes being separated by the arc (see e.g. Orzanco et
al., 2004). In addition, positional accuracy could be assessed
polygon-wise, preferably for the same sample of polygons
that is used to evaluate thematic accuracy, which for the rea-
sons stated in the previous paragraph should consist of non-
adjacent polygons. The question to be answered for each
polygon in the sample would be: are the boundaries of this
polygon delineated in such a way that it can be conceived
as representing a coherent land use unit under the view sup-
plied by the classification scheme? The answer could be
given qualitatively using a nominal scale, or even quantita-
tively by computing an epsilon band derived from several in-
terpreters who are separately given the task of improving the
delineation of that polygon. A study testing this procedure,
which to the best of our knowledge has not been carried out
yet, would be desirable.

In practice, positional accuracy is estimated through the
RMSE of sample points along vector arcs that correspond to
sharp boundaries in the image from which the map was de-
rived. This estimation is biased towards human-influenced
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Table 2. Sample confusion matrix for the fictitious map of Fig. 1.

Class agriculture forest barren Total User Acc.
%

agriculture 275 8 1 284 96.83
forest 27 459 2 488 94.06
barren 1 6 273 280 97.50
Total 303 473 276 1052
Prod. Acc.% 90.76 97.04 98.91 95.72

features, such as the edge between a woodlot and a paddock,
since ‘natural’ boundaries are less distinct. Therefore, the
RMSE method is not suitable to assess how well polygon
boundaries represent landscape structure, rather it is an indi-
cation of the steadiness of the interpreter’s hand (and of the
visualisation scale they used).

4 Categorical uncertainty

Categorical uncertainty is inversely related to the degree of
confidence we can have about whether the plot of terrain cor-
responding to a given map unit is actually devoted to the use
indicated in the map. This uncertainty is commonly assessed
using a contingency table of agreement between predicted
and observed values, typically referred to as theconfusion
matrix (Table 2). We note thataccuracy, the term commonly
used in the RS literature, may be considered the antonym of
uncertaintyin this context, i.e., the more accurate the map
is, the less uncertainty it has. However, as noted earlier, the
actual relation between accuracy estimates and uncertainty
as a measure of distrust will depend on the particular appli-
cation. For a review on accuracy assessment of land cover
maps, see Foody (2002). For an example of an accuracy as-
sessment of a national land cover map, see Stehmanet al.
(2003), which is based on the methodological framework put
forward by Stehman and Czaplewski (1998), which in turn
divides the accuracy assessment into three components: (1)
sample design; (2) response design; and (3)analysis.

(1) Sample designis the protocol used to determine the
number, location, spatial support and nature (e.g. aerial pho-
tos or field plots) of the sample units that will populate the
confusion matrix; (2)response designis the protocol for as-
signing a label to each sample unit, including the procedures
to collect the information used in the assignment; and (3)
analysisis the protocol for deriving accuracy statistics from
the confusion matrix. Unfortunately, this framework is not
worked out explicitly or reported in most maps. Without
such details, it is difficult for a user to appreciate how close
the accuracy estimates are to the “true” map accuracy, and
how robust or repeatable they are. A good example on how
to develop a sound accuracy assessment framework, includ-

Fig. 2. Location of ground truth pixels used to construct the confu-
sion matrix of Table 2.

ing some useful information on key decisions that have to be
made, can be found in Wulder et al. (2006a).

In practice, the confusion matrix is computed from a sub-
set of pixels from known areas that were not used as training
pixels, and it compares for each land use class the predicted
class with the actual one on the ground. There are a number
of methods to measure accuracy from this table, the simplest
being the percent correctly classified, usually calledover-
all accuracy(95.72% in the example). The recommended
accuracy threshold, below which the resulting map should
be discarded for operational purposes, is 85% (Anderson
et al., 1976). Another common measure is thekappa in-
dex, similar to the former but it ranges from 0 to 1 and is
not biased by chance agreement (i.e. it takes into account
the expected rate of agreement between predicted and actual
datasets based on chance alone). Kappa values over 0.75 in-
dicate very good correspondence between the two datasets,
while values below 0.50 indicate poor correspondence. In-
dividual class accuracy may be reported either from the map
user’s or producer’s perspective, or both (Story and Congal-
ton, 1986). User’s accuracy refers tocommission errors(i.e.,
pixels with an assigned class that in reality do not occur at
them), whereas producer’s accuracy refers toomission er-
rors (i.e., pixels of a given class that were wrongly assigned
to a different class). The commission/omission distinction is
especially relevant for binary maps (with only two classes,
e.g., change v. no-change), as it enables the assessment of
thespecificity(absence of commission error) andsensitivity
(absence of omission error) of the map to e.g. varying change
thresholds. Such assessment may be carried out through Re-
ceiver Operating Characteristic (ROC) analysis (Zweig and
Campbell, 1993).

Regarding vector maps, the comparison between predicted
and actual land use class should consider the polygon as a
whole. This becomes troublesome if the validation method
consists of field surveys, because it is difficult to infer the
polygon label from plot or transect data due to the inevitable
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heterogeneity of polygon interiors. This difficulty may be
tackled using field plots larger than the minimum mapping
unit (MMU), but this may hinder the cost-effectiveness of the
sampling design, or simply be unfeasible when the MMU is
larger than say 1 ha. Also, if there is considerable variabil-
ity in polygon size, care should be taken when selecting the
sampling design (Stehman and Czaplewski, 1998), since er-
ror estimates should be referred to total area rather than to
the number of polygons.

4.1 Problems of the conventional approach

The main drawback of the confusion matrix is that it
only captures the average error over the entire mapped
area, whereas the likelihood of misclassification may vary
markedly from one place to another (Goodchild, 1994). For
example, in a recent study on spatially constrained confu-
sion matrices derived from the same image, Foody (2005)
reported that while the global accuracy for the whole image
was estimated to be 84%, local estimates varied from 53%
to 100%. We note that in addition to the often biased spatial
distribution of errors, usually there are also significant differ-
ences in error rates among the classes (Davis and Simonett,
1991), albeit this aspect is well displayed in the confusion
matrix.

The selection of the sample pixels used in the construction
of the matrix may also optimistically bias the accuracy esti-
mates (this actually occurs in the example used throughout
this paper), since they are usually collected in blocks of con-
tiguous pixels rather than individually (Fig. 2). Blocks usu-
ally correspond to homogeneous areas far from boundaries
between different land use units. In this way, mixed pixels,
which are prone to be misclassified, are systematically ex-
cluded from the sample (Plourde and Congalton, 2003). The
block sampling procedure also violates the independency as-
sumption of statistical sampling, because near pixels are usu-
ally correlated and therefore tend to show similar values.

Another aspect that the usual confusion matrix neglects
is the relative seriousness of the misclassification. In many
maps, the errors observed in a classification are between rel-
atively similar classes and often these may be unimportant,
while other errors may be highly significant (Foody, 2002).
For example, it is more serious to confuse alakewith a for-
est than a forest with asparse woodland. However, both
have the same weight in the computation of conventional ac-
curacy estimates, which treat all errors as equally serious.

It is also worth noting another flaw regarding the source
of “ground truth”, that is, the reference data upon which
the classification results are validated. Many times, be-
cause of financial and logistic constraints, ground truth do
not come from field surveys but from interpreted aerial pho-
tos of higher resolution, or even from previously compiled
maps of greater level of detail, available for some limited
parts of the new map. When a finer map is used as reference,
the comparison may be misleading, due to the likely differ-

Fig. 3a. Uncertainty landscape derived from the confusion matrix
of Table 2.

Fig. 3b. Uncertainty landscape derived from MLC classifier.

ent conceptual and averaging filters that each map applies to
the territory, especially if the areal units of the reference map
are polygons (Wulder et al., 2006b). For example, Finke et
al. (1999) compared the CORINE landcover map with the
Landcover database of the Netherlands and concluded that
the former contains considerable errors, reporting that 69%
of the area covered by (semi)natural vegetation was misclas-
sified in a combined soil/vegetation map. Such disagreement
probably comes from different map legends, spatial support
and minimum mapping unit, rather than to sheer ‘error’ in the
less detailed map. Indeed, mapping errors are “forcible de-
viations between a representation and actual circumstances”
(Chrisman, 1991). But actual circumstances are described at
a given scale of observation using a given set of concepts –
the map legend. Therefore, in order to estimate error in a
map by means of a more detailed map, the latter should use
the same concepts as the former; and prior to comparison,
it should be resampled to the same resolution as the former.
Otherwise the map uncertainty may be overestimated, as the
fine scale map inherently has more spatial information.

The sensitivity of analytical results to the type of the areal
units from which data are collected has been conceptualized
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by Openshaw and Taylor (1981) as the Modifiable Areal
Unit Problem, or MAUP, which is akin to the Change Of
Support Problem (COSP) identified in Geostatistics (Cressie,
1996). It arises from the fact that these units are arbitrarily
defined and eventually modified to form larger units. There-
fore, if the areal units are arbitrary and modifiable, then the
soundness of any model based upon them may be rightly
questioned. MAUP was identified in the context of socio-
economical geography, but it has been also found in Land-
scape Ecology and Remote Sensing. Marceau (1999) gives a
comprehensive review on the issue.

4.2 Alternative approaches

To sum up, despite the fact that confusion matrices are widely
used as the standard accuracy assessment for RS-derived
maps, they are clearly insufficient for propagating land use
uncertainties through a hydrologic distributed model, as they
do not take into account the spatial distribution of errors. To
illustrate this point, Fig. 3a displays a shaded relief from the
uncertainty landscape(where the altitude of each point is
proportional to the accuracy of the class it has been assigned
to) that could be inferred from the confusion matrix of Ta-
ble 2. This image conspicuously differs from the shaded
relief of Fig. 3b, which corresponds to a landscape where
the altitude of each point is proportional to the estimated
probability that the point actually belongs to the class as-
signed by themaximum likelihood classifier(MLC). In both
landscapes, areas of higher uncertainty correspond to pits or
canyons. The landscape from the confusion matrix is less
rugged than the one from the MLC, and rugged terrain is dis-
tributed differently in each image. The main reason is that
Fig. 3a was derived using global estimates, whereas Fig. 3b
used local estimates.

In order to tackle this deficiency of the confusion matrix,
there are two previously proposed alternatives that may be
tried. One is the general error model proposed by Goodchild
et al. (1992). In this model, each pixel is associated with an
m-component vector of probabilities giving the probability
that the pixel belongs to each class 1 throughm. The classes
allocated to the pixels in the map represent one realization of
a stochastic process defined by these vectors. That is, over a
large number of realizations, the proportion of times a pixel is
assigned to each class will converge on each class’s probabil-
ity at that pixel. In addition, within any given realization, the
outcomes in neighbouring pixels are correlated, so that the
model also includes parameters describing the level of spa-
tial dependence. Sample realizations can be obtained as the
outcome of a classification performed using a randomly se-
lected subset of training pixels. The parameters of the model
can then be calibrated by adjusting them so that the range of
outcomes matches reasonably the range observed in reality.
An example of its application can be found in Horttanainen
and Virrantaus (2004). Despite being an interesting alterna-
tive, the crux of this method is how to define the parameter

that controls the level of spatial dependency, since the latter
varies markedly throughout the image.

Another alternative would be the computation of spatially
constrained confusion matrices to characterize the spatial
variation of accuracy throughout the scene (Foody, 2005).
Given a set ofn predefined locations of interest situated well
apart from each other,n confusion matrices could be com-
puted from thek nearest samples to each location. This ap-
proach assumes that enough samples are available around the
locations of interest, which may not be always the case. Also,
different choices in the selection of these locations and the
number of samples per location will in all likelihood produce
different accuracy estimates. However, it is a simple and
inexpensive means of extending the conventional approach
with information on how classification accuracy varies across
the mapped landscape. Further details can be found in Foody
(2005).

The problem of accounting for the relevance of differ-
ent classification errors could be tackled by using a nominal
scale to evaluate map v. field comparisons, ranging from “ab-
solutely irrelevant” to “absolutely severe” (e.g., Gopal and
Woodcock, 1994). This scale would easily allow weighing
the degree of disagreement between the map and field obser-
vations according to the intended use of the map, and hence
would enable users to convert disagreement into distrust, i.e.,
relate accuracy to uncertainty. For example, confusing two
land use classes that have similar parameterisation in a given
hydrologic model would not lead to a significantly different
model output. Therefore this error could be labelled as “ab-
solutely irrelevant” and have a low weight in the uncertainty
analysis. The weight itself could be determined by the rela-
tive impact of this error on the model response, or at a higher
level, by the economic loss due to wrong decisions based on
erroneous data (e.g., Naesset, 1996).

5 Factors that influence land use data uncertainty

The main factors influencing the reliability of raster land use
data can be identified as (1) the quality of the image(s) used
as input for classification; (2) the quality of the training pix-
els used to define quantitatively the classes; (3) the degree
of correspondence between the proper definition of classes
and their radiometric definition. The factors affecting vec-
tor land use maps derived from phointerpretation are briefly
discussed at the en of this section.

5.1 Image quality

Satellite images are measurements, distributed at a fixed
ground sampling interval (equal to the pixel size), of region-
alised variables. These variables are usually related to some
electromagnetic property of the Earth surface and the atmo-
sphere, such as the radiance recorded by optic sensors at sev-
eral bands of the spectrum. The latter depends not only on
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the reflectance of the surface, but also on atmospheric condi-
tions and on incidence and viewing angles. So the clearer the
atmosphere and the flatter the terrain, the more can be ex-
pected that reflectance estimates derived from the recorded
values are equally good for all the pixels in the image. As-
suming that the image either fulfils these requirements or has
been adequately corrected for atmospheric and relief effects,
each pixel can then be considered as a sample introduced in
a desktop spectrometer. The resulting signature is then com-
pared to the ones of selected samples (training pixels) of each
material that can be found in the imaged landscape. After
comparison (i.e. classification), the material having the most
similar signature(s) to the one under analysis is selected as
the class to which that pixel belongs.

This discourse can be extended to cases where signatures
are not spectral, like e.g. crop classification using multitem-
poral radar images. The key point is that the set of im-
ages used in the analysis allows for a good discrimination
between classes, i.e. that no two signatures from different
class are similar. In order words, in order for the classifi-
cation to be successful, signatures should clump into clus-
ters in then-dimensional data space, where each cluster
is composed of signatures of a prevailing class, and where
clusters from different classes are separated by quasi-empty
space. Conversely, the greater the overlap between two given
classes, the higher the probability that they will be confused
(Schowengerdt, 1997). Therefore a high quality multiband
image in this context is one where signatures are segregated
in the data space according to their class, enabling an accu-
rate classification.

A related issue is, given a data set, what is the best com-
bination of images, in type and number, which can be used
to map land use (e.g., Mausel et al., 1990). This is a clas-
sic problem of pattern recognition, calledfeature selection
(where feature stands forband), consisting of two inter-
related parts: feature extraction (the transformation and/or
combination of the original images/bands into new ones) and
feature reduction (the reduction of the dimensionality of the
data set by selecting the smallest subset of bands provid-
ing an acceptable discriminative power). Feature selection
is generally considered a process of mapping the original
measurements into more effective features. Unfortunately, in
many applications, the important features are nonlinear func-
tions of original measurements. Since there is no general the-
ory to generate mapping functions and to find the optimum
one, feature selection becomes very much problem oriented
(Fukunaga, 1972).

5.2 Representativeness of training pixels

Turning to training pixels, the accuracy of image classifica-
tions depends heavily on their quality, even more than on the
actual classifier used (Buttner et al., 1989). Moreover, the
same classifier is likely to produce different results on the
same image when trained with a different set of training pix-

els (Smits et al., 1999). As a consequence, the result is prone
to reflect inconsistencies in the selection of training samples.
Thus “good” training pixels must be fully representative of
their respective class, so that a good number of instances of
the set of typical signatures of that class are included. This
implies e.g. that they should be well distributed across the
scene, as there may be “local varieties” of the material, where
each variety may conform a separate cluster in the data space.

5.3 Correspondence between biophysical and radiometric
class definitions

Classes are defined quantitatively through the signatures of
training pixels. In doing so, it is assumed that there is abijec-
tion between location in data space and location in the cate-
gorical space defined by the classification scheme of the map.
That is, if a signature is located in a region of the data space
that belongs to the classforest, it is expected that the plot of
terrain from which that signature was extracted is “densely
covered by trees”. Conversely, the signature of any given
place densely covered by trees is expected to lie within some
cluster of the data space that has been allocated to thefor-
est class. Such correspondence does not depend solely on
the quality of both the image and training pixels, but also on
the very definition and number of classes. The more adapted
the set of classes to the structure of the data space, the bet-
ter the correspondence and therefore the accuracy. Hence,
if we include in the map legend two classes that share the
same tracts of the data space, the classification results will be
poor. In general, the higher the number of classes, the higher
the number of both attributes (bands) and training samples
(pixels) required for a good classification.

In any case, the correspondence cannot be perfect, as
classes must fulfil some conflicting requirements. On the
one hand, classes must be meaningful for users and meet
their needs, covering exhaustively all the possible land uses
that can be found in the mapped region. On the other hand,
classes must be separable to an adequate degree in the data
space. In fact, there will always be some settings that lie in
between the definition of two classes. For example, a given
area may have such a tree density that it cannot be consid-
ered aforest, but neither asparse woodland. If such areas
are common in the region, it would be advisable to create
a new class, e.g.,open forest. However, since it can be ex-
pected that the signatures of the new class overlap with those
of the former classes, it is unlikely that the accuracy of the
map is increased.

In a similar way, there are always pixels that are crossed
by an edge separating different land patches, the so called
mixed pixels. Their signature consists of a mixture of two (or
more) classes and may be located in tracts of data space occu-
pied by other classes. For example, a Landsat pixel situated
between a corn field and a bare field has a mixed signature
that may be confused with the signature of a class having
a low green cover fraction, such ussparse woodland. The
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abundance of mixed pixels depends on the resolution of the
image and the complexity of the landscape (Markham and
Townshend, 1981), so that the odds of a correct classifica-
tion decreases with decreasing patch size and increasing het-
erogeneity (Smith et al., 2003). Since, in addition to other
factors, the problem of mixed pixels is inversely related to
the problem of the spectral heterogeneity of classes, it is im-
possible to achieve a 100% accuracy. For instance, the pro-
portion of mixed pixels may be reduced by decreasing the
pixel size, but at the expense of increasing intraclass vari-
ability. In short, classes should be defined in such a way that
can be distinguished with the satellite data used to map them.
Attempting to include classes that consists of instances with
radiometric signatures very different among them (e.g. the
classurban in Landsat imagery) and similar to the ones of
other classes (e.g.wheatandbarley) will result in a poor and
inconsistent map.

5.4 Factors affecting vector land use data

In the case of polygon land use maps derived from photoint-
erpretation, in addition to the quality of the image, the uncer-
tainty of the derived map will rely on the quality of the inter-
pretation. This in turn depends on the skills and experience of
the interpreters, and on the time allocated for interpretation
(and even on the interpreter’s mood during that time). Since
this quality may change from sheet to sheet due to different
interpreters performing this task, it is of utmost importance
to standardise observational techniques (e.g. digitising scale)
and criteria (through e.g. a photointerpretation key consist-
ing of several examples for each class) among interpreters
(Lillesand et al., 2003).

6 Conclusions

The confusion matrixis the standard means for assessment
of categorical uncertainty in RS-derived land use raster maps.
An example of an accuracy assessment protocol based on this
matrix can be found in Stehman et al. (2003). Unfortunately,
this matrix does not provide information on the spatial dis-
tribution of errors, and hence it cannot be used to propagate
uncertainty through distributed hydrologic models. There are
two previously proposed alternatives to tackle this deficiency.
One is the error model of Goodchild et al. (1992), an applied
example of which can be found in Horttanainen and Virran-
taus (2004). The other is the local characterisation of classi-
fication accuracy though spatially constrained confusion ma-
trices (Foody, 2005).

In addition to neglecting the spatial distribution of errors,
conventional procedures do not account for the relative im-
portance of different missclassification errors in relation to
the intended use of the data. Hence, the estimates they pro-
vide cannot be operationally used as a measure of the degree
of distrust the data deserve. This could be tackled by weigh-

ing different types of errors according to an ordinal scale that
measures the relative impact of the error on the particular
application. In any case, despite the apparent objectivity of
quantitative estimates derived from any given method, it is
important that they are interpreted with care, since there are
many factors that may result in a misleading interpretation
drawn from an apparently objective statement (Foody, 2002).

For this reason, quantitative analytical results must be
complemented with qualitative insights on how reliable a
map is. Thewhole picturecould be gained by a thorough
inspection of (well documented)metadata, i.e., information
describing the land use map itself. Metadata can provide
users with a sense of the amount of distrust with which
the data should be used. In order to make such intuitive
assessment, metadata should not only describe comprehen-
sively the material – images and ancillary information- used
in the compilation of the map, but the methods, including
the location of training and verification samples (Stehman
and Czaplewski, 1998). Within this scope, the International
Metadata Standard for Geographic Information ISO 19115
defines more than 300 metadata elements structured into 14
packages, most of which can be applied optionally. Meta-
data are usually stored in XML format, which can be ac-
cessed with standard text editors. If for a given map the
package related toData Quality Information is not empty,
then the user may have information on the accuracy of the
map. See MEGIS (2006) for an example of detailed meta-
data on a landcover map. On a positive note, even if current
metadata for land use maps tend to be poor if they exist at all,
the situation may be reversed soon, at least in Europe. The
recently issued INSPIRE Directive (EU, 2007) specifies that
“metadata shall include information on the quality and valid-
ity of spatial data sets”. This unprecedented legal require-
ment will in all likelihood increase concern about metadata
among European map producers.

In the absence of detailed metadata, the overall accuracy
estimate (derived from a confusion matrix) of a land use map
could in general be used when propagating uncertainty in
e.g. a hydrogeological model that uses this map as one of the
input layers to estimate evapotranspiration (ET). But in order
for this propagation to make sense, the model must just give
an overall ET estimate for the whole study area, i.e. it should
be a non-distributed model, unless we are ready to assume
that accuracy is randomly distributed throughout the map. A
better alternative for propagating uncertainty due to land use
data in a distributed model would be a spatially explicit error
model, which unfortunately is not provided by mapmakers in
current compilations. Nevertheless, if in the previous exam-
ple we had the confusion matrix of the map, we could, having
class-specific ET estimates, propagate uncertainty in the dis-
tributed model. However, in doing this we would again be
relying on an unrealistic assumption, that is, that errors are
randomly distributed in space.

Finally, in the sadly common case of a land use map for
which accuracy information is lacking, a possible solution
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would be, using the threshold proposed by Anderson et
al. (1976), to grant the map an 85% overall accuracy, on the
assumption that the agency that entrusted the map uses high
standards that in turn were followed by the contractor, and
apply it to all the cells within the model. If that solution can
be regarded as reasonable by both managers and stakehold-
ers, then the outcome of the uncertainty propagation exercise
may well be wrong, but at least it will belegitimate(see Hof-
mann and Mitchell, 1998). In short, the key question when
assessing uncertainty in land use maps is to what degree the
map allows managers (or models) to make decisions (or com-
putations) that do not differ significantly from those that they
would have made had they a direct knowledge (or perfect
map) of the mapped region. Current practice does not pro-
vide a full answer to this question since the reliability of a
map can only be fully appreciated through metadata. Hence,
a final recommendation for users is to compel map produc-
ers to compile well documented standard metadata files, on
the grounds that no map is acceptable as input to a numerical
model without them.
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