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Abstract. For spatially explicit hydrological modelling an
algorithm was required that works as a cellular automata on
irregular meshes. From literature it was found that the usual
algorithms applied for this purpose do not route the water
flow correctly between adjacent cells. In this study the hy-
draulic linking between mesh cells is done by calculating the
flow cross section between the mesh cells. The flow cross
sections are positioned in the centre of the mesh edges and
are perpendicular to the local gradient of the digital eleva-
tion model. The presented algorithm is simple in its imple-
mentation and efficient in computation. It is shown that the
proposed algorithm works correctly for different synthesised
hill slope shapes.

1 Introduction

In this study we present a spatially explicit hydrological
model running on irregular meshes. Models running on ir-
regular meshes are rarely used for spatially explicit hydro-
logical models, probably because flow routing is not triv-
ial on irregular meshes, as stated in Grayson and Blöschl
(2000). Moreover, existing models based on regular or ir-
regular meshes are often physically imprecise with respect
to water flow routing between mesh cells. Nevertheless, the
use of irregular meshes is of high interest because they are
qualified for describing real terrain shapes very efficiently.
However, so far the effect of triangulated terrain resolution
on basin hydrologic response has received surprisingly little
attention (Vivoni et al., 2005).

Triangular irregular meshes are applied for basin delin-
eation to route the runoff through a watershed using kine-
matic cascades (Palacios-Velez and Cuevas-Renaud, 1986;
Palacios-Velez et al., 1998). Irregular meshes are used to
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generate runoff networks by analysing whether the slopes of
two neighbouring cells with a common edge forms a ridge,
channel or plane (e.g., Gandoy-Bernasconi and Palacios-
Velez, 1990). Another model using irregular meshes was pre-
sented by Ivanov et al. (2004) and Vivoni et al. (2005). The
flow paths are calculated – as in many other approaches –
along the steepest direction between triangle centres or trian-
gle edges (Tucker et al., 2001; Ivanov et al., 2004); the nodes
of the triangulated meshes are used to describe the conditions
in the respective Voronoi cell.

Approaches for flow routing on irregular meshes are de-
rived from hydrological models running on regular meshes.
Common approaches are: (i) single direction flow based on
the highest altitude difference between cells (O’Callaghan
and Mark, 1984), (ii) random flow direction with a proba-
bility distribution proportional to altitude difference between
the centre and neighbouring cells (Fairfield and Leymarie,
1991), and slope direction (Lea, 1992; Costa-Cabral and
Burges, 1994; Tarboton, 1997); (iii) multiple direction flows
weighted according to the slopes to the adjacent mesh cells
(Quinn et al., 1991; Freeman, 1991; Wigmosta et al., 1994).
On irregular meshes various algorithms such as draining a
cell to its lowest neighbour (e.g., O’Callaghan and Mark,
1984) and weighting the outflow from a cell to its neighbours
according to the altitude difference (e.g., Fairfield and Ley-
marie, 1991) are not suitable because the orientation of the
triangle edge with respect to the flow direction must be taken
into account.

In this study the water flow routing is derived by first cal-
culating the flow gradient vector within each mesh cell. Since
triangulated meshes are used, the shape of a mesh cell is
given by three points which define a plane. The slope of
the plane is the gradient of the triangle. The new idea pro-
posed in this study is that, as a second step, the projection of
the triangle edges on the perpendicular of the gradient vec-
tor is calculated. The length of the projected triangle edges
corresponds to the flow cross section between two adjacent
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Fig. 1. Derivation of the slope gradient for a single triangle. The
horizontal projection of the triangle is added to the sketch for illus-
tration.

triangles. Thus, this approach can be understood as a dis-
cretisation of the space by flow cross sections which are po-
sitioned in the centre of each mesh edge. The orientation of
the cross sections is defined by the triangle slopes.

For the presented approach it is assumed that there is only
lateral water movement, i.e. water inflow (e.g., rain) and wa-
ter outflow (e.g., percolation into subsoil layers) are not con-
sidered. Thus, in general terms, this approach is suitable for
any lateral distribution problem on an irregular mesh where
the gradients of the mesh topology points into direction of
the driving forces.

2 Theory

2.1 Mesh generation

The program Triangle (Shewchuk, 1996) is used in this work
to generate triangulated irregular meshes. Triangle performs
a Delaunay triangulation which means that the nodes of the
triangulated mesh are arranged in such a way that every circle
passing through three points of a triangle will encompass no
other points (Delaunay, 1934). A property of the Delaunay
triangulation is the minimisation of the maximum internal
angle. Nevertheless, in Triangle a flag can be set to restrict
the minimum angle to a given value. To be sure that the
generation of flat and long triangles is supressed, this flag is
set to 20◦.

Discretisation of the space with triangulated irregular
meshes is useful because the resolution of such meshes can
be variable in space, linear elements in the landscape can
be represented well, and the number of nodes is drasti-
cally reduced compared to regular meshes (Lee, 1991; Braun
and Sambridge, 1997). Palacios-Velez and Cuevas-Renaud

Fig. 2. Scheme for derivation of flow cross sections. This figure
shows a triangle which is surrounded by other triangles lying in the
same plane.

Fig. 3. Identification of the triangle to which the gradient points.
The gray semicircle labels the side of the centre triangle.

(1986) reported that a regular mesh needs 14 to 250 times
more nodes for one node needed in an irregular mesh.

2.2 Mesh topology

The description of the mesh topology is extended by calculat-
ing the local gradients for each triangle and the projection of
the triangle edges on the perpendicular to the local gradient.

The gradient is calculated by using the following proce-
dure: Each triangle is defined by three nodes, denoted here
asu, v, andw. The normal vectorn towards the (u, v,w)-
plane is given by the vector product of two vectors describing
two edges of a given triangle. The next step is to move the
normal vector so that it starts in the centroids of the triangle.
Next, the projection inz-direction of the normal vector onto
the (u, v,w)-plane is calculated. The projection is then the
gradientg of the (u, v,w)-plane (cf. Fig.1).

To calculate the flow across the edges of two adjacent tri-
angles, the mean value of the gradients for each of the two
triangles is taken. The flow cross sectionAi for the i-th tri-
angle edge (i=1,2 or 3) is defined by the projection of the
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Fig. 4. Water flow on a triangulated irregular mesh describing an inclined plane. The three images show the soil moisture (white = dry, black
= wet) at the beginning and after 20 and 40 time steps, respectively.

Fig. 5. Water flow from two sources on triangulated irregular mesh describing an inclined plane. The three images show the soil moisture
(white = dry, black = wet) at the beginning and after 30 and 60 time steps, respectively.

common triangle edge onto the perpendicular of the gradient:
Ai=|bi |· sinγi wherebi is the vector of the common triangle
edge andγi the angle between gradientgi andbi . The angle
γi is found by the scalar product ofgi andbi (cf. Fig. 2).

In order to determine whether the gradient vector points
towards the centre triangle, i.e. the triangle currently under
observation, or towards the neighbouring triangle, the fol-
lowing procedure is used (cf. Fig. 3):

– Find an angle range that describes the hemisphere of the
centre triangle.

– Calculate the angleα of the vector pointing into the di-
rection of the third polygon node of the centre triangle.

– Calculate the angleβ of the gradient.

– If the anglesα andβ are in the range of the centre trian-
gle hemisphere, there is inflow from neighbour to centre
triangle. Outflow from centre to neighbouring triangle
is given in all other cases.

The three flow cross sections belonging to a given triangle
have an important property: In case the centre triangle and
the three adjacent triangle lie in the same plane, the length
of inflow cross sections is equal to the length of the outflow
cross sections. Thus, in case the hydraulic properties at each
edge of the center triangle are equal, the in- and outflow of
water balances to zero for the center triangle.

2.3 Flow calculation

The purpose of calculating water flow in this study is for the
validation of water flow routing with time. The simple rela-
tion

O=k·A·zd ·t ·θ (1)

is taken to describe outflow from a triangle, whereO is the
outflow, k is the hydraulic conductivity,zd is the depth of
the soil, t is the duration of the time step, andθ is the soil
saturation degree. The time stept has to be so small that no
triangle gets completely drained in one single time step.

Equation (1) describes the driving forces for water move-
ment very rough: Water flow in dependence of gravitation is
lumped within the parameterk, and water flow induced by
soil water potential is approximated by water content differ-
ences. Nevertheless, this equation can be used for our case
because the slopes in each digital elevation model is constant.
The implementation of more sophisticated flow equations is
straight forward.

3 Results

The first simulation calculates the water drainage on an in-
clined plane. The initial conditions were a wet restricted area
on top of the plane surrounded by soil of a lower constant
soil moisture. The mesh discretisation contains a rectangular
sub-area that has a finer resolution than its neighbourhood.
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Fig. 6. Water flow on the same triangulated irregular mesh as use for the previous simulations, but now stretched over a cone. The first three
images show the soil moisture (white = dry, black = wet) at the beginning and after 10 and 20 time steps, respectively. The cone is observed
from the top. The most right image is a side view of the cone.

Figure 4 shows the soil moisture distribution at the begin-
ning, in the middle and the end of the simulation run. In
this as well as in the following simulations presented here no
mass transfer through the outside boundary of the mesh was
allowed.

In the second simulation run the routing of water from one
single triangle is analysed. Two water sources are defined,
i.e. the two triangles are continuously supplied with the same
amount of water. Figure 5 depicts instantaneous snapshots
of simulations of the soil moisture distribution on the mesh
below the two water sources.

In the last simulation presented here, it is analysed whether
the flow on curved hill slopes spreads regularly. The mesh –
stretched over a cone – is initialised with constant soil mois-
ture. Figure 6 depicts the drainage starting at the top of the
cone moving regularly downwards.

4 Conclusions

From the results presented we can qualitatively conclude that
the water flow routing over the irregular mesh runs correctly
and the velocity of water flow routing is independent of the
mesh resolution. Qualitative comparison of these results with
the results of frequently used algorithms (D8, Multi flow di-
rection method, Lea’s method, DEMON, D∞; summarized
in Tarboton (1997)) illustrates that the presented algorithm
is more accurate than those presented in Tarboton (1997): It
is demonstrated by simulation with the cone digital elevation
model that flow routing is independent on the flow direction,
a typical weakness, e.g., in the D8 algorithm of O’Callaghan
and Mark (1984).

From the simulation run that imposes two sources on top
of the inclined plane, it can be seen that the water flow
paths disperse. The spreading of the flow stream depends on
the resolution of the triangulated mesh: It is smaller within
the high resolution area than in the coarse resolution area
(Fig. 5). This result is similar to the findings of Tarboton
(1997).

5 Summary

An approach is presented which defines the routing of water
flow on triangular meshes generated with Delaunay triangu-
lation. The water flow in space is described by flow cross
sections which are distributed in space; they have an orienta-
tion perpendicular to the local gradient. The connectivity of
the flow cross sections is defined by the edges of the triangu-
lated mesh. Simulations indicate that the presented method
is a suitable approach to flow routing on irregular meshes.
Thus, this approach is a step towards addressing multi spa-
tial scale hydrological problems.

Edited by: D. Solomatine
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