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Abstract. The variable parameter Muskingum-Cunge (MC)
flood routing approach, together with several variants pro-
posed in the literature, does not fully preserve the mass
balance, particularly when dealing with very mild slopes
(<10−3). This paper revisits the derivation of the MC and
demonstrates (i) that the loss of mass balance in MC is
caused by the use of time variant parameters which violate
the implicit assumption embedded in the original derivation
of the Muskingum scheme, which implies constant parame-
ters and at the same time (ii) that the parameters estimated by
means of the Cunge approach violate the two basic equations
of the Muskingum formulation. The paper also derives the
modifications needed to allow the MC to fully preserve the
mass balance and, at the same time, to comply with the orig-
inal Muskingum formulation in terms of water storage. The
properties of the proposed algorithm have been assessed by
varying the cross section, the slope, the roughness, the space
and the time integration steps. The results of all the tests also
show that the new algorithm is always mass conservative.
Finally, it is also shown that the proposed approach closely
approaches the full de Saint Venant equation solution, both
in terms of water levels and discharge, when the parabolic
approximation holds.

1 Introduction

In 1938 McCarthy (1938, 1940) proposed an original “hy-
drological” flood routing method, which has become quite
popular under the name of the Muskingum approach. The
attribute “hydrological” to a flood routing model generally
indicates that a finite river reach is taken into account by solv-
ing directly for the outflow discharges as a function of the
inflow ones, while all the geomorphological characteristics
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and the hydraulic properties of the reach are lumped into a
number of model parameters. For instance, other “hydrolog-
ical” modelling approaches to flood routing are the Diffusion
Analogy response function model (Hayami, 1951; Dooge,
1973; Todini and Bossi, 1986); the cascade of linear reser-
voirs (Nash, 1958) whose applicability to flood routing was
demonstrated by Kalinin and Miljukov (1958) or the cascade
of non-linear reservoirs developed as part of the TOPKAPI
hydrological model (Liu and Todini, 2002; 2004).

In 1969, Cunge extended the Muskingum method to time
variable parameters whose values could be determined as a
function of a reference discharge, by recognizing that the
original Muskingum approach could be viewed as a first or-
der kinematic approximation of a diffusion wave model, but
then converting it into a parabolic approach by proposing a
particular estimation of its parameter values which would
guarantee that the real diffusion would be equalled by the
numerical diffusion.

The method has been widely and successfully used for dis-
charge routing notwithstanding the fact that several authors
pointed out that the approach displays a mass balance error
that can reach values of 8 to 10% (Tang et al. 1999; Tang and
Samuels, 1999). Although many authors worked on the prob-
lem of the mass balance inconsistency (Ponce and Yevjevich,
1978; Koussis, 1983; Ponce and Chaganti, 1994; Tang et al.,
1999; Tang and Samuels, 1999; Perumal et al., 2001), a con-
clusive and convincing reason was not demonstrated.

In addition to the lack of mass balance, an even more im-
portant inconsistency is generated by the variable parame-
ter Muskingum, known as the Muskingum-Cunge (MC) ap-
proach, which apparently has never been reported in the liter-
ature; if one substitutes back into the Muskingum equations,
the parameters derived using Cunge approach, two different
and inconsistent values for the water volume stored in the
channel, are obtained.

The above mentioned pitfalls of MC approach have pro-
vided the motivation for this paper and it was deemed
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essential to revisit the Muskingum-Cunge model in order to
find the causes and possibly to overcome the inconsistencies,
since after 37 years from its development, the MC method
has still a fundamental role in modern hydrology. First of
all, the MC is widely used as the routing component of sev-
eral distributed or semi-distributed hydrological models, in
which case the preservation of the mass balance is an essen-
tial feature. Moreover, although several (more or less ex-
pensive) computer packages are available today that solve
the full de Saint Venant equations (for instance SOBEK –
Stelling and Duinmeijer, 2003; Stelling and Verwey, 2005;
MIKE11 – DHI Water & Environment, 2000; HEC-RAS –
U.S. Army Corps of Engineers, 2005; and many others) the
variable parameter MC, is still widely used all throughout
the world when the lack of knowledge of river cross sections
does not justify the use of more complex routing models. An-
other attractive reason is that it can be easily programmed at
practically no cost.

This paper describes the analysis that was carried out and
the corrections that were found to be appropriate. The qual-
ity of the new results was then assessed by routing a test
wave, specifically the asymmetrical wave proposed by Tang
et al. (1999), through three channels with different cross sec-
tions (rectangular, triangular and trapezoidal), by varying the
slope, the roughness, the space and time integration inter-
vals. All the results obtained show that the new approach
in all the cases fully complies with the requirements of pre-
serving mass balance, and, at the same time, of satisfying the
Muskingum equations.

Finally a comparison with MIKE11 (DHI Water & Envi-
ronment, 2000) shows that, when the parabolic approxima-
tion holds, the proposed algorithm is capable of closely ap-
proximating the full de Saint Venant equations results both
in terms of discharge and water levels. This is obviously true
provided that the original limitations of the kinematic wave
model and of the Muskingum model, in all its variants, are
taken into account: namely the approach can only be applied
in river or channel reaches not affected by the downstream
conditions and backwater effects.

2 The derivation of the Muskingum variable parameter
equations

The derivation of the original Muskingum approach is based
upon the following two equations (Eq. 1) written for a
channel (or river) reach without lateral inflow.

{

dS
dt

= I − O

S = k ε I + k (1 − ε) O

(1a)
(1b)

The first equation (Eq. 1a) represents the mass balance,
globally applied to the reach between the upstream and
the downstream sections, while the second one (Eq. 1b)
expressesS [L3], the volume stored in the reach, as a simple

linear combination ofI [L3T −1] the inflow discharge at the
upstream section andO [L3T −1] the outflow discharge at
the downstream section. In Eq. (1),k [T ] andε [dimension-
less] are the two model parameters to be determined from
the observations. It will be noticed that the two Muskingum
equations define the storageS and its derivativedS

dt
as a

function of the inflowI and outflowO discharges as well as
of the two parametersk andε.

Note that although the original derivation assumes that
the very basis of the Muskingum routing procedure is that
the storage consists of both “prism” (level pool) storage
and “wedge” storage that reflects the imbalance between in-
flow and outflow (e.g., Chow, 1964; Chow et al., 1988), the
model can be more proficiently thought of as a two param-
eter “lumped” model at the river reach scale, the storage of
which can be expressed at any point in time as in Eq. (1b).

In the classical derivation of the Muskingum model the
second expression in Eq. (1b) is substituted into the first one
to give:

d [k ε I ]

dt
+ d [k (1 − ε) O]

dt
= I − O (2)

and, by assuming thatk andε are constant in time one can
write:

k ε
dI

dt
+k (1 − ε)

dO

dt
= I − O (3)

Equation (3) is then solved using a centred finite difference
approach by expressing the various quantities as follows:

I =It+1t + It

2
; O =Ot+1t + Ot

2
; dI

dt
=It+1t − It

1t
;

dO

dt
=Ot+1t − Ot

1t
(4)

Substitution in Eq. (3) of the quantities defined in Eq. (4)
yields:

k ε
It+1t − It

1t
+ k (1 − ε)

Ot+1t − Ot

1t

= It+1t + It

2
− Ot+1t + Ot

2
(5)

By multiplying both sides by 21t the following expression
can be found:

2 k ε (It+1t−I t ) +2 k (1−ε) (Ot+1t−O t )

= 1t (It+1t+I t ) −1t (Ot+1t+O t ) (6)

which can be rewritten as:

[2 k (1−ε) +1t ] O t+1t= [−2 k ε+1t ] I t+1t

+ [2 k ε+1t ] It+ [2 k (1−ε) −1t ] Ot (7)

to give:

Ot+1t = −2 k ε + 1t

2 k (1 − ε) + 1t
It+1t + 2 k ε + 1t

2 k (1 − ε) + 1t
It

+2 k (1 − ε) − 1t

2 k (1 − ε) + 1t
Ot (8)
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Finally, Eq. (8) can be rewritten as:

Ot+1t= C1It+1t+C2It+C3Ot (9)

with the following substitutions:

C1 = −2 k ε + 1t

2 k (1 − ε) + 1t
; C2 = 2 k ε + 1t

2 k (1 − ε) + 1t
;

C3 = 2 k (1 − ε) − 1t

2 k (1 − ε) + 1t
(10)

whereC1, C2 andC3 are three coefficients subject to the fol-
lowing property:

C1 + C2 + C3 = 1 (11)

as can be easily verified.
Cunge (1969) extended the original Muskingum method to

time variable parameters whose values could be determined
as a function of a reference discharge. The clever idea of
Cunge was to recognize that Eq. (9) of the original Musk-
ingum approach was formally the same, and could be inter-
preted either as a kinematic wave model (a first order approx-
imation of a diffusion wave model) or as a proper diffusive
wave model, depending on the value of the adopted parame-
ters. He also showed how Eq. (9) could be transformed into a
proper diffusion wave model by introducing the appropriate
diffusive effect through a particular estimation of the model
parameter values. Cunge started from the following kine-
matic routing model

∂Q

∂t
+ c

∂Q

∂x
= 0 (12)

whereQ
[

L3T −1
]

is the discharge,x [L] the longitudinal
coordinate,t [T ] the time coordinate, andc

[

LT −1
]

the
celerity. He derived the following classical finite difference
weighted approximation for the partial derivatives on a four
points scheme:

∂Q

∂t
≈

ε
(

Qi+1
j − Qi

j

)

+ (1 − ε)
(

Qi+1
j+1 − Qi

j+1

)

1t
(13)

∂Q

∂x
≈

ϑ
(

Qi+1
j+1 − Qi+1

j

)

+ (1 − ϑ)
(

Qi
j+1 − Qi

j

)

1x
(14)

whereQi+1
j+1=Q ((i + 1) 1t, (j+1) 1x) ; Qi+1

j

=Q ((i+1) 1t, j1x) ; Qi
j+1=Q (i1t, (j+1) 1x) ;

Qi
j=Q (i1t, j1x), ε (0≤ε≤1) being the space weight-

ing factor andϑ (0≤ϑ≤1) the time weighting factor.
This approximation leads to the following first order ap-

proximation of the kinematic wave equation (Eq. 12):

ε
(

Qi+1
j − Qi

j

)

+ (1 − ε)
(

Qi+1
j+1 − Qi

j+1

)

1t

+c
ϑ

(

Qi+1
j+1 − Qi+1

j

)

+ (1 − ϑ)
(

Qi
j+1 − Qi

j

)

1x
= 0 (15)

which can be rewritten as

ε
(

Qi+1
j − Qi

j

)

+ (1 − ε)
(

Qi+1
j+1 − Qi

j+1

)

1t

+ c

2

(

Qi+1
j+1 − Qi+1

j

)

+
(

Qi
j+1 − Qi

j

)

1x
= 0 (16)

by assuming a time centered scheme
(

ϑ=1
2

)

.

Equation (16), after some algebraic manipulation can be
transformed into

Qi+1
j+1 = C1Q

i+1
j + C2Q

i
j + C3Q

i
j+1 (17)

where

C1 = −21xε + c1t

21x (1 − ε) + c1t
; C2 = 21xε + c1t

21x (1 − ε) + c1t
;

C3 = 21x (1 − ε) − c1t

21x (1 − ε) + c1t
(18)

Cunge also noted that substituting fork=1x
c

and by taking

Ot+1t=Qi+1
j+1; Ot=Qi

j+1; It+1t=Qi+1
j ; It=Qi

j , Eq. (17)
becomes identical to Eq. (9). Nevertheless, one should be
aware that these two equations have a totally different mean-
ing. While Eq. (17) represents the solution of a partial dif-
ferential equation, Eq. (9) is the solution of an ordinary dif-
ferential equation after integration of the continuity of mass
equation in space.

As a matter of fact, a formally similar equation, although
with different parameter values, can also be obtained from
the discretisation of any explicit parabolic or hyperbolic
scheme. This is what gave to Cunge (1969) the idea for de-
riving his variable parameter formulation; by expanding the
dischargeQ in Taylor series he showed that Eq. (17) repre-
sents a first order approximation, with second order residual
equal zero, of the kinematic model given in Eq. (12), and, at
the same time a linear approximation of the parabolic model
of Eq. (19)

∂Q

∂t
+ c

∂Q

∂x
− Q

2BS0

∂2Q

∂x2
= 0 (19)

with second order rounding error (also known as numerical
diffusion), given by :

R = c1x

2
(1 − 2ε)

∂2Q

∂x2
+ · · · · · (20)

In Eq. (19),B [L] is the surface width;S0 [dimensionless]
the bottom slope.

This result implies that Eq. (17) can also be interpreted as
the solution of the parabolic model given in Eq. (19), pro-
vided that the following relation holds:

c1x

2
(1 − 2ε) = Q

2BS0
(21)
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Fig. 1. Steady state volume (solid line) and storage volumes com-
puted using Eq. (26) (dashed line) and Eq. (27) (dotted line).

Therefore, by imposing that the numerical diffusion equals
the physical one (see also Szél and Ǵasṕar, 2000; Wang et
al., 2006), Cunge (1969) derived an expression forε.

ε = 1

2

(

1 − Q

c1xBS0

)

(22)

which was used, together withk=1x
c

in Eq. (18), and up-
dated at each time step, to give rise to the so called Variable
Parameter Muskingum-Cunge approach. Successively, with-
out changing the nature of the problem, Ponce and Yevjevich
proposed (1978) the following expressions forC1, C2, C3:

C1=
−1+C+D

1+C+D
; C2=

1+C−D

1+C+D
; C3=

1−C+D

1+C+D
(23)

derived in terms of the dimensionless “Courant number”(C);
and “cell Reynolds number”(D), which is the ratio of the
physical and numerical diffusivities

C = c1t

1x
; D = Q

B S0 c 1x
(24)

Several ways for estimatingQ andc have been also proposed
in the literature (Ponce and Chaganti, 1994; Tang et al., 1999;
Wang et al., 2006) giving rise to a wide variety of three or
four point schemes.

ParametersC andD are generally estimated, at each time
interval, as a function of a reference dischargeQ relevant to
each computation section in which a river reach will be di-
vided. This poses certain limitations on the length1x of the
computation section.Q, which will be evaluated at a cen-
tral point, will be used to estimate the water stage and the
other quantities of interest such asB, c and finallyC and
D. The larger1x is, the likelihood that the Muskingum hy-
pothesis on the linear variation in space of the discharge will

hold, decreases. Although, this property is also influenced by
bed slope, friction and surface width, as a rule of thumb one
should never exceed few kilometers (possibly one) to avoid
errors which will be more evident in terms of water stage.

By comparing Eq. (10) and Eq. (23) one can finally derive
the expressions for the two original Muskingum parameters:

{

k = 1t
C

ε = 1−D
2

(25a)
(25b)

The model with the two parameters estimated in every
computation section of length1x and at each time step1t

according to Eqs. (25) is known as the Muskingum-Cunge
(MC) method and has been, and still is, widely used all over
the world for routing discharges.

Unfortunately two inconsistencies have been detected in
the practical use of MC. The first one, which relates to a loss
of mass was identified by several authors and widely reported
(see for instance Ponce and Yevjevich, 1978; Koussis, 1983;
Ponce and Chaganti, 1994; Tang et al., 1999, Perumal et al.,
2001) and recently interpreted as inversely proportional to
the bed slope (Tang et al., 1999).

The second one, relates to the fact that if one discretises
Eq. (1a), to estimate the storage in the reach, one obtains:

St+1t = St +
(

It+1t + It

2
− Ot+1t + Ot

2

)

1t (26)

The same storage can also be estimated by discretising
Eq. (1b) and using the values fork andε determined from
Eqs. (25), which gives:

St+1t = k ε It+1t + k (1 − ε) Ot+1t (27)

Astonishingly, no one seems to have checked back the ef-
fect of the Cunge variable parameter estimation on the two
Muskingum basic equations. Paradoxically, not only do the
two equations lead to different results, but neither of them is
even consistent with the steady state conditions.

Without loss of generality, Fig. 1 shows the storage val-
ues, computed from Eqs. (26) and (27), for the base case with
rectangular cross-section, which is described in the “Numer-
ical experiment” section. From the figure, one can notice
that (i) the stored volume computed using Eq. (26) does not
return to the original steady state as a consequence of the
above mentioned mass balance inconsistency (in practice the
water is not lost, but rather stored in the channel reach) and
(ii) Eq. (27) produces a storage which is always lower than
it should be. In particular, the analysis of the steady state,
namely when the inflow and outflow discharges are identical
and Eq. (27) degenerates intoSt+1t=k It+1t = k Ot+1t , re-
veals that this effect can only be attributed to a wrong value
estimated for parameterk.

In this paper the reasons for the two inconsistencies will
be analysed and explained starting from the above mentioned
considerations, and a slightly modified algorithm, that does
not change the nature and the simplicity of the variable pa-
rameter MC method, will be proposed.

Hydrol. Earth Syst. Sci., 11, 1645–1659, 2007 www.hydrol-earth-syst-sci.net/11/1645/2007/
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3 Resolving the mass conservation inconsistency

Several authors (Ponce and Yevjevich, 1978; Koussis, 1980;
Ponce and Chaganti, 1994; Tang et al. 1999, Perumal et
al., 2001) have reported that while the original constant pa-
rameter Muskingum perfectly preserves mass balance, the
variable parameter Muskingum-Cunge suffers from a loss
of mass which increases with the flatness of the bed slope,
reaching values of the order of 8 to 10% at slopes of the or-
der of 10-4 (Tang et al. 1999).

Most of the above mentioned authors have tried to find
alternative numerical schemes to improve the conservation of
mass (or continuity), but no real explanation was ever given
for the causes of this loss of mass, since they did not realize
that the actual reason was hidden in the original derivation of
the Muskingum equation.

It is interesting to notice that the seed for the modifica-
tion proposed in this paper can also be found in a comment
by Cunge (2001). As can be seen in his comment, Cunge
attributes the non-conservation mass to an inaccurate dis-
cretization by Tang et al. (1999), which, on the other hand
is fully consistent with the Muskingum model formulation
given by Eq. (3). Cunge does not seem to realize that the jus-
tification for the different discretization he proposes lies in a
different derivation of the Muskingum model, which allows
from the very beginning for the possibility of time variant
parameters.

Not enough attention has been paid to the fact that the orig-
inal derivation of the Muskingum approach “implies” time
constant parameters with the consequence that Eq. (3) is only
valid if k andε are constant in time, which justifies the use of
average values within a time interval as in Tang et al. (1999)
and in most of the cited works. If one discretises Eq. (3),
as was done to derive Eq. (5), it is quite evident that one is
supposed to use constantk and ε in each time-step which
creates the situation illustrated in Fig. 2. As can be seen in
the figure, at the boundary between of two time steps (time
step 1 between timest−1t and t and time step 2 between
timest andt+1t) the inflow and outflow discharges,It and
Ot are the same in both time steps. However, this is not true
for the volume stored in the reach, because of the following
inequality:

S
(2)
t = [kε]2 It + [k (1 − ε)]2 Ot 6= S

(1)
t

= [kε]1 It + [k (1 − ε)]1 Ot (28)

since[kε]1 and[k (1 − ε)]1, the average parameter values
in time step 1 are not constrained to be equal to[kε]2 and
[k (1 − ε)]2, the average parameter values in time step 2.
This will result in a difference that will accumulate over time
with the consequent mass conservation inconsistency.

On the contrary, if one assumes thatk and ε may vary
in time, Eq. (3) is no longer valid and one has to directly

tt Δ−

t

tt Δ+

tt
O Δ−tt

I Δ−

t
I

tt
I Δ+

t
O

tt
O Δ+

tttttt
OkIkS ΔΔΔ +++ −+= 22

)2( )]1([][ εε

tttttt
OkIkS ΔΔΔ −−− −+= 11

)1( )]1([][ εε

ttt
OkIkS 11

)1( )]1([][ εε −+=
ttt
OkIkS 22

)2( )]1([][ εε −+=

Time

1

2

tt Δ−

t

tt Δ+

tt
O Δ−tt

I Δ−

t
I

tt
I Δ+

t
O

tt
O Δ+

tttttt
OkIkS ΔΔΔ +++ −+= 22

)2( )]1([][ εε

tttttt
OkIkS ΔΔΔ −−− −+= 11

)1( )]1([][ εε

ttt
OkIkS 11

)1( )]1([][ εε −+=
ttt
OkIkS 22

)2( )]1([][ εε −+=

Time

1

2

Fig. 2. Storage values computed in two successive time steps. When
using variable Muskingum-Cunge parameters, the storage valueSt

computed at time step 1 (S
(1)
t ) will differ from the one computed at

time step 2 (S(2)
t ), according to Eq. (28).

discretise Eq. (2), using the following definitions:

I ≃ It+1t + It

2
; O ≃ Ot+1t + Ot

2
; d [k ε I ]

dt

≃ 1 [k ε I ]

1t
= [kε]t+1t It+1t − [kε]t It

1t
; d [k (1 − ε) O]

dt

≃1 [k (1−ε) O]

1t
= [k (1−ε)]t+1t Ot+1t − [k (1−ε)]t Ot

1t
(29)

Note that the quantities[kε] and [k (1 − ε)] appearing in
Eqs. (28) and (29) are put in square brackets to mark that
in the sequel these, and not the originalk andε, used in the
steady-state Muskingum equations, will be considered as the
actual time varying model parameters. Appendix A demon-
strates the validity of the approximation implied in Eq. (29).

Substitution of the quantities defined in Eq. (29) into
Eq. (2) yields:

[kε]t+1t It+1t − [kε]t It

1t
+ [k (1−ε)]t+1t Ot+1t − [k (1−ε)]t Ot

1t

= It+1t + It

2
− Ot+1t + Ot

2
(30)

as the valid time varying finite difference approximation for
the variable parameter Muskingum approach.

As can be seen from Fig. 3, not only the inflow and outflow
discharges are now equal at the boundary between two time
steps, but also the volumes stored in the reach at that instant
are the same when computed in either interval:

S
(2)
t = [kε]t It+ [k (1−ε)]t Ot=S

(1)
t = [kε]t It+ [k (1−ε)]t Ot

(31)

By multiplying both sides of Eq. (30) by 21t the following
expression is obtained:

2[kε]t+1t I
t+1t

−2[kε]t I t+2[k (1−ε)]t+1t O
t+1t

−2[k (1−ε)]t O t

= 1t (It+1t+I t ) −1t
(

Ot+1t +O t

)

(32)
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Fig. 3. Storage values computed in two successive time steps. When
using variable Muskingum-Cunge parameters with the proposed

correction, the storage valueSt computed at time step 1 (S
(1)
t ) will

equal the one computed at time step 2 (S
(2)
t ), according to Eq. (31).

which can be rewritten as:
{

2[k (1−ε)]t+1t +1t
}

Ot+1t=
{

−2[kε]t+1t +1t
}

It+1t

+ {2 [kε]t +1t} It +
{

2 [k (1 − ε)]t −1t
}

Ot (33)

to give:

Ot+1t=
−2 [kε]t+1t + 1t

2 [k (1 − ε)]t+1t + 1t
It+1t

+ 2 [kε]t + 1t

2 [k (1 − ε)]t+1t + 1t
It+

2 [k (1 − ε)]t − 1t

2 [k (1 − ε)]t+1t + 1t
Ot (34)

Finally, Eq. (34) can be rewritten as:

Ot+1t = C1It+1t + C2It + C3Ot (35)

with the following substitutions:

C1=
−2[kε]t+1t + 1t

2 [k (1 − ε)]t+1t + 1t
; C2=

2[kε]t + 1t

2 [k (1 − ε)]t+1t + 1t
;

C3 = 2 [k (1 − ε)]t − 1t

2 [k (1 − ε)]t+1t + 1t
(36)

whereC1, C2 andC3 are the three coefficients that still guar-
antee the property expressed by Eq. (11). The same parame-
ters can also be obtained in terms of the Courant number and
of the cell Reynolds number:

C1=
−1+Ct+1t+Dt+1t

1+Ct+1t+Dt+1t

; C2=
1+Ct−Dt

1+Ct+1t+Dt+1t

Ct+1t

Ct

;

C3 = 1 − Ct + Dt

1 + Ct+1t + Dt+1t

Ct+1t

Ct

(37)

after substituting for:

{

[kε]t+1t = (1−Dt+1t )1t
2Ct+1t

; [kε]t = (1−Dt )1t
2Ct

[k (1 − ε)]t+1t = (1+Dt+1t )1t
2Ct+1t

; [k (1 − ε)]t = (1+Dt )1t
2Ct

(38)

This scheme is now mass conservative, but there is still an
inconsistency between Eqs. (26) and (27).

To elaborate: Eq. (26) now leads to a storageSt that is con-
sistent with the steady state, both at the beginning and at the
end of a transient; however, Eq. (27) produces a result which
is always different from the one produced by Eq. (26) and, in
addition, is also not consistent with the expected steady state
storage in the channel.

4 Resolving the steady state inconsistency

In order to resolve the steady state inconsistency, one needs
to look in more detail into Eq. (27). If one substitutes for[kε]
and[k(1 − ε)], given by Eqs. (25), into Eq. (27) written for a
generic timet (which is omitted for the sake of clarity), one
obtains:

S = 1t

C

1 − D

2
I + 1t

C

1 + D

2
O (39)

which can be re-arranged as:

S = 1t

C

O + I

2
+ 1tD

C

O − I

2
(40)

Clearly, 1t
C

O+I
2 , the first right hand side term in Eq. (40),

represents the storage at steady state, since the second term
vanishes due to the fact that the steady state is characterised
by I=O. Consequently,1tD

C
O−I

2 , the second right hand side
term in Eq. (40), can be considered as the one governing the
unsteady state dynamics.

In the case of steady flow, whenI=O=O+I
2 =Q, under

the classical assumptions of the Muskingum model, together
with the definition of dischargeQ=Av, with A the wetted
area[L2], andv the velocity[LT −1], the following result
can be obtained for the storage:

S = A1x = Q

v
1x = k∗Q (41)

with 1x the length of the computational interval[L], and
k∗=1x

v
[T ] the resulting steady state parameter, which can

be interpreted as the time taken for a parcel of water to tra-
verse the reach, as distinct from the kinematic celerity or
wave speed.

It is not difficult to show thatk∗ 6=k. By substituting forC
given by Eq. (24) into Eq. (25a) one obtains the inequality:

k = 1x

c
6= 1x

v
= k∗ (42)

This is not astonishing since the parabolic model derived
by Cunge (1969), describes the movement, with celerityc,
of the small perturbations by means of a partial differential
equation, while the lumped Muskingum model (after integra-
tion in space of the continuity equation), is based upon an or-
dinary differential equation describing the mass movement,
with velocityv, of the storage.
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Therefore, if one wants to be consistent with the steady
state specialization of the Muskingum model, one needs to
usek∗ instead ofk. This can be easily done by defining a
dimensionless correction coefficientβ=c/v and by dividing
C by β, C∗=C/β = v1t

1x
so thatk∗=1t

C∗ =1x
v

.
This correction satisfies the steady state, but inevitably

modifies the unsteady state dynamics, since the coefficient
of the second right hand side term in Eq. (40) now becomes
1tD
C∗ . It is therefore necessary to defineD∗=D/β so that:

1tD∗

C∗ = 1tD

C
(43)

By incorporating these results, Eq. (38) can finally be rewrit-
ten as:






[kε]t+1t =
(

1−D∗
t+1t

)

1t

2C∗
t+1t

; [kε]t = (1−D∗
t )1t

2C∗
t

[k (1 − ε)]t+1t =
(

1+D∗
t+1t

)

1t

2C∗
t+1t

; [k (1 − ε)]t = (1+D∗
t )1t

2C∗
t

(44)

These modifications do not alter the overall model dynamics,
but allow Eq. (27) to satisfy the steady state condition. Fig-
ure 4 shows the results of the proposed modifications. The
storage derived with Eq. (27) is now identical to the one pro-
duced by Eq. (26) and they both comply with the steady state
condition.

As a final remark, please note that, the parameterε is al-
lowed to take negative values that are legitimate in the vari-
able parameter approaches such as the MC and the newly
proposed one, without inducing neither numerical instability
nor inaccuracy in the results, as demonstrated by Szél and
Gásṕar (2000).

5 The new mass conservative and steady state consistent
variable parameter Muskingum-Cunge method

The formulation of the new algorithm, which will be referred
in this paper as the variable parameter Muskingum-Cunge-
Todini (MCT) method, is provided here for a generic cross
section, which is assumed constant in space within a single
reach.

A first guess estimatêOt+1t for the outflowOt+1t at time
t+1t is initially computed as:

Ôt+1t = Ot + (It+1t − It ) (45)

Then the reference discharge is computed at timest and
t+1t as:

Qt = It + Ot

2
(46a)

Qt+1t = It+1t + Ôt+1t

2
(46b)
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Fig. 4. Steady state volume (thin solid line) and storage volumes
computed either using Eq. (26) (dashed line) and Eq. (27) (dotted
line) with β=1, or using both equations withβ=c/v (thick solid
line).

where the reference water levels can be derived by means
of a Newton-Raphson approach from the following implicit
equations:

yt = y {Qt , n, S0} (47a)

yt+1t = y {Qt+1t , n, S0} (47b)

Details of the Newton-Raphson procedure can be found in
Appendix B.

Using the reference discharge and water level it is then
possible to estimate all the other quantities at timest and
t+1t.

The celerityc:

ct = c {Qt , yt , n, S0} (48a)

ct+1t = c {Qt+1t , yt+1t , n, S0} (48b)

Note: the actual expressions for the celerity valid for trian-
gular, rectangular and trapezoidal cross sections, are given in
Appendix C.

The specialization of other necessary parameters follows.
The correcting factorβ:

βt = ct At

Qt

(49a)

βt+1t = ct+1t At+1t

Qt+1t

(49b)

www.hydrol-earth-syst-sci.net/11/1645/2007/ Hydrol. Earth Syst. Sci., 11, 1645–1659, 2007



1652 E. Todini: Mass conservartive Muskingum-Cunge

The corrected Courant numberC∗:

C∗
t = ct

βt

1t

1x
(50a)

C∗
t+1t = ct+1t

βt+1t

1t

1x
(50b)

and the corrected cell Reynolds numberD∗:

D∗
t = Qt

βtBS0ct1x
(51a)

D∗
t+1t = Qt+1t

βt+1tBS0ct+1t1x
(51b)

Finally the MCT parameters are expressed as:

C1=
−1 + C∗

t + D∗
t

1+C∗
t+1t+D∗

t+1t

; C2=
1 + C∗

t −D∗
t

1+C∗
t+1t+D∗

t+1t

C∗
t+1t

C∗
t

;

C3=
1 − C∗

t +D∗
t

1 + C∗
t+1t + D∗

t+1t

C∗
t+1t

C∗
t

(52)

which yields the estimation of the flow at timet+1t through
the standard formulation:

Ôt+1t = C1It+1t + C2It + C3Ot (53)

Note that while it is advisable to repeat twice the computa-
tions of Eqs. (46b), (47b), (48b), (49b), (50b), (51b), (52)
and (53), in order to eliminate the influence of the first guess
Ôt+1t given by Eq. (45), it is only necessary to compute
Eqs. (46a), (47a), (48a), (49a), (50a), (51a) once at timet=0,
since fort > 0 one can use the value estimated at the previ-
ous time step .

OnceÔt+1t is known, one can estimate the storage at time
t+1t as

St+1t =
(

1 − D∗
t+1t

)

1t

2C∗
t+1t

It+1t +
(

1 + D∗
t+1t

)

1t

2C∗
t+1t

Ot+1t

(54)

by substituting for[kε] and[k(1 − ε)] given by Eqs. (44) into
Eq. (27) and by settingOt+1t=Ôt+1t .

Eventually, the water stage can be estimated, by taking
into account that the Muskingum model is a lumped model
in space, which means that the water level will represent
the “average” water level in the reach. This differs from
the estimation of the water stage proposed by Ponce and
Lugo (2001) since they incorporate the estimation of the wa-
ter stage in the four points scheme used to solve the kine-
matic/parabolic interpretation of the Muskingum equation,
which is not a lumped model.

Therefore, taking into account the lumped nature of the
MCT equation, one can estimate the average wetted area in
the river reach:

Āt+1t = St+1t

1x
(55)

from which, knowing the shape of the cross section, the water
stage can be evaluated:

yt+1t = y
{

Āt+1t

}

(56)

Equation (56) represents the average water stage in the reach
and, on the basis of the Muskingum wedge assumption can
be interpreted as the water stage more or less in the centre of
the reach. This should not be considered as a problem, given
that most of the classical models (see for instance MIKE11 –
DHI Water & Environment, 2000) in order to produce mass
conservative schemes (Patankar, 1980), correctly discretise
the full de Saint Venant equations using alternated grid points
where the water stage (potential energy) and flow (kinetic
energy) are alternatively computed along the river.

6 The role of the “pressure term”

Cappelaere (1997), discussed the advantages of an accurate
diffusive wave routing procedure and the possibility of intro-
ducing a “pressure correcting term” to improve its accuracy.
He also acknowledged the fact that variable parameter Ad-
vection Diffusion Equation (ADE) models (Price, 1973; Boc-
quillon and Moussa, 1988) do not guarantee mass conserva-
tion. He concludes by stating that the introduction of the
pressure term “increasing model compliance with the funda-
mental de Saint Venant equations guarantees that the basic
principles of momentum and mass conservation are better
satisfied...”.

In reality, because the proposed MCT is mass conserva-
tive, the introduction of the pressure term correction has no
effect on mass conservation. Nonetheless, the introduction of
the pressure correction term, on the basis that the parabolic
approximation uses the water surface slope instead of the
bottom slope to approximate the head slope, certainly im-
proves the dynamical behaviour of the algorithm. This will
be shown in the sequel through a numerical example.

7 Numerical example

In this study, in addition to the basic channels adopted in the
Flood Studies Report (FSR) (NERC 1975), namely a rectan-
gular channel (with a widthB=50 m, a Manning’s coefficient
n=0.035, and a total channel lengthL=100 km, but with dif-
ferent bed slopesS0 ranging from 10−3 to 10−4), a trian-
gular and a trapezoidal channel were also analysed. Both
the triangular and the trapezoidal channels are supposed to
be contained by dykes with a slope ratio (elevation/width)
tan(α) =1/5 while the trapezoidal channels have a bottom
width B0=15 m (Fig. 5).

A synthetic inflow hydrograph (NERC 1975) was defined
as

Q (t) =Qbase+
(

Qpeak−Qbase
)

[

t

Tp

exp

(

1− t

Tp

)]β

(57)
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Table 1. Variation of parameters and integration steps around the
base case (in bold).

So 0.002 0.001 0.0005 0.00025 0.0001
n 0.01 0.02 0.035 0.04 0.06

1x 1000 2000 4000 6000 8000
1t 900 1800 3600 5400 7200

where β=16; Qpeak=900 m3s−1; Qbase=100m3 s−1; and
Tp=24 h.

For each cross section (rectangular, triangular and trape-
zoidal) a reference run was defined with the following pa-
rameters:

S0 = 0.00025

n = 0.035 m−1/3 s

1x = 2000 m

1t = 1800 s

In addition, each parameter was perturbed, as in Table 1, in
order to analyse its effect on the preservation of the volume,
the peak flow and relevant time of occurrence, the peak level
and relevant time of occurrence.

The results of the experiment are given in Table 2, when
the MCT is used without Cappelaere (1997) proposed cor-
rection and in Table 3 when the correction is applied.

The tables are divided into three columns representing the
different cross sections used and in four rows relevant to the
variation of bottom slope (S0), friction (n), space integration
interval (1x) and time integration interval (1t).

As one can see from Table 2, as opposed to the incomplete
effectiveness of empirical corrections, such as the one pro-
posed by Tang et al. (1999), when using the MCT approach
thevolume error remains equal to zero in all the examined
cases independently from the variation of bottom slope, fric-
tion, space and time integration intervals and Cappelaere cor-
rection. Moreover, Table 3 shows that this is also true when
this correction is applied.

In particular, Tables 2 and 3 one should note that the ef-
fect induced by the variation of the bed slope and the friction
coefficient is always consistent with that expected. More in-
teresting is the fact that relatively small effects on the peak
flow and its time of occurrence, as well as on the peak level
and the time of its occurrence, are produced by the variation
of the integration time and space steps.

Nonetheless, one should realize that in the numerical ex-
ample, the bottom slope, the shape of the channel, the fric-
tion, etc. are constant, which is not the case in real rivers,
where the bottom slope and the cross section shape and all
the other characteristics change continuously. Given the wide
number of different cases, there is no unique rule, but in real
world application one must divide a river reach into a number

Fig. 5. The three cross sections shapes (rectangular, triangular and
trapezoidal) and the relevant dimensions used in the numerical ex-
periment.

of computation sections of limited length, for which the hy-
pothesis of constant bed slope, shape and friction, as well as
linear variation of the discharge, required by the Muskingum
approach, is a consistent approximation. On the same lines,
the integration time interval must be sufficiently small to al-
low the user to correctly represent the peak flow and stage in
terms of magnitude (they obviously become smoothed if the
time-step is too long) and time of occurrence.

Figures 6 and 7, which were derived using the reference
run parameters, show the behaviour of the original variable
parameter Muskingum-Cunge (MC) approach when com-
pared to the MCT and the MCT with the Cappelaere correc-
tion (MCT+C), for the base case applied to the rectangular
channel. It is easy to note from Figure 6 that the MC peak
discharge is anticipated and much higher than the ones pro-
duced by the MCT and the MCT+C. Moreover Fig. 7 shows
how the MC water level, as opposed to the ones produced by
MCT and MCT+C, does not return to the steady state at the
end of the transient.

Finally to understand the hydraulic improvement obtained
by the MCT and the MCT+C, their results were compared
to the ones produced using a full de Saint Venant approach
(MIKE11 – DHI Water & Environment, 2000).

Figures 8 and 9 show the results in terms of discharge and
water levels for the rectangular cross section; Figs. 10 and 11
show the results for the triangular cross section; and Figs. 12
and 13 show the results for the trapezoidal cross section. In
the case of the rectangular section the results of the MCT+C
perfectly match the results of MIKE11, while in the case
of the triangular and the trapezoidal cross sections, the re-
sults, although not perfectly matching the ones produced by
MIKE11, are very good approximations.

The rather small differences appearing in these two cases
may depend (1) on the difference in the representation of the
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Table 2. Variation of MCT results without Cappalaere (1997) proposed correction. Base case in bold.

Rectangular Cross Section Triangular Cross Section Trapezoidal Cross Section

So Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax)%

0.002 894.68 61 5.26 61 0.00 892.80 64 7.62 64 0.00 892.95 64 6.29 64 0.00
0.001 879.10 64 6.51 64 0.00 873.11 68 8.60 68 0.00 873.65 68 7.26 68 0.00
0.0005 819.78 68 7.81 69 0.00 802.64 74 9.49 75 0.00 804.27 74 8.14 75 0.00
0.00025 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00
0.0001 423.11 77 8.32 89 0.00 391.80 93 9.70 103 0.00 393.72 93 8.36 103 0.00

n Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m−3 s] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

0.01 873.19 59 4.52 60 0.00 862.15 62 6.94 62 0.00 863.26 62 5.63 62 0.00
0.02 801.63 66 6.67 67 0.00 776.52 71 8.65 72 0.00 778.72 71 7.31 72 0.00
0.035 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00
0.04 630.09 77 8.96 80 0.00 603.12 87 10.18 90 0.00 605.61 87 8.83 90 0.00
0.06 505.99 87 10.12 92 0.00 486.19 102 10.92 106 0.00 488.26 102 9.56 106 0.00

1x Qmax i1t Hmax i1t Vol. err Qmax i1t Hmaxr i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

1000 669.51 75 8.54 77 0.00 641.12 83 9.91 86 0.00 643.69 83 8.56 86 0.00
2000 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00
4000 669.62 75 8.56 77 0.00 641.38 83 9.92 85 0.00 643.94 83 8.57 85 0.00
6000 675.69 74 8.62 76 0.00 648.35 82 9.97 83 0.00 650.83 82 8.61 83 0.00
8000 675.92 73 8.63 75 0.00 648.75 82 9.98 83 0.00 651.22 82 8.62 83 0.00

1t Qmax i1t Hmax i1t Vol. err Qmax i1t Hmaxr i1t Vol. err Qmax i1t Hmax i1t Vol. err
[s] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

900 669.65 149 8.54 155 0.00 641.36 167 9.91 171 0.00 643.89 167 8.56 171 0.00
1800 669.53 75 8.54 77 0.00 641.17 83 9.91 86 0.00 643.74 83 8.56 86 0.00
3600 669.15 37 8.54 39 0.00 641.16 42 9.91 43 0.00 643.68 42 8.56 43 0.00
5400 669.55 25 8.54 26 0.00 641.25 28 9.91 29 0.00 643.79 28 8.56 29 0.00
7200 668.43 19 8.52 19 0.00 641.28 21 9.90 22 0.00 643.86 21 8.54 22 0.00
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Fig. 6. Comparison of the discharge results obtained using the vari-
able parameter Muskingum-Cunge (dashed line), the new scheme
(dotted line) and the new scheme with the Cappelaere (1997) cor-
rection (solid line).
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Table 3. Variation of MCT results with Cappalaere (1997) proposed correction. Base case in bold.

Rectangular Cross Section Triangular Cross Section Trapezoidal Cross Section

So Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax)%

0.002 894.68 61 5.26 61 0.00 892.80 64 7.62 64 0.00 892.96 64 6.29 64 0.00
0.001 879.20 64 6.51 64 0.00 873.31 68 8.60 68 0.00 873.84 68 7.26 68 0.00
0.0005 823.13 68 7.83 69 0.00 806.79 74 9.51 78 0.00 808.19 74 8.15 75 0.00
0.00025 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00
0.0001 450.41 76 8.64 86 0.00 400.71 91 9.78 100 0.00 402.78 92 8.44 100 0.00

n Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m−3 s] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

0.01 873.81 59 4.52 60 0.00 862.99 62 6.94 62 0.00 864.03 62 5.64 62 0.00
0.02 807.27 65 6.71 67 0.00 783.17 70 8.68 72 0.00 785.09 70 7.34 72 0.00
0.035 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00
0.04 649.05 75 9.14 78 0.00 617.72 86 10.28 88 0.00 620.06 86 8.92 88 0.00
0.06 523.30 84 10.34 89 0.00 496.20 100 11.01 103 0.00 498.36 100 9.65 103 0.00

1x Qmax i1t Hmax i1t Vol. err Qmax i1t Hmaxr i1t Vol. err Qmax i1t Hmax i1t Vol. err
[m] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

1000 686.96 73 8.69 76 0.00 655.83 82 9.99 84 0.00 658.15 82 8.64 84 0.00
2000 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00
4000 687.07 73 8.70 75 0.00 655.95 82 10.01 84 0.00 658.27 82 8.65 84 0.00
6000 693.34 72 8.77 74 0.00 662.70 80 10.05 82 0.00 664.95 80 8.70 82 0.00
8000 693.42 72 8.77 74 0.00 662.94 80 10.06 81 0.00 665.18 80 8.70 81 0.00

1t Qmax i1t Hmax i1t Vol. err Qmax i1t Hmaxr i1t Vol. err Qmax i1t Hmax i1t Vol. err
[s] [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) % [m3 s−1] (Qmax) [m] (Hmax) %

900 696.21 146 8.68 151 0.00 655.14 164 9.99 168 0.00 657.47 164 8.64 168 0.00
1800 687.00 73 8.69 76 0.00 655.86 82 10.00 84 0.00 658.18 82 8.64 84 0.00
3600 687.82 37 8.71 38 0.00 657.35 41 10.01 42 0.00 659.68 41 8.65 42 0.00
5400 688.33 24 8.72 25 0.00 657.33 27 10.02 28 0.00 659.70 27 8.66 28 0.00
7200 689.02 18 8.74 19 0.00 657.44 21 10.03 21 0.00 659.75 21 8.67 21 0.00

wetted perimeter with respect to MIKE11, or (2) on the ex-
tension of the Cappelaere correction to non rectangular chan-
nels.

8 Conclusions

This paper deals with two inconsistencies deriving from the
introduction, as proposed by Cunge (1969), of time variable
parameters in the original Muskingum method. The first in-
consistency relates to a mass balance error shown by the vari-
able parameter MC method that can reach even values of 8
to 10%. This incompatibility, has been widely reported in
the literature and has been the objective of several tentative
solutions, although a conclusive and convincing explanation
has not been offered. In addition to the lack of mass balance,
an even more important paradox is generated by the variable
parameter MC approach, which apparently has never been
reported in the literature. The paradox is: if one substitutes
the parameters derived using Cunge approach back into the
Muskingum equations, two different and inconsistent values
for the water volume stored in the channel, are obtained.

This paper describes the analysis that was carried out, the
explanation for the two inconsistencies and the corrections

that have been found to be appropriate. A new Muskingum
algorithm, allowing for variable parameters, has been de-
rived, which leads to slightly different equations from the
original Muskingum-Cunge ones. The quality of the results
has been assessed by routing a test wave (the asymmetri-
cal wave proposed by Tang et al. (1999) already adopted in
the Flood Studies Report (FSR, NERC 1975)), through three
channels with different cross sections (rectangular, triangu-
lar and trapezoidal), by varying the slope, the roughness, the
space and time integration intervals. All the results obtained
show that the new approach, in all cases, fully complies with
the requirements of preserving mass balance, and at the same
time satisfies the basic Muskingum equations. Finally, the ef-
fect of the pressure term inclusion as proposed by Cappelaere
(1997) was also tested. The results show an additional im-
provement of the model dynamics when compared to the so-
lutions using the full de Saint Venant equations, without any
undesired effect on the mass balance and compliance with
the Muskingum equations.

The new MCT approach can be implemented without ne-
cessitating substantial modifications in the MC algorithm
and allows to correctly estimate both discharge and water
stages. The MCT can be used as the basic routing component
in many continuous soil moisture accounting hydrological

www.hydrol-earth-syst-sci.net/11/1645/2007/ Hydrol. Earth Syst. Sci., 11, 1645–1659, 2007
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Fig. 8. Comparison, for the rectangular cross section, of the
MIKE11 resulting discharges (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.
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Fig. 9. Comparison, for the rectangular cross section, of the
MIKE11 resulting water stages (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.

models, which require, particularly in the routing compo-
nent, the preservation of water balance to avoid compensat-
ing it by adjusting other soil related parameter values. The
proposed method will also be useful for routing flood waves
in channels and in natural rivers with bottom slopes in the
range of 10−3–10−4 where the flood crest subsidence is one
of the dominant phenomena. Within this range of slopes, the
original MC approach was affected by the mass balance error
which could be of the order of 10%.
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Fig. 10. Comparison, for the triangular cross section, of the
MIKE11 resulting discharges (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.
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Fig. 11. Comparison, for the triangular cross section, of the
MIKE11 resulting water stages (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.

Further research will aim at extending the MCT approach
to more complex cross sections and at verifying whether
the method could even more closely approximate the full de
Saint Venant equations results by modifying the diffusivity
through an additional correction of the friction slope, as pro-
posed by Perumal and Ranga Raju (1998a, b) or following
the Wang et al. (2006) approach.
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Fig. 12. Comparison, for the trapezoidal cross section, of the
MIKE11 resulting discharges (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.
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Fig. 13. Comparison, for the trapezoidal cross section, of the
MIKE11 resulting water stages (thin solid line) with the ones ob-
tained using the new MCT scheme (dotted line) and the new scheme
with the Cappelaere (1997) correction (dashed line). The upstream
inflow wave is shown as a thick solid line.

Appendix A

Proof that at+1tbt+1t−atbt

1t
is a consistent discretiza-

tion in time of d(ab)
dt

In Eq. (29) the following two derivativesd[k ε I ]
dt

and
d[k (1−ε) O]

dt
must be discretised in time. It is the scope of

this appendix to demonstrate that their discretization leads to

the expression used in Eqs. (29) and (30).
As can be noticed from Eqs. (10), the final Muskingum co-

efficientsC1, C2, C3, do not directly depend onk andε taken
singularly, but rather on the two productsk ε andk (1 − ε).
Therefore, both derivatives can be considered as the deriva-
tives in time of a product of two termsa andb, beinga=k ε

andb = I in the first derivative anda=k (1 − ε) andb = O

in the second one.
Expanding the derivatived(ab)

dt
one obtains:

d (ab)

dt
= a

db

dt
+ b

da

dt
(A1)

which can be discretised in the time interval as follows:

1 (ab)

1t
=

[

θat+1t + (1 − θ) at

] bt+1t − bt

1t

+
[

θbt+1t + (1 − θ) bt

] at+1t − at

1t
(A2)

whereθ is a non-negative weight falling in the range between
0 and 1. Since the Muskingum method is derived on the basis
of a centered finite difference approach in time, this implies
thatθ=1

2.
Therefore, Eq. (A2), becomes

1 (ab)

1t
= (at+1t+at )

2

bt+1t − bt

1t
+ (bt+1t + bt )

2

at+1t − at

1t

= at+1tbt+1t + atbt+1t − at+1tbt − atbt

21t

+bt+1tat+1t + btat+1t − bt+1tat − btat

21t

= 2at+1tbt+1t − 2btat

21t
=at+1tbt+1t − atbt

1t
(A3)

Equation (A3) allows to write:

1 [k ε I ]

1t
= [k ε]t+1t It+1t − [k ε]t It

1t
(A4)

1 [k (1 − ε) O]

1t

= [k (1 − ε)]t+1t Ot+1t − [k (1 − ε)]t Ot

1t
(A5)

as they appear in Eqs. (29) and are then used in the derivation
of the MCT algorithm.

Appendix B

The Newton-Raphson algorithm to derivey=y {Q, n, S0}
for a generic cross section

In general (apart from the wide rectangular cross section
case), when in a channel reach the water stagey [L] must
be derived from a known discharge valueQ

[

L3T −1
]

, a
non-linear implicit problem must be solved. Since a direct
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closed solution is not generally available, several numerical
approaches to find the zeroes of a non-linear function can
be used, such as the bisection or the Newton-Raphson ap-
proaches.

In this case, given that the functions were continuous and
differentiable (triangular, rectangular and trapezoidal cross
sections), a simple Newton-Raphson algorithm was imple-
mented. The problem is to find the zeroes of the following
function ofy:

f (y) = Q (y) − Q = 0 (B1)

where Q (y)
[

L3T −1
]

is defined as:

Q (y) =
√

S0

n

A (y)5/3

P (y)2/3
(B2)

with S0 [dimensionless] the bottom slope,n
[

L1/3T
]

the
Manning friction coefficient,A (y)

[

L2
]

the wetted area and
P (y) [L] the wetted perimeter, as defined in Appendix C.

The Newton-Raphson algorithm, namely:

yi+1 = yi − f (yi) /f ′ (yi) (B3)

allows one to find the solution to the problem with a limited
number of iterations starting from an initial guessy0 and can
be implemented in this case by defining:

f (yi) = Q (yi) − Q =
√

S0

n

A (yi)
5/3

P (yi)
2/3

− Q (B4)

and

f ′ (yi) = d [Q (y) − Q]

dy

∣

∣

∣

∣

y=yi

= dQ (y)

dy

∣

∣

∣

∣

y=yi

(B5)

=5

3

√
S0

n

A (y)2/3

P (y)2/3

(

B (y) −4

5

A (y)

P (y) sα

)

=B (y) c (y) (B6)

using the results given in Appendix C.

Appendix C

The derivation of A(h), B(h), c(h) and β(h) for
triangular, rectangular and trapezoidal cross sections

Given the cross-sections in Fig. 5, the following equations
can be used to represent a generic triangular, rectangular or
trapezoidal cross section.

A(y) = (B0 + y cα) y (C1)

the wetted area
[

L2
]

B (y) = B0 + 2 y cα (C2)

the surface width[L]

P (y) = B0 + 2 y / sα (C3)

the wetted perimeter[L] with B0 the bottom width[L] (
B0=0 for the triangular cross section) andy the water stage
[L]; cα= cot(α) andsα= sin(α) are respectively the cotan-
gent and the sine of the angleα formed by dykes over a hori-
zontal plane (see Fig. 5) (cα=0 andsα=1 for the rectangular
cross section). Using these equations together with:

Q (y) =
√

S0

n

A (y)5/3

P (y)2/3
(C4)

the discharge
[

L3T −1
]

v (y) = Q (y)

A (y)
=

√
S0

n

A (y)2/3

P (y)2/3
(C5)

the velocity
[

L T −1
]

whereS0 [dimensionless] is the bottom
slope andn

[

L1/3T
]

the Manning friction coefficient, the
celerity is calculated as:

c (y) = dQ (y)

dA (y)
= 1

B (y)

dQ (y)

dy

= 5

3

√
S0

n

A (y)2/3

P (y)2/3

(

1 − 4

5

A (y)

B (y) P (y) sα

)

(C6)

the celerity
[

L T −1
]

and the correction factor to be used in
the MCT algorithm is:

β (y) = c (y)

v (y)
= 5

3

(

1 − 4

5

A (y)

B (y) P (y) sα

)

(C7)

the correction factor[dimensionless]

Edited by: E. Zehe
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