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Abstract. Global Climate Models (GCMs) precipitation sce-
narios are often characterized by biases and coarse reso-
lution that limit their direct application for basin level hy-
drological modeling. Bias-correction and spatial disaggre-
gation methods are employed to improve the quality of
ECHAM4/OPYC SRES A2 and B2 precipitation for the Ping
River Basin in Thailand. Bias-correction method, based on
gamma-gamma transformation, is applied to improve the fre-
quency and amount of raw GCM precipitation at the grid
nodes. Spatial disaggregation model parameters (β, σ 2),
based on multiplicative random cascade theory, are estimated
using Mandelbrot-Kahane-Peyriere (MKP) function atq=1
for each month. Bias-correction method exhibits ability of
reducing biases from the frequency and amount when com-
pared with the computed frequency and amount at grid nodes
based on spatially interpolated observed rainfall data. Spatial
disaggregation model satisfactorily reproduces the observed
trend and variation of average rainfall amount except dur-
ing heavy rainfall events with certain degree of spatial and
temporal variations. Finally, the hydrologic model, HEC-
HMS, is applied to simulate the observed runoff for upper
Ping River Basin based on the modified GCM precipitation
scenarios and the raw GCM precipitation. Precipitation sce-
nario developed with bias-correction and disaggregation pro-
vides an improved reproduction of basin level runoff obser-
vations.

1 Introduction

The Southeast Asia is vulnerable to climate change and
its variability, including rise in sea level, shifts of climatic
zones and occurrence of extreme events such as droughts
and floods. The range variation of various climatic model
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projected mean temperature, precipitation and runoff in 2100
for this part of the world are found to be 1.0 to 4.5◦C,−20 to
+20% and−10 to +30% respectively (IPCC, 2001). These
broad spectrums of projected range imply that the results of
the climatic models cannot be directly used in analyzing the
water resource situation at basin level using high-resolution
hydrologic models. The mismatch between coarse resolution
projections of global climate models (GCMs) and fine reso-
lution data requirements of hydrologic models is the major
obstacle in assessing the impacts of climate change on water
resources at the basin level. However, climate model out-
puts can be utilized more efficiently in climate change im-
pact studies with due consideration on its coarse resolution
and biasness. Many GCMs are available with high temporal
resolution data output at daily or at even lesser time intervals
that satisfy the basic need of temporal scale in hydrologi-
cal modeling. However, gap still exists in developing proper
techniques to minimize these biases and to downscale the
spatial resolution of the GCMs. Identification, application
and verification of proper methods are therefore necessary to
minimize the effect of these drawbacks in basin scale studies.

Despite being important tools to project the expected fu-
ture scenarios of climatic parameters, GCMs contain biases
when compared to observed data due to their parameteriza-
tion systems and large grid size (∼300×300 km2). These
types of errors are considered insignificant when applying
for the estimation of climate change impact at regional scale.
But, such biased climate model scenarios are inadequate
for their use in hydrologic models to analyze impact of cli-
mate change at basin level. Bias correction methods largely
eliminate these problems with added emphasis on statisti-
cal characteristics of historical data. Rescaling is the easi-
est bias-correction method to rectify the systematic error in
the mean rainfall amount. A ‘quantile-based’ bias-correction
approach is useful to statistically transform rainfall simu-
lated by GCM to bias-corrected data and to make it appli-
cable for use in impact assessment models (Wood et al.,
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2002; Hamlet et al., 2003). Ines and Jansen (2006) applied
empirical-gamma transformation, gamma-gamma transfor-
mation and multiplicative shift techniques to correct the fre-
quency and amount distribution of daily GCM rainfall for a
particular station and then applied it for maize yield simula-
tion model. All these methods improved the results of maize
yield simulation. These studies indicate the significance of
bias-correction of GCMs precipitation when applied to im-
pact assessment studies.

Low spatial resolution of GCMs is another critical issue to
be considered before applying it to the hydrological impact
assessment model. There are numerous techniques available
for downscaling the climate models data to a high spatial res-
olution with their respective advantages and disadvantages.
No downscaling method is available with perfection, there-
fore the techniques used to interpret GCM simulations should
be chosen based on the objectives of the research (Hamlet
et al., 2003). The disaggregation model, based on multi-
plicative random cascade theory, is one of the techniques to
spatially downscale the projected GCM rainfall. A contin-
uous form of multiplicative random cascades has its major
advantage in developing cascades over a continuous interval
of scales instead of only a discrete set (Marsan et al., 1996);
however, a discrete form of multiplicative random cascade
has ability to separate rainy and non-rainy areas (Schertzer
and Lovejoy, 1987; Gupta and Waymire, 1993; Over and
Gupta, 1994). The main advantage of this approach to pre-
cipitation analysis is that it describes the complex rainfall
process over a wide range of scales with few parameters.
The rainfall modeling based on discrete multiplicative ran-
dom cascades has been tested for spatial and temporal dis-
aggregation under different climatic conditions with similar
conclusion that it was possible to capture rainfall variability
of sub grid scale using this approach (Olsson, 1998; Güntner
et al., 2001; Molnar and Burlando, 2005). A few studies have
been conducted by incorporating spatial heterogeneity in ran-
dom cascade process and the overall results were found to be
acceptable based on important spatial and temporal charac-
teristics of rainfall (Jothityangkoon et al., 2000; Pathirana
and Herath, 2002; Tachikawa et al., 2004).

The focus of the present paper is to ameliorate the GCM
precipitation for further use in hydrological model by apply-
ing the bias-correction and stochastic disaggregation method.
Bias-correction method is applied to GCM precipitation at
the grid node and then spatially downscaled using multiplica-
tive random cascade model while preserving the spatial het-
erogeneity for each month. The Ping River Basin, North of
Thailand, is selected for the application of the approach.

2 Study area

The Ping River Basin is one of the eight sub-basins in Chao
Phraya Basin. It stretches from latitude 19.75◦ N to 15.75◦ N
and from longitude 98.10◦ E to 100.20◦ E, with a catch-

ment area of 34 453 km2 (Fig. 1). It covers about 22% of
the Chao Phraya River Basin and contributes about 24%
(9044×106 m3) of the total average annual runoff. Terraced
mountains mainly characterize the topography of Ping River
Basin. About 55.5% of total basin area is in the elevation
range of 500–1500 m. The weather is mainly influenced
by the Southwest and Northeast monsoon. It is also influ-
enced by the depression from the South China Sea during
July and September, resulting in abundant rain from May
to October. The climate is characterized by average an-
nual precipitation of 1097 mm and average annual temper-
ature of 26.7◦C. Nearly 90% of rain occurs during rainy sea-
son (May–October). Water demand of Ping River Basin in
the year 2002 was 5809×106 m3 and it is expected to be
6316×106 m3 after 20 years (Department of Water Resource,
2004). Climate change and its variability can significantly
impact on water resources of the basin. The analyze of ex-
treme precipitation and temperature events in this river basin
reveal the presence of significant trends in most of the cli-
mate indices, with a general tendency for a decrease in pre-
cipitation and a significant increase in temperature indices
(Sharma et al., 2006).

Daily precipitation data for the period 1991 to 1999 is
obtained from the Royal Irrigation Department (RID, Thai-
land), Thailand Meteorological Department (TMD) and De-
partment of Meteorology and Hydrology (DMH, Myanmar)
for 99 stations, as indicated in Fig. 1.

3 Characteristics of ECHAM4/OPYC3

ECHAM4/OPYC3 is selected due to its easy accessibil-
ity, high temporal (6 hourly) and spatial resolution as
compared to other climate models (Feenstra et al., 1998).
ECHAM4/OPYC3 model has been developed at the Max
Planck Institute in Hamburg, Germany, using the weather
forecasting model (ECMWF) and it is a model of fourth gen-
eration. ECHAM4 uses 2.8◦×2.8◦ grid cells of a 19-layer
atmosphere and an 11-layer ocean (Roeckner et al., 1996).
Six new greenhouse gases (GHGs) emission reference sce-
nario groups (A1B, A1FI, A1T, A2, B1, and B2), organized
into four scenarios “families” (A1, A2, B1, and B2), were
developed by the IPCC and published as the Special Report
on Emissions Scenarios (SRES). Scenarios A2 and B2, two
contrasting future emission scenarios, are used to account for
uncertainty in future GHGs/sulphate emissions data. The A2
scenario assumes an emphasis on local traditions, high popu-
lation growth, and less concern for rapid economic develop-
ment. The B2 scenario envisages less rapid, and more diverse
technological change with emphasis on community initiative
and social innovation to find local, rather than global solu-
tions. This scenario is oriented toward environmental protec-
tion and social equity (Nakicenovic and Swart, 2000).

The ECHAM4/OPYC3 climate model precipitation data
for SRES A2 and B2 are obtained from the World Data
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Fig. 1. Location map of Ping River Basin.

Center for Climate through CERA (Climate and Environ-
mental Retrieving and Archiving) database system. Two grid
boxes of selected model are identified for the study area as
shown in Fig. 1. These two grid boxes account for about
96% of total Ping Basin area and out of it 82.4% is within
grid 1. Daily rainfall data is prepared by adding the 6 hourly
model data.

Figure 2a reveals increasing trend of annual mean temper-
ature for SRES scenarios A2 and B2 for both the grids. The
rise in mean annual temperatures for SRES A2 and B2 are
found to be about 0.30◦C/decade and 0.22◦C/decade respec-
tively. Annual temperature across the domain may increase
in 2020s by 0.4 to 0.5◦C and 1.3◦C to 1.5◦C in 2050s, ac-
cording to ECHAM4/OPYC3 with the high emissions sce-
nario (A2). With the low emissions scenario (B2), there may
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Fig. 2. Trend in ECHAM4 SRES A2 and B2 mean temperature
from 1990 to 2100(a) mean annual temperature variation in two
grids(b) Decadal rise in monthly temperature in two grids.
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be a rise of 0.3 to 0.4◦C by 2020s and 0.9◦C to 1.1◦C by
2050s. The rate of temperature rise per decade is approxi-
mately 1.25 times more in scenario A2 than that in scenario
B2. Figure 2b shows the monthly increase in mean tempera-
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Fig. 4. Mean monthly rainfall trend of ECHAM4 SRES A2 and B2
scenarios compared with observed rainfall data (1990–1999) for(a)
grid 1, and(b) grid 2.

ture per decade for SRES A2 and B2 for both the grids. The
variation in monthly increase in temperature is more uniform
in grid 2 as compared to grid 1, under both the scenarios. Fig-
ure 3 illustrates the trend of annual standardized anomalies
of ECHAM4/OPYC3 precipitation scenarios. There is a ten-
dency toward less abundant rainfall (rainfall close to mean)
in future. A comparison of these trends suggests that warmer
temperatures and lesser rainfall will affect the present situ-
ation of water resources in the study area. Figure 4 shows
the mean monthly trend of ECHAM4 model and observed
rainfall. The selected model scenarios over predict the mean
monthly precipitation at grid 1 (82.4% of Ping Basin area)
while it under predict at grid 2 for rainy period. In dry sea-
son (November–April), ECHAM4 model over predicts rain-
fall for the study domain. This shortcoming hinders in direct
application of climate model data in impact assessment stud-
ies.

4 Methodology

4.1 Bias-correction method

Variability of rainfall largely depends on its frequency and
amount, and it is difficult to estimate average rainfall in a
particular region. Gamma-gamma (GG) transformation is
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used to reduce the gap between the daily GCM simulated and
observed rainfalls using GCM bias correction tool – version
0.3a (Ines, 2004). The basic idea of this bias-correction pro-
cedure is to reduce the biases from the frequency and amount
at grid node before applying downscaling technique. The
steps are as follows:

1. Establish the empirical distributions,F(x), by first clas-
sifying long-term daily rainfall data for each month,
based on positions of the ordered datasets. The empir-
ical distribution functionF(x) can be selected from a
variety of available standard probability plotting meth-
ods, e.g. California, Cunnane, Gringorten, Hazen, or
Weibull. However, selection of adequate method might
depend on user’s specific requirement. In present study,
Weibull procedures is used as given in Eq. (1):

F(x) =
n

m + 1
, (1)

wheren is the position ofx in the ordered array, and
m is the total number of data in the array. This should
be followed by calculation of a threshold value (x%

GCM),
derived from the empirical distribution of daily histori-
cal rainfall, to truncate the empirical distribution of the
raw daily GCM rainfall for that particular month. Ba-
sically, F(xhis=0.0) is determined and then map to the
daily GCM rainfall distribution.

2. GG transformation method is selected for rainfall
amount correction. For GG transformation, the trun-
cated daily GCM rainfall and historical rainfall data are
fitted to a two-parameter gamma distribution (Eq. 2) and
then the cumulative distribution (Eq. 3) of the truncated
daily GCM rainfall is mapped to the cumulative distri-
bution of the truncated historical data (Eq. 4). The shape
and scale parameters (α andβ) for each gamma distri-
bution are determined using Maximum Likelihood Es-
timation.

f (x; α, β) =
1

βαŴ(α)
xα−1 exp

(

−
x

β

)

;

x ≥ xT runc (2)

F(x; α, β) =

x
∫

xT runc

f (t)dt (3)

F(xGCM ; α, β|GCM) ⇒ F(xHis; α, β|His) (4)

The corrected GCM rainfall amount for the particular
day can be calculated by taking the inverse of Eq. (4)
such that:

x′
GCM = F−1{F(xHis; α, β|His)} (5)

The bias-correction method is applied to ECHAM4 SRES
scenarios A2 and B2 relative to spatial interpolated rainfall at
GCM grid node. Inverse Distance Weighting (IDW) method
is used to estimate the spatial average rainfall at grid node
from observed daily rainfall. Correlation coefficient (R), root
mean square error (RMSE), standard deviation (SD) and in-
dex of agreement (d) are determined to assess the overall
ability of the bias-correction method. The quality of bias-
corrected rainfall on monthly scale is evaluated using the
mean square error (MSE) skill score with the raw GCM as
a reference and formulated as:

Skill Score, SS=1−
MSEcorrected

MSEraw
, (6)

where MSEcorrectedand MSEraw are mean square errors of the
bias-corrected GCM and raw GCM data. The range of MSE
skill score varies from negative infinity to 1, and 0 indicates
no skill when compared to raw GCM data.

4.2 Spatial disaggregation model

In spatial disaggregation model, rainfall is a combined ef-
fect of two processes i.e., a multifractal process that is highly
variable in space but statistically uniform at smaller scales,
and a process that presents spatial heterogeneity of rainfall.
The disaggregation model, based on multiplicative random
cascade model, is used to distribute rainfall mass on succes-
sive regular subdivisions of a scale in multiplicative manner
with a branching number. The branching number (b) is de-
fined as the ratio of the number of segments at cascade stage
‘s+1’ to the cascade stage “s”. Figure 5a shows the general
layout of cascade disaggregation process. At each cascade
stage, each segment is divided intob equal parts and each
part is multiplied by a weighted value derived from a spec-
ified distribution, which is known as the cascade generator
(W). The segment after “s” stages of subdivision is denoted
by 1i

s (i=1, ...,bs) and rainfall in this particular segment is
expressed asµs

(

1i
s

)

in Eq. (7).

µs

(

1i
s

)

= R0λs

s

5
j=1

Wj (i), for i=1, 2, . . ., bs; s > 0 (7)

whereR0 is rainfall depth at initial stage andλs is the dimen-
sionless spatial scale, which equals tob−s . Figure 5b shows
the example of disaggregation model output applied to GCM
rain field withR0=3.6 mm at stages=7.

W is a random positive variable and is considered inde-
pendent and identically distributed. Properties ofW can be
estimated from the moment scaling behaviour across scales.
The statistical moment is the summation of rainfall volumes
and then raise to the power “q” at each segment formed at
a particular stage “s”. Thiessen polygon method is used to
calculate the rainfall volume at each segment at the selected
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Fig. 5. Spatial Disaggregation model(a) representation of disag-
gregation process at various stages, and(b) spatial disaggregation
of GCM rain field (horizontal plane) withR0=3.6 mm at stages=7.

stage. Sample moment with orderq (non-negative) is defined
as:

Ms(q) =

bs
∑

i=1

µ
q
s (1i

s) (8)

In a random cascade, the statistical momentsMs(q) are
shown to be a log-log linear function of the scale of resolu-
tion λs . The slope of the sample moment scaling relationship
is:

τ(q) = lim
λs→0

logMs(q)

− logλs

(9)

Over and Gupta (1996) has proposed an intermittent beta-
lognormal model because of its ability to consider dry zone
explicitly. It is given as:

P(W = bβ−σ2 log[b]
2 +σX) = b−β

P(W = 0) = 1 − b−β , (10)

whereβ andσ 2 are model parameters andX is a standard
normal variable. The expected value ofW is:

E(W) = 1

E(W) = E[(b−βbβ−σ2 log(b)
2 +σX + (1 − b−β)0)]

= E[b−σ2 log(b)
2 +σX] = 1 (11)

They also proposed using Mandelbrot-Kahane-Peyriere
(MKP) function (Mandelbrot, 1974; Kahane and Peyriere,
1976) to estimate the model parameters.

χb(q) = (β − 1)(q − 1) + ( σ 2 log(b)

2
)/(q2 − q) (12)

The MKP function,χb(q), is defined as the slope of the sta-
tistical momentMs(q) to the disaggregation stage “s”. Con-
sidering that the cascade follows the scaling law (Eq. 9), the
MKP function of the cascade isτ(q)/d. The first and second
derivatives ofτ(q) with respect toq, indicated by model pa-
rametersβ andσ 2 respectively, are calculated using the finite
difference method.

σ 2 =
τ (2)(q)

d log(b)

β = 1 +
τ (1)(q)

d
+

σ 2 log(b)(2q − 1)

2
(13)

The model parametersβ andσ 2, respectively, represent in-
termittency and variability of the cascade generator. Values
estimated for model parameters are plotted with average rain-
fall amount (large scale forcing) to find an empirical relation.

The modeling of rain fields using only multifractal does
not consider the existing spatial heterogeneity. To improve
the output of multifractal model in term of spatial hetero-
geneity, a long-term average of rainfall was included in the
modeling process (Pathirana and Herath, 2002). The theoret-
ical concept of the applied model is that the rainfall on the
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Fig. 6. Comparison of observed, raw GCM and bias-corrected GCM scenarios(a) grid 1-A2,(b) grid 1-B2,(c) grid 2-A2, and(d) grid 2-B2.

segment is a multiplication of two factors namely, parameter
of multifractal modeling (M) and component of rainfall (G)

that is invariant over a long aggregation. Spatial heterogene-
ity is incorporated in model by developing the field matrix
(G) of normalized long-term monthly average rainfalls using
IDW technique. The mathematical notation of the model is:

Ri,j = Mi,jGi,j

Mi,j =
{

0 f or Gi,j = 0, Ri,j/Gi,j otherwise
}

(14)

The bias-corrected ECHAM4/OPYC SRES scenarios A2
and B2 are used in the multiplicative random cascade model
for stage,s=7. The branching number (b) and embedding
dimension (d) for the study are considered as 4 and 2 re-
spectively. The values ofβ and σ 2are evaluated by com-
puting the derivatives ofτ(q) at q=1, separately for each
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Fig. 7. Monthly variation in MSE skill scores for ECHAM4/OPYC
rainfall with bias-correction method.

month. Outputs from the spatial disaggregation model are
analyzed with respect to rainfall amount distribution at differ-
ent points, spatial distribution of rainfall, area distribution of
residual and spatial autocorrelation of rain amounts to evalu-
ate the model performance. Spatial autocorrelation is gener-
ally used to measure the self-similarity of rainfall field. The
Moran’s ‘I ’ and Geary’s ‘c’ indices are considered to mea-
sure the spatial autocorrelation between cells. The value of
Moran’s “I ” range between−1 and 1 depending on the de-
gree and direction of correlation. Geary’s “c” ranges from
0 (maximum positive autocorrelation) to a positive value for
high negative autocorrelation. Its expectation in the absence
of autocorrelation is 1 (Sokal and Oden, 1978). Both statis-
tics are defined as:

Moran′s “I ”=
(N/S0)

∑

i

∑

jwij (xi−µ)(xj−µ)
∑

i (xi−µ)2
,

Geary′s “c”=
(N−1)/2S0[

∑

i

∑

jwij (xi−xj )
2]

∑

i(xi−µ)2
, (15)

whereµ is the mean of the variablex, wij are the elements
of the spatial weights matrix, andS0 (sum of the elements of
the weights matrix) =

∑

i

∑

j

wij .

5 Results and discussion

5.1 GCM rainfall bias correction

The gamma-gamma transformation method is applied to
ECHAM4/OPYC3 SRES A2 and B2 precipitation scenarios
to reduce the biases from the frequency and amount when
compared with the computed frequency and amount at ref-
erence grid nodes based on the spatially interpolated field
level rainfall data. Figure 6 shows the comparative trend
in mean monthly rainfall amount, frequency and intensity
for observed data, raw GCM scenarios and bias corrected
GCM scenarios at each grid. The raw GCM scenarios over

predict the mean monthly precipitation at grid 1 and un-
der predict at grid 2 for rainy season (May–October). In
dry season (November–April), raw GCM scenarios over pre-
dict rainfall for both the grids. It is observed that the GCM
simulates continuous rain events (rain>0.1 mm) with similar
trend throughout the year. This trend of simulated rainfall
lacks the demarcation in seasons and results in a large differ-
ence in the mean frequency of wet days obtained from model
simulation and observed data. The mean rainfall intensity is
also found to be low when compared to its corresponding ob-
served value in the study domain except for the period May
to August at grid 1. It is because of high difference in mean
rainfall amount compared to mean frequency.

Statistical parameters indicating the correspondence of
raw GCM and bias-corrected GCM (GG-GCM) scenarios
with deduced data from field observation for the monthly
mean rainfall amount are provided in Table 1. The standard
deviation of GG-GCM precipitation data, when compared to
that for the raw GCM data, is closer to the standard devia-
tion deduced for observed values. Also there is increase in
the correlation coefficient for all the scenarios in case of GG-
GCM compared to raw GCM. For example, there is increase
in correlation coefficient value from 0.32 to 0.64 in A2 sce-
nario of grid 1. A correlation coefficient of the order of 0.60
to 0.66 is achieved for grid 1, while the correlation coeffi-
cient for grid 2 is in the range of 0.68 to 0.73. The RMSE
for grid 1 varies between 2.06 and 2.15, while for grid 2 it
varies between 6.0 and 6.45. The effect of bias-correction
method is also checked using MSE skill score, as shown in
Fig. 7. Positive value of the skill score reveals that the cor-
rected data are better than the raw data, but the improvements
vary with month. The improvement is relatively high dur-
ing dry months compared to rainy months. The high skill
score in dry months is the effect of reduction in wet days and
in rainfall amount that happened to be the characteristics of
raw GCM data as explained earlier. The GG-transformation
is, therefore, effective in reducing the biases from the raw
GCM precipitation when compared with the observed data.
All these biases are taken as sources of uncertainties in cli-
mate change studies.

5.2 Spatial disaggregation model

The spatial disaggregation method is applied on bias cor-
rected ECHAM4/OPYC3 SRES A2 and B2 precipitation
scenarios to improve the resolution and to incorporate the
spatial heterogeneity of rainfall for further use in hydrologic
model application

5.2.1 Model parameter

Spatial disaggregation model performance depends mainly
on parameters values (β, σ 2), which capture seasonal pre-
cipitation characteristics.β determines the growth of inter-
mittency in the field (0<β<1), andσ 2 determines variance
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Table 1. Performance of bias-correction method on monthly rainfall amount.

SRES-A2 SRES-B2

SD R RMSE d SD R RMSE d

Grid 1

Observed 2.48 2.48
Raw-GCM 3.28 0.32 3.64 0.74 3.47 0.27 3.87 0.47
GG-GCM 2.52 0.66 2.06 0.81 2.30 0.60 2.15 0.76

Grid 2

Observed 8.48 8.48
Raw-GCM 4.08 0.34 7.02 0.83 4.42 0.32 7.06 0.61
GG-GCM 8.24 0.73 6.00 0.84 8.20 0.68 6.45 0.81

of the cascade generator (σ 2 >0). High β indicates high
intermittency while highσ 2 indicates peaks in the field and
an increased level of multiscaling. These two parameters are
estimated separately for each month based on nine years of
observed daily rainfall data. Figure 8 shows the trend in pre-
cipitation scaling parameters between rainy and dry seasons.
In rainy season, intermittency (β) is low and the variance
(σ 2) is high as compared to dry season. The range ofσ 2 is
from 0.02 to 0.104 in both the grids. Positive values ofσ 2

indicate that the structure of precipitation field is multiscal-
ing in all the months, however the extent of multiscaling is
less in dry season. Figur 9 shows the existing trend between
the model parameters and the regional daily rainfall amount.
The equation of best-fit line between parameters and average
rainfall amount is given with each figure. Different forms
of equation can be used to present this relationship as ob-
served in other studies (Over and Gupta, 1994; Shrestha et
al., 2004). Individual values are binned into different classes
with N (rainfall events)=10 to reduce the scattered pattern
of the parameters values.β values decrease with increase in
rainfall while σ 2 values may remain almost not sensitive to
rainfall amount (Over and Gupta, 1996; Jothityangkoon et
al., 2000; Assela and Herath, 2002).σ 2values show a sea-
sonal trend but the trend is opposite to that ofβ values. As
can be seen in Fig. 9, high rainfall amounts are less intermit-
tent on an average and there is less effect of rainfall variabil-
ity. These two model parameters are presented as a function
of average spatial rainfall amount and both show a strong de-
pendency on rainfall amount. Statistics of the two model pa-
rameters for rainy months with SD, mean and coefficient of
variation (CV) are summarized in Table 2. The results jus-
tify the use of parameters derived for the entire study area,
along with their relationship with average rainfall amount, to
characterize the random cascade process. In this study, sim-
ulation is done based on differentσ 2 values for each rainy
month to capture the variability of rain.

Monthly variation in model paramters (β, σ
2
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Fig. 8. Monthly variation in average spatial disaggregation model
parameters (β, σ2).

5.2.2 Model validation

The developed disaggregation model is validated by check-
ing its effectiveness in reproducing the observed rainfall
characteristics based on GCM scenarios. The comparative
study is done taking into consideration the following statis-
tical approaches: exceedance probability curves for rainfall
amount distribution, spatial autocorrelation to measure the
self-similarity of rain field, area distribution of pixel residual.
Also, daily average rainfall map for the spatial heterogeneity
and comparison of observed, raw GCM simulated rain field
with bias-corrected downscaled map are considered to ver-
ify the spatial disaggregation model output. Inverse Distance
Weighting (IDW) interpolation method is used to develop
the observed rainfall fields. This is then used as a ground
truth to verify the spatial distribution of downscaled rainfall
fields. Statistical interpolation could not perform better for
verification because of sparse rain gauge density (Eischeid et
al., 2000; Ahrens, 2006). According to Webster and Burgess
(1984), the minimum number of observation pairs should be
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Daily rainfall amount (mm)

(a)

Daily rainfall amount (mm)

(b)

Daily rainfall amount (mm)

(c)

Daily rainfall amount (mm)

(d)

Fig. 9. Graph presents the relation of model parameters (β, σ2) with average rainfall(a) grid 1-β, (b) grid 1-σ2, (c) grid 2-β, and(d) grid
2-σ2.

Table 2. Statistics of estimated parameters for random cascade model.

Grid 1 Grid 2

σ2 β σ2 β

Month SD Mean CV SD Mean CV SD Mean CV SD Mean CV

May 0.045 0.062 0.002 0.154 0.229 0.024 0.081 0.077 0.007 0.173 0.263 0.030
June 0.044 0.081 0.002 0.130 0.212 0.017 0.063 0.095 0.004 0.107 0.185 0.012
July 0.042 0.077 0.002 0.125 0.201 0.016 0.061 0.104 0.004 0.104 0.176 0.011
August 0.045 0.092 0.002 0.125 0.154 0.016 0.052 0.098 0.003 0.104 0.165 0.011
September 0.043 0.081 0.002 0.136 0.176 0.019 0.068 0.097 0.005 0.120 0.176 0.014
October 0.046 0.063 0.002 0.157 0.228 0.025 0.072 0.076 0.005 0.178 0.266 0.032
Annual 0.084 0.060 0.007 0.158 0.276 0.030 0.075 0.078 0.006 0.171 0.251 0.029
Rainy 0.045 0.076 0.002 0.140 0.201 0.019 0.064 0.094 0.004 0.129 0.192 0.017

about 20–30 to develop the valid semi-variogram. This con-
dition is not adequately fulfilled in the present case. IDW
method is often used as an alternative to statistical methods
under sparse gauge data condition (Odgen et al., 2000).

Four meteorological stations are selected from different
directions (as shown in Fig. 1) in both grids to develop ex-
ceedance probability curves between the observed and down-
scaled rainfall. The downscaled rainfall is the value for a
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Fig. 10. Exceedance probability curve of rainfall amount at four rainfall stations from observed and downscaled data(a) grid 1-May,(b) grid
1-September,(c) grid 2-May, and(d) grid 2-September.

pixel of size 2×2 km in which the selected station is located.
Figure 10 shows the exceedance probability curve for May
and September months at selected stations. The model satis-
factorily reproduces the observed trend and variation of daily
rainfall amount in temporal scale, however, the downscaled
rainfall amounts during heavy rainfall events show certain
degree of variation.

Geary and Moran indices calculated for the adjacent cell
are given in Table 3. Moran’s “I ” values are positive and
close to 1 in almost all cases. Similarly, the Geary’s “c” val-
ues are positive and close to 0. Correlation measure (R) is
used to measure the efficiency of the downscaled rain field to
represent the observed rain field and its values vary from 0.82
to 0.99 for all the rainy months. This is a good indicator of
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Table 3. Spatial statistics of observed and simulated data relative to adjacent cells.

Grid-1 Grid-2

Month Data Moran’s “I ” Geary “c” R Moran’s “I ” Geary “c” R

May Simulated 0.936 0.054 0.974 0.024
Observed 0.989 0.001 0.923 0.997 0.001 0.973

June Simulated 0.976 0.016 0.995 0.006
Observed 0.990 0.001 0.946 1.001 0.001 0.993

July Simulated 0.975 0.018 0.986 0.012
Observed 0.991 0.001 0.969 0.998 0.001 0.981

August Simulated 0.976 0.015 0.984 0.011
Observed 0.993 0.002 0.983 0.988 0.003 0.984

September Simulated 0.967 0.025 0.978 0.020
Observed 0.990 0.001 0.972 0.997 0.001 0.972

October Simulated 0.873 0.123 0.911 0.084
Observed 0.991 0.002 0.816 0.992 0.001 0.874

Table 4. Percent area distribution of pixel residual for rainy months (May–October).

Grid-1 Grid-2

Class Residual* [mm] May June July Aug Sept Oct May June July Aug Sept Oct

1 >3 0.5 0.8 4.9 0.1 0.1 0.0 0.2 9.8 12.0 15.2 4.2 0.0
2 2 to 3 1.4 1.6 3.2 0.8 0.7 0.2 1.7 3.9 5.0 4.5 5.9 0.2
3 1 to 2 8.7 2.5 4.5 3.3 5.3 3.1 9.5 5.8 7.4 5.3 0.8 6.3
4 0 to 1 39.0 41.9 17.8 37.3 43.4 46.5 40.5 12.6 19.4 8.2 22.3 44.7
5 −1 to 0 38.9 49.1 58.2 57.9 44.3 47.8 35.8 35.0 29.3 20.7 34.6 41.0
6 −2 to−1 10.7 3.2 10.1 0.7 5.3 2.4 9.9 18.0 11.1 20.4 16.5 7.4
7 <−3 0.8 0.9 1.2 0.0 0.9 0.0 2.4 14.9 15.8 25.8 5.7 0.5

*Residual = (observed – downscaled)

high correlation among the observed and simulated rain field
as mentioned in previous section. Moran’s “I ” isotropic au-
tocorrelogram is also calculated for variable separation dis-
tances. Moran’s “I ” is weighted by separation distance (h)

between sample points rather than by simple adjacency. As
shown in Figs. 11a–b, Moran’s “I ” autocorrelograms show
high spatial autocorrelation for rainy season in both the grids.
In all the months, the Moran’s “I ” begin with high positive
values and decrease with corresponding increase in lag dis-
tance. This observation implies that the pixel data in both the
grids are regionalized, smooth and clustered.

The percent area distribution of spatial residuals
(observed-downscaled) from the average monthly ob-
served and simulated rain field is presented in Table 4. The
residual range is divided into seven classes. The values
corresponding to these classes, as in the table, are the percent
area of grid under particular class. Major portion of the two
grids is falling in classes 4 and 5. In grid 1, more than 75%
of the total area is in these two classes. The inference is that
the most of the downscaled values are close to the observed

rainfall within the absolute residual of 1 mm/day. The
downscaled model over predicts in grid 1 and under predicts
in grid 2. There is a strong correlation between magnitude
of residual and rainfall amount for both grids. The area with
high residual is scattered over all classes in grid 2 compared
to grid 1. This is due to high rainfall amount, its variability
and less number of stations in grid 2 as compared to grid 1.

The existence of spatial heterogeneity in the output of dis-
aggregation model is verified by comparing the observed and
downscaled rain fields. Figure 12 shows the spatial hetero-
geneity for May and September months. The trend in rainfall
distribution pattern is much similar in observed and down-
scaled rain fields. In grid 2, a large portion of the grid is
showing dark colour (heavy rain) without much variation in
rainfall pattern. This is the reflection of the lack of data avail-
ability (Thailand-Myanmar border) and a larger area of grid
2 is covered by Andaman Sea.

This spatial disaggregation methodology is further ap-
plied for downscaling the raw GCM data and the spatial dis-
tribution pattern is compared to bias-corrected downscaled
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Fig. 11. Moran’s “I ” isotropic autocorrelogram between ECHAM4 SRES A2 downscaled precipitation rain field and observed rain field for
(a) grid 1-wet period, and(b) grid 2-wet period.

GCM. The average downscaled maps of raw GCM and bias-
corrected downscaled GCM with their spatial differences for
the month of May are shown in Fig. 13a. The raw GCM
downscaled rain field produces more rain in spatial sense
compared to bias-corrected rain field. The bias-corrected
downscaled map is found closer to the average observed rain

field with less residual range variation, as shown in Fig. 13b.
The values of residual are found to be more in the region with
high rainfall amount.

In next section, these processed GCM precipitation sce-
narios are used in hydrological model to compare their skill
with respect to observed flow.
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(a)

(b)

(c)

(d)

Fig. 12. Spatial heterogeneity between observed and simulated rain field(a) grid 1-May month,(b) grid 1-September month,(c) grid 2-May
month,(d) grid 2-September month.
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(a)

(b)

Fig. 13. Spatial distribution pattern shows(a) average downscaled maps of raw GCM and bias-corrected downscaled GCM(b) average
observed rain field and bias-corrected downscaled map.

6 Application: Upper Ping River Basin

A hydrological model is used to simulate the observed flow
at a selected station in the basin using processed precipi-
tation scenarios. The United States Army Corps of Engi-
neers (USACE) watershed model HEC-HMS (version 3.0.1)
is used as the hydrologic model. The Ping River Basin is
modeled with a focus on the upper watershed that provides
inflow to the Bhumibol reservoir. The location map of the
upper Ping River Basin and Bhumibol reservoir is indicated
in Fig. 1. A detail description of HEC-HMS set up can be
found in HEC (2005). HEC-GeoHMS v-1.1, as described in
HEC (2003), is used to develop the input basin file for the
HEC-HMS and it contains the hydrologic and hydraulic pa-
rameters of the basin. HYDRO-1K digital elevation model,
developed at the U.S. Geological Survey’s (USGS), is used to
prepare the basin file. HEC-HMS is applied with the deficit
and constant loss method keeping the monthly baseflow con-
stant. MODCLARK transformation is used with Standard
Hydrologic Grid (SHG) size of 2×2 km2 for incorporating
the distributed precipitation data for the model. The dis-
tributed precipitation data for Ping Basin are clipped from

the bias-corrected downscaled scenarios usingArcInfo GIS
tool. The program namedasc2dssGrid is used for integra-
tion between data storage system (DSS) andArcInfo through
the use of an intermediate ASCII text file.

The HEC-HMS model is calibrated for the year 1999 and
is verified for the year 2000 with observed daily inflow at
Bhumibol reservoir. The coefficient of determination (R2),
Nash-Sutcliffe efficiency (EI) and absolute percentage vol-
ume error (APVE) are calculated to evaluate the model per-
formance. TheR2 values for calibration and validation pe-
riod are found to be 0.71 and 0.76, respectively. The EI val-
ues for calibration and validation period are found to be 0.65
and 0.75, respectively. The APVE for calibration and verifi-
cation period are found to be 1.9% and 9.3%, respectively.

This calibrated model is then used to simulate the flow
for two years (1999–2000) from four modified precipitation
scenarios as given in Table 5. Figure 14 shows the average
monthly inflow to Bhumibol reservoir for the observed con-
dition and the four scenarios. These simulations illustrate
how bias-correction and downscaling methods are able to
capture the essential precipitation features required for bet-
ter simulation of flow in the Ping River. It is observed that

www.hydrol-earth-syst-sci.net/11/1373/2007/ Hydrol. Earth Syst. Sci., 11, 1373–1390, 2007
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Table 5. Description of processed precipitation scenarios.

Scenario Scenariocode Description

Scenario 1 A2R, B2R Raw ECHAM4/OPYC3 daily precipitation with SRES A2/B2
Scenario 2 A2GG, B2GG Bias-corrected ECHAM4/OPYC3 daily precipitation with SRES A2/B2
Scenario 3 A2Rd, B2R d Raw downscaled ECHAM4/OPYC3 daily precipitation with SRES A2/B2
Scenario 4 A2GGd, B2GGd Bias-corrected downscaled ECHAM4/OPYC3 daily precipitation with SRES A2/B2
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Fig. 14. Average monthly inflow to Bhumibol reservoir for the ob-
served condition and the four modified precipitation scenarios(a)
SRES A2, and(b) SRES B2.

the raw GCM precipitation (scenario 1) misses the peak flow
period and hydrograph trend. The peak flows for scenario 1
occur in July and August, while it occurs in November for
observed flow. Minimum monthly flow occurs in March for
all scenarios. According to scenario 1, the simulated flows
in three months (June–August) are found to be 4.2 (A2) and
3.5 (B2) times of observed flow. But, scenario 4 reduced it
to 1.4 (A2) and 1.3 (B2) times of observed flow. This con-
cludes that the simulated hydrologic flows from the down-
scaled scenarios are able to capture the peak better than the
raw and bias-corrected precipitation scenarios. Scenario 4
(bias-corrected downscaled precipitation) is found to be ac-
curate in simulating the flow peak and trend as compared to

other scenarios. This improvement is a result of incorporat-
ing the spatial heterogeneity in precipitation, which retains
the monthly variability of flow. The large-scale precipitation
is able to provide the annual and interseasonal information
when it is downscaled at high spatial resolution.

The confidence associated with the hydrologic model and
the precipitation scenarios (Table 5) in simulating the stream-
flow is evaluated by calculating the relative volume biases
(RVB) and relative root mean square error (RRMSE) with
respect to the observed monthly mean runoff (296 m3/s). Ta-
ble 6 shows the values of these two statistical parameters in
streamflow simulation compared to the observed values. The
modified scenarios 2 to 4 show the improvement in stream-
flow simulation as compared to scenario 1(raw GCM precip-
itation). The highest percentage of RVB and RRMSE are
found in scenario 1. With scenario 4, which is based on
bias-corrected downscaled GCM precipitation, the percent-
age of RVB and RRMSE reduces appreciably. Application
of bias-correction method (scenario 2) is good in reducing
the runoff biases whereas application of downscaling method
(scenario 3) is effective in controlling the variability of the
simulated streamflow compared with observed values. This
shows that application of bias-correction method and down-
scaling method to the raw GCM precipitation is effective
in streamflow simulation. Bias-correction and downscaling
method can be further improved to reduce the existing gaps
especially for basin level studies.

The applied runoff modelling application in this study
demonstrates temporal variation of runoff for the specified
time period (1999–2000). However, the extent of assessment
can be further improved by taking into account the rainfall
variability (dry and wet periods) to add confidence in hydro-
logic simulation.

7 Conclusions

Precipitation biases and low scale resolution are the two main
factors related to application of GCM scenarios to assess the
impact of climate change on water resources at basin level.
Gamma-Gamma (GG) transformation and spatial disaggre-
gation model are applied to the ECHAM4/OPYC3 SRES
A2 and B2 precipitation scenarios for use in high-resolution
impact assessment models. Gamma-Gamma transformation
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Table 6. Relative volume bias (%) and relative RMSE (%) in streamflow simulation.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

SRES-A2 A2R A2GG A2R d A2GG d
Relative Volume Bias 113 54 55 33
Relative RMSE 172 93 68 46
SRES-B2 B2R B2GG B2R d B2GG d
Relative Volume Bias 68 20 39 23
Relative RMSE 136 73 54 39

Average

Relative Volume Bias 90 37 47 28
Relative RMSE 150 80 60 42

method reduces the biases from raw GCM precipitation
whereas the spatial disaggregation model is used in deal-
ing with coarse resolution problem in GCM. In spatial dis-
aggregation model,β values decrease with increase in rain-
fall while σ 2 values remain almost not sensitive to rainfall
amount. The decreasing value ofβ with increase in average
rainfall amount indicates that the fields with more rainfall
are less intermittent. The bias-corrected downscaled precip-
itation scenarios show more realistic hydrologic simulation
when compared to observed flow data. The applied approach
can be further used for other GCM scenarios to make them
more applicable for impact assessment research. Lack of ob-
served rainfall data particularly in Thailand–Myanmar bor-
der and larger area covered by Andaman Sea are the two
limiting factors for better estimation of disaggregation model
parameters. The scattered characteristics of downscaled rain
field for heavy rainfall show the need to develop the disaggre-
gation model by considering the different classes of rainfall
amount.
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