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Abstract. This paper analyses simple models for between alternative states, and apparently random fluctua-
“production-utilisation” systems, reduced to two state vari- tions. These dynamic behaviours are sometimes easily at-
ables for producers and utilisers, respectively. Two modedributable to external drivers, but often they are not. Exam-
are distinguished: in “harvester” systems the resource util-ples include climate phenomena from interannual variability
isation involves active seeking on the part of the utilisers,to ice ages; the dynamics of ecosystems, including popu-
while in “processor” systems, utilisers function as passivelation cycles, explosions and crashes; and the dynamics of
material processors. An idealised model of biosphere-humasocial-ecological systems involving humans, such as boom-
interactions provides an example of a harvester system, andust cycles and societal collapses associated with resource
a model of plant and soil carbon dynamics exemplifies a pro-exploitation and depletion.

cessor system. The biosphere-human interaction model ex- This paper focuses on the dynamical properties of parts
hibits a number of features in accord with experience, in-of the earth system which are governed by the linked pro-
cluding a tendency towards oscillatory behaviour which in duction and utilisation of resources. The broad aim is to
some circumstances results in limit cycles. The plant-soilidentify basic system attributes which underlie commonly
carbon model is used to study the effect of random forc-observed dynamical behaviours such as cycles and thresh-
ing of production (for example by weather and climate fluc- old transitions. For this purpose, production-utilisation sys-
tuations), showing that with appropriate parameter choicesems will be idealised to just two components or state vari-
the model can flip between active-biosphere and dormantables, respectively describing the producers and the utilis-
biosphere equilibria under the influence of random forcing.ers. Within this framework, two (not always disjoint) modes
This externally-driven transition between locally stable statesfor the production-utilisation interaction will be contrasted.

is fundamentally different from Lorenzian chaos. A be- |n the first mode, resource utilisation occurs by active, often
havioural difference between two-component processor an@oal-seeking behaviour on the part of the utilisers; such sys-
harvester systems is that harvester systems have a capactms can be characterised as “harvester” systems. Examples
for oscillatory behaviour while processor systems do not.  include prey-predator systems and (at a high level of abstrac-
tion) the biosphere-human system. In the second mode, the
utilisers process resources which they receive largely pas-
sively, to achieve closed material cycles (through loops in-
cluding the world outside the system under study) or to pre-

We are by now accustomed to the idea of Planet Earth as yent accumulation of waste in the production side of the sys-
single entity including interacting geophysical, biotic and hu- €M- Examples include water, carbon and nutrient cycling in
man constituent systems. Among the attributes of the eartl!;.errestnal systems, and the production and disposal of goods

system and its components is a propensity for autonomou? human §OCIetIeS. Suqh systems can be characterised as
dynamism. Parts of the earth system follow temporal tra- processor” systems. It will be shown by example how these

jectories which can exhibit a wide range of behaviours _two modes for production and utilisation lead to different

growth, decay, quasi-periodic cycling, relatively sudden flips characte.ristic dynam'ical propgrties. ]
For this comparative exercise, two systems are studied
Correspondence to: M. R. Raupach with highly simplified models consisting of just two equa-

(michael.raupach@csiro.au) tions — one for producers, one for utilisers. An idealised

1 Introduction
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876 M. R. Raupach: Resource production and utilisation

model of biosphere-human interactions is used as an exammodel P2 ¢4 has a saturating dependencewf Michaelis-
ple of a harvester system, and a similarly idealised modeMenten or Holling Type Il form (Gurney and Nisbet, 1998)
of plant and soil carbon dynamics provides a model of a pro-with scalegy1, so that production depends linearly en
cessor system. The formal approach is based on the theory efhenx;<<g11 and is independent aff whenx;>>g1. In
dynamical systems, drawing from a well-established body ofmodel P3¢1 has a saturating dependencewras for model
applied mathematics (e.g. Drazin, 1992; Glendinning, 1994)P2, together with a similar dependence on the utiliser as a
and particularly from applications in mathematical ecology symbiont,x2, with scaleg12.
(e.g. Gurney and Nisbet, 1998; Kot, 2001). For the utilisation fluxg2(x), common possibilities are

The plan of the paper is as follows. In Sect. 2, some nec-
essary aspects of dynamical systems theory are summariserg
briefly. Sections 3 and 4 apply this general framework to amodel UL: go (X) = poxox1 )
two-equation model of biosphere-human interactions, show- ) o
ing how even this minimal model can reproduce features ofModel U2 g2 (X) = p2x2 (x1+q21>
biosphere-human systems which are recognisable from quay, y,qe| U0, g, is independent of utiliser levek$) and de-
itative experience. In Sect. 5,. acomparable analysis is madﬁends only on resource availabilityyj. Models UL and
of a t\No-equatlor_1 model for |nteract|_ons between plant andU2 both assume a dependencezefon x,. The notation in
soil carbon. Section 6 draws conclusions. Egs. (3) and (4) is that; is a scale for the overall magnitude
of the fluxg;, andg;; is a scale for the modification @f by
state variable ; (Sog;; appears in the equation fgr and has
the dimension of ;).
Consider a producer-utiliser system with two state variables The distinction between two-component harvester and

odel UO: g2 (X) = pox1

2 Dynamical systems theory

(x1,x2), governed by processor systems, as characterised above, can be made for-
mal through the model fog>(X). In processor systems,

dxi/dt = f1(X) = g1(X) — g2(X) — k1x1 1 where the utilisers receive recources passivelyx) is in-

dxa/dt = fo(X) = rga(X) — koxo (1) dependent of, and depends only om; (as in model UQ);

in harvester systemg(x) depends on both; andx; (as in
wherex1(t) is the density of resource producess(t) the models U1 and U2).
density of utilisersg1(x) is the primary production flux into A particular model is specified by the parameterisa-
the x; pool, g2(x) is the resource utilisation flux fromth@  tions for the production and utilisation fluxes from the
pool into thex, pool, r is the efficiency for conversionofi ~ above possibilities (or others). For instance, the well-
into x2, k; (i=1,2) is a first-order decay rate, anfl(x) =  known Lotka-Volterra equationsd§/dt=pix1—prxax1,
dx;/dt is the net input flux to the; pool. The equations dx,/dt=pyxox1—kox2) for predator-prey dynamics (Lotka
are coupled by the dependence of the fluxg) andg2(x) ~ 1920; Volterra, 1926), are of the class P1U1. Several cases,
on both state variables{, x2). The equation system can be including POU1 and P2U1, are analysed by Gurney and Nis-

written in matrix form as bet (1998) and Kot (2001).
dx/di = f(x) = R-gx) — K - The solution pf thg §ystem isa traj.ectow) in .stat('a K)
space, from a given initial stat&0) at timer=0, with given
X(t) = <X1(I)> f(x) = <f1(X)> models forg; and g and with given parameters,(k;, p;,
x2(t) )’ fa() ) (2)  gij,...). Much of the behaviour of this solution is determined
by the equilibrium pointsx?, denoted by a superscript) at
agx) = <§;g;> , R= (é _rl) , K= <k01 li) whichdx/dt=f(x)=0, and by the local stability of the trajec-

tories around these points (Drazin, 1992; Glendinning, 1994;
Models are needed for the production and utilisation Casti, 1996, 2000). The existence of equilibrium points is
fluxes, g1(x) andga(x). For the production flux, some com- governed by the nonlinear equation

mon possibilities are: f(XQ) _ R~g<xQ> _K.-x2 =0 (5)

model PO: g1 (X) = p1
which is satisfied wher€ is an equilibrium point. The sta-

model P1: g1(X) = pix1 bility of x2 is determined by the linearised system

3
model P2: 5100 = p1(245) O war = 3¢ 6)
model P3: g1 (X) = p1 (qun) (xzi_quz> whereJ=J;; is the Jacobian matrixdf; /dx;) of the vector

functionf(x), andx’=x—x¢ is a perturbation abow?. The
In model PO the production flug; is constant, while in  eigenvalues);) of J are solutions of the characteristic equa-
model P1 it is proportional to the producer biomasgs In tion Det(J—Al)=0. If all eigenvalues of (evaluated ax?)

Hydrol. Earth Syst. Sci., 11, 875-889, 2007 www.hydrol-earth-syst-sci.net/11/875/2007/
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have negative real parts, thef is stable (so that trajectories processes which together have shaped human populations
nearx? converge tx€ ast — oo ), and if atleastong; has  diverse ways determined by both biogeographical circum-
a positive real part, thex€ is unstable (so that an infinitesi- stances and contingent history (Flannery, 1994; Diamond,
mal disturbance from< causes trajectories to diverge from 1991, 1997, 2005). It goes without further emphasis that a
x2 ast—o0). The imaginary parts of; determine whether two-equation model cannot capture even a fraction of this

the solutions neax? have oscillatory components. richness. Nevertheless, even such a simple model is capable
For the two-dimensional system of Eq. (1), the Jacobian isof discerning some broad patterns.
(with 9;;=0gi/dx;): The state variables are the biomass) and human pop-
3101 — o0 — k1 Brer — 3 ulation k() in a specified region. We first consider a very
J = < 181~ 0182 — K1 0281 282) (7)  simple formulation in whictb(r) andh(z) are governed by
roi1g2 rozg2 — k2

For this (or any) two-dimensional system, the characteristicip/dr = p — cbh — kb (11)

equation for the eigenvalues dis B
dh/dt = r(cbh — mh) (12)
A2 — (Trd)a + (Detd) = 0 ®)

It is well known (Drazin 1992 p. 170-176) that for two- Wherep is a constant primary biomass production fluxhe
dimensional systems the main options for the stability of anfate of extraction of biomass per humanthe rate of de-
equilibrium pointx€ are as follows: if both rootsig ») of ~ cay of biomass by respiratiom the maintenance biomass
Eq. (8) are real and negative (positive), thef is a sta-  requirement per unit time per human, andhe fractional

ble (unstable) node: nearby trajectories converge to (diverg@rowth rate of human population per unit biomass surplus.
from) XQ a|ong non_spira”ing curves. If both rooliz are The model assumes that the gl’OWth raté dbpends on the
Comp|ex with negati\/e (positive) real parts, thehis a sta- difference(cbh—mh) between the extraction of biomass by
ble (unstable) focus or spiral point: nearby trajectories spiralharvest{bh) and the biomass per unit time required to main-
inward to (outward fromx<. If the rootsi1 » have real parts ~ tain the human populatiom#{:). This difference is a surplus

of opposite sign, thew? is a saddle point: nearby trajec- Production measured in biomass units, leading to population
tories are hyperbolic. A saddle point is unstable in generalincrease (decrease) at ratevhen the surpluscbh—mh) is
except for approach along particular directions. These conpositive (negative). This model is a special case of Egs. (1) to

ditions are equivalent to the following: (4) with production and harvest models of the class POU1 and
variable substitutiongxy, x2)— (b, h), (g1, g2)— (p, cbh),

x2 is stableif  (DetJ) > 0and(TrJ) <0 and (k1, kp)— (k, rm). Assumptions in this highly simpli-

x¥ is unstable if (DetJ) > 0 and(TrJ) > 0 (9)  fied model are that there is no transfer of eith@r /1 across

x? is a saddle if (DetJ) <0 the boundaries of the model region, and also that biomass

production @) does not depend directly @n for instance by
technological innovation (see Wirtz and Lemmen (2003) for
a model in which there is a dependencepain ).

Given its idealisations and restrictions, the model can be

The spiral (oscillatory) tendency of the local trajectories
aroundx? is determined by the discriminanbj of the left
side of Eq. (8):

D > 0 (stable node: nonspiral) interpreted in two ways. Firsty and 2 can be regarded
D < 0 (stable focus: spiral) (20) strictly as biomass and human population, respectively. This
with D = (TrJ)2 — 4 DetJ view is relevant to interactions between isolated, homoge-

i neous human populations and their environments. A second,
For two-component processor systems as defined abovgygader view regards as “renewable natural capital” ard
d282=0 and D:(315'1_algz_klfk2)2+4(31g2)(8281)r' as “human capital”. In this case the model may have some
Provided d16,>0 and 92¢1>0, as in all examples above, gy icapility to technologically advanced societies where in-
D is posﬂwe. In the.se conditions, oscillatory (spiralling) rease in human capital continues unchecked even though
behaviour is not possible. human populations are stabilising or declining. In the con-
text of farm management, a model with some similarities to
the presentb, h) model has been proposed by Fletcher et
al. (2006), withb and#h interpreted in this way.

As an example of a producer-utiliser system of the har- The model has three independent dimensional metrics,
vester type, we consider a minimal model of biosphere-biomass [B], humans [H] and time [T]. There are five param-
human interactions in which the biosphere acts as produceeters p, ¢, k, m andr), with units p [BT~1], ¢ [H=1T—1),

and humans as utilisers. The interaction between humank [T~Y], m [BH~1T~1] andr [HB~1]. Dimensional analysis
and the natural biosphere that sustains them clearly involvegBridgman 1931; Huntley 1967) then shows that the system
a vast range of biophysical, economic, social and culturalhas two (=5-3) independent dimensionless groups. These

3 Biosphere-human interactions: basic model

www.hydrol-earth-syst-sci.net/11/875/2007/ Hydrol. Earth Syst. Sci., 11, 875-889, 2007
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Fig. 1. Trajectoriegb(z), h(r)) of the basic biosphere-human model
on thebh plane, with different curves showing variation of (top left)
primary productionp; (top right) human maintenance requirement
m; (bottom left) extraction rate; (bottom right) growth rate. The

centre case (black curve, identical in all plots) has parametefs
k=1,m=2,c=4,r=1. In each plot, the varied parameter takes log-
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4. Points A and B are both independent of the growth rate
r and therefore of the groug. The role ofr (andV)
is to determine the nature of the approach to point B, as
illustrated below.

For 98 to be positive, the parameters must satisfy
O0<U<1.

A “resource condition indexW can be defined as the ratio
of the equilibrium biomass values with and without human
utilisation:

b2B
boA

In the presence of a human population at equilibrium, a
fraction W of the potential (unutilised) biomass remains in
place, and a fractio(il— W) is removed by utilisation. Equa-
tions (13) and (14) show that for the basic system governed
by Egs. (11) and (12), we haw#=U. (In an extended ver-
sion of this model considered beloW, is a function ofU).

The fractional human appropriation of net primary produc-
tion, or HANPP (Boyden, 2004), ig2/g1=cbh/p, which

W = (15)

arithmically spaced values from 0.4 to 2.5 of its centre-case valugq, the basic model at equilibrium point B is-I/=1—W.

(rainbow curves, red to violet). All trajectories have initial condition
(b(0), h(0))=(1, 0.1). Note that the ordinate scale differs between
panels.

can be defined as

km

U = (13)

)

cp
Equations (11) and (12) have two equilibrium points (de-
noted A and B), given by:

PointA: b%4 = p/k,
PointB: 598 = mjc,

h4 =0

h98 = (p/m) — (k/c)
These points have the following properties.

(14)

1. Point A, the biosphere-only equilibrium, occurs in the
absence of human&+£0), when the biosphere equili-
brates to a biomags?4=p/k at which production )
balances respiratiortk). Point A is a saddle point with
its stable axis along the line=0 (Appendix A).

. As soon ag: exceeds zero for any reason, the system
leaves point A and approaches point B, the equilibrium
for coexistence of a human population with the bio-
sphere. Point B is always a stable equilibrium point
(Appendix A). It is a stable focus (spiral trajectories)
whenV>(4U (1-U))~1, and a stable node (non-spiral
trajectories) otherwise.

. Production p) determines the equilibrium biomass at
point A (b24), but at point B,p instead determines the
equilibrium human populatiom:€2). The biomass at
point B (»28) is independent op and is determined by
m andc, attributes of the human population.

Hydrol. Earth Syst. Sci., 11, 875-889, 2007

Figure 1 illustrates the system dynamics by plotting trajec-
tories (b(¢), h(r)) on thebh plane under four scenarios, re-
spectively corresponding to variation pfm, ¢ andr about a
centre case withh=1,k=1,m=2,c=4,r=1. The total range
for the varied parameter is about a factor of 5 in each case.
The initial condition is that the biomass takes the potential
valueb24 (= 1 with the centre-case parameter choices) with
a small human population.

— Scenario 1 (variation of p): As p (the primary pro-
duction of biomass) increases, the system responds
through an increase in the equilibrium human popu-
lation (:28=p/m—k/c), not the equilibrium biomass
(b28=m/c), as noted above. For low values pf the
dimensionless groupy exceeds 1 and the coexistence
equilibrium (point B) is no longer viable as it is both
unphysical 28 <0) and also unstable, so the system
reverts to the biosphere-only equilibrium (point A). This
occurs at different points along tlkeaxis under varia-
tion of p, sinceb@4=p/k.

Scenario 2 (variation of m): One might expect that de-
creasing the human maintenance requirememtould
cause the human population to “walk more lightly upon
the land”, increasing the equilibrium resource condition
index W. However, the reverse is the case: decreasing
m decreasedV, increases the equilibrium human pop-
ulation rapidly, and decreases the equilibrium biomass.
With decreasingn there is a decreasing tendency of tra-
jectories to spiral, and low: values are associated with
nodes (non-spiral trajectories near equilibrium point B).

— Scenario 3 (variation of ¢): This corresponds to varia-
tion of the rate of extraction of biomass by humans, or

www.hydrol-earth-syst-sci.net/11/875/2007/
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the intensity of human exploitation of the biosphere. In- The extended model is

creasinge causes the equilibrium biomass to decrease ;;, b by

(as might be intuitively expected) but the human popu-— = p — kb — cbh (16)
s . dt b+bp b+by

lation increases only slowly. Also, asncreases, there

is an increase in the amplitude of oscillations associated;y, by

with spiral orbits. The qualitative insight provided by = = rcbh ( P lm) — rmh 17)

this scenario is that more aggressive resource extraction
has the counter-intuitive effect of decreasing the equilib-wherebp andby are respectively the biomass scales for re-
rium biomass while not increasing the equilibrium hu- source saturation of production and harvest. The factors in
man population by anything like as much. Equation (14) brackets, accounting for resource saturation, are written in
shows that ag— oo, K22 approaches the upper-limit a form which keeps the dimensions pf ¢, k, m andr the
value of p/m while b8 approaches zero. In this limit same as in the basic model. Ag—0 andby— oo, these
the biomass is over-exploited without a return in the factors approach 1 and Egs. (16) and (17) revert to Egs. (11)
form of a high human population as in Scenario 2. and (12).

) o o The model now has seven dimensional parameters,(

— Scenario 4 (variation of r): Unde.r varlat|on_ of' the k,m,r, bp, by) and three dimensions ([B], [H], [T]). Hence
growth rate of the human population per unit biomasShere are four independent dimensionless groups. With this
surplus, equilibrium point B does not change (see prop-many narameters, analysis is greatly helped by normalising
erty 4, above) but there is an increase in the amplitudehe model rigorously to a dimensionless form. (This was not
of the decaying oscillations with which the system ap- yone in the foregoing analysis of the basic model: the di-
proaches this point. Hence, increase-aficreases the  angionless approach provides a more concise description
tendency of the system to exhibit “boom-bust” oscilla- ¢ the expense of the need for careful interpretation when pa-
tions. A similar trend is evident with increasirgal- 5 meters appear in both dimensionless groups and scales, as
thoughin that case there is also a shift in the equilibrium;ysirated below). Dimensionless versions of the model vari-
point as noted in the previous paragraph. ablesb, h and are defined asi=b/bscale x2=h/ hscale@nd

§=t [ tscale Wherebscale hscale@ndiscaieare scales to be con-

The oscillatory behaviour of this simple model (especially X
. . structed from the externally specifed parameters. They are
at highc andr values) echoes the hypothesis of Flannery ) . S . .
chosen as followsbgcge is the equilibrium biomass in the

(1994) that when hum_ans move into a previously unoccu absence of a human populatitaee=b@4=(p,/k)—bp, SO
pied ecosystem, the biosphere-human system undergoes gn S . . SN
e : e atx1=1 for the equilibrium biosphere without utilisation;

initial rapid exploitation phase, a resource crash accompa- . : i
. . . . . hscale IS Set ashscale=rbscale because: is the obvious pa-
nied by rapid decrease in the human population, and finally o . 1 i
an eauilibration rameter with dimension [H B'] for relating the scales for
q ’ h andb; andzscaleis chosen as /k, the intrinsic biospheric

time scale. With these choices, the dimensionless biomass,
4 Biosphere-human interactions: extended model human population and time are

b b
= , X2 = , §= kt (18)
p/k—bp r(p/k—bp)
The above basic two-equation model of biosphere-human inThe four independent dimensionless groups are chosen as
teractions is open to several criticisms (other than those as- A
sociated with the extreme idealisation to just two state vari-,, ™ rm bp a4y = b2 (19)

) ) = , V= —, = =
ables). Two of the main ones are: (1) the primary produc- chQA Ko T oA by

tion p is assumed to be constant at all levels of the biomassl-he definition of U reverts to that for the basic model
b, whereas production is actually limited (approximatelyli_n- (Eq. 13) asbp—0, and the definition oV is identical to
early) byb at lowb, and saturates to a constant value at hlghthat for the basic model. Substituting these dimensionless

b; z;l)nd (2) the har\ll_es_t flgxbh iTI assumed iln thle basichmod_el variables into Eqgs. (16) and (17), the dimensionless form of
to be resourced limited at all resource levels, so there is . ovtended model is found to be:

no resource level (no matter how large) at which the harvest

4.1 Model formulation X1

flux saturates with respect fo To investigate the effect of ~4*1 _ A+ayx - Vxixz (20)
these possible limitation and saturation attributes of the pro-ds x1+a1 U1+ az2x1)

duction and harvest fluxes, we extend the basic model fromdx2 Vixpxs

class POUL to class P2U2. —_— = Vxo (21)

ds U1+ azxy) B

The basic model (without resource saturation of production
and harvest) is recoveredas— 0 andb g — o0, or asa;—0

www.hydrol-earth-syst-sci.net/11/875/2007/ Hydrol. Earth Syst. Sci., 11, 875-889, 2007
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tion (g1=1), while all other choices give a resource-limited
production withg1=0 atx;=0 andg;=1 atx1=1.

4.2 Equilibrium points

Equations (20) and (21) have three equilibrium points at
whichdx1/ds=0 anddxz/ds=0:

PointZ: (x2%,x£%) = (0,0
PointA: (x2%4, x£4) = (1,0)

22
o o (22)
Point B: 1mal
0B _ U(l—apU—U)
X2 = VIl @ A—a0)+0)

Fig. 2. Production term in the dimensionless extended biospherePoints A and B are respectively a biosphere-only equilibrium

human modelgq(x1)=(1+ay)x1/(x1+a1), plotted againsk, for

aq ranging from 0 to 1.

x2
1

0.8

0.6

0.4

> A

Fig. 3. (top) Coexistence equilibriurtx
sionless extended biosphere-human model Wi, plotted on the
x1x2 plane withW varying parametrically from 0 to 1 along each
curve (left to right) andiq varying from 0 to 1 across curves (red:
a1=0; violet; a1=1). (bottom)Umax=1/(1+ap) as a function of

as.

anda;—0. The reason for definingo> as proportional to
1/by rather tharby is that it is more convenient to take the

0.2

Umax

0.8
0.6
0.4

0.2

0.4
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0.8
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1

1.5

1

2

OB OB
s X

a2

) for the dimen-

zero than the infinite limit in computations.

The production
(14a1)x1/(x1+a1), is plotted againstc; in Fig. 2 for a
range ofa; values. The choice1=0 gives constant produc-

Hydrol. Earth Syst. Sci., 11, 875-889, 2007

term

in Eq.

(20), g1(x1)

x1

and a biosphere-human coexistence equilibrium, similar to
those for the basic model (Eq. 14). Point Z is an additional
equilibrium point at the origin, with biomass and human pop-
ulation both zero. Evaluation of the resource condition index
W, defined by Eq. (15), gives

_ leB U w

— U =
1+ axW

W — - T
leA 1-aU

(23)

Hence, for the extended mod@l, is a function of the dimen-
sionless grou/, in contrast with the basic model for which
W=U. SubstitutingW for U in Eq. (22), equilibrium point
B can be written in the alternative, simpler form

wa-w
leB:W, XZQB=¥
Viar+ W)

Biophysically realistic equilibrium solutions can only ex-
ist in a subset of parameter space. First, all parameters
must be non-negative. Second, for the biosphere-only equi-
librium biomass §24) to be positive, it is necessary that
bscale>0, which requires thatp/k)>bp. This is a con-
dition on the dimensional parameters which becomes im-
plicit when the model is made dimensionless, being incor-
porated into a requirement dRcge Third, the equilibrium
biomass in a harvested system cannot exceed the equilib-
rium biomass without harvest, so biophysically realistic so-
lutions at equilibrium point B exist only wheW is between

0 and 1. From Eg. (23), this means thatld <Umax, Where
Umax=1/(14+a2). This is the counterpart for the extended
model of the requirementU <1 for the basic model.

Figure 3 shows the behaviour of equilibrium point B on
the x1x2 plane in response to variation of the parametgrs
(which varies 0 to 1 across curves) diidwhich varies para-
metrically along each curve from 0 4. This variation
of U means thatW varies from 0 to 1 along each curve.
The curves do not change as is varied, but the paramet-
rically varying U values along each curve change with
because of the dependence W@fax on az, shown in the
small lower panel of Fig. 3. The main panel of Fig. 3 as-
sumesV =1, the effect of increasing (decreasing)being

(24)
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Fig. 4. Flow fields onx1x> plane for the dimensionless extended
biosphere-human model, witlv=1, a1=a»>=0.5, and W=0.2
(top), 0.5 (middle) and 1.0 (bottom). The (horizontal) axis ex-
tends from 0 to 1.2, and the (vertical) axis from 0 to 0.5.

to shrink (stretch) the vertical axis. The most important as-
pect of this figure is the change in the behaviour of equi-
librium point B in the transition from the basic model (with
constant production aney=0) to the extended model (with
biomass-limited production ang, >0). As resource condi-
tion declines W —0 or U —0), the human population in the
basic model increases$”—1/V, h2%— (k/m)b28), but

in the model with biomass-limited productioxfB andh?8
both decline (more realistically) to zero.

4.3 Trajectories

A first glimpse into the dynamical behaviour of the ex-
tended model is provided in Fig. 4, in which the flow vector
(f1(x1, x2), fa(x1, x2)) =(dx1/ds, dx2/ds) is plotted on the
x1x2 plane for three differen® values, 0.2, 0.5 and 1 (other
parameters ar€ =1, a1=0.5, a2=0.5). ForW=0.2 and 0.5,
the oscillatory nature of the flow around equilibrium point
B is clear. ForW=1, point B coincides with point A, the
biosphere-only equilibrium.

www.hydrol-earth-syst-sci.net/11/875/2007/
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Fig. 5. Trajectories orx1x, plane for the dimensionless extended
biosphere-human model, with centre-case paramelgss0.5,
V=1, a1=0.5, a»=0.5. The initial condition is always1=1.0,
x2=0.2. Panels show (with colours proceeding through the rain-
bow from red to violet) the effect df) variation of W from 0.1 to

1; (b) variation of V from 0.5 to 2;(c) variation ofaq from 0 to 2;

(d) variation ofay from 0 to 2.

Figure 5 shows the response of trajectories to variation (in
turn) of W, V, a1 anday around the centre cad&=0.5,
V=1, a1=0.5 anda>=0.5. This is a high-level summary
of the response of the system to changes in external condi-
tions, but it needs care in interpretation because dimensional
parametersg, ¢, k, m, r, bp, by) affect both the dimension-
less groupsW or U, V, a; andaz) and also the normalising
scales Bscale scale@Ndiscaid. To infer the response of di-
mensional state variablels éndh) to changes in dimensional
external parameters with Fig. 5 and similar dimensionless
plots, it is necessary to consider the influences of the dimen-
sional parameters both on the dimensionless groups and also
on the scales with which the axes in Fig. 5 are normalised.
Keeping this in mind, the implications of Fig. 5 are as fol-
lows.

— Variation of W: Since W is a function ofU through
Eq. (23), variation oW from O to 1 occurs a¥ varies
from O to Umax. As this occurs, the equilibrium point
follows a trajectory consistent with Fig. 3. The rate of
convergence to equilibrium (the rate at which the am-
plitude of successive spirals diminishes) increases with
W and U, so that the system is more prone to strong
oscillatory behaviour at low than at hight. Since
U is defined in terms of dimensional parameters by
U=m/(cb2*)=m/(c((p/k)—bp)), variation ofU (and
W) can occur through variation of any @f m, ¢, k or
bp. Hence this variation is the counterpart for the ex-
tended model of all of scenarios 1, 2 and 3 for the basic
model. Variation ofp, k andb p also affects the equilib-
rium biomass scalé94=p/k—bp, but this affects the
scaling on both the1 andx, axes in a similar way.

Hydrol. Earth Syst. Sci., 11, 875-889, 2007
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Fig. 6. Instability threshold for the coexistence equilibrium point
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— Variation of az: Increasingi» occurs with progressively
more saturation of the harvest flux at high biomass, and
with decreasingy. For the parameter range shown in
Fig. 5, increase i causes a mild decrease in the os-
cillatory tendency of the trajectories while leaving the
equilibrium point ¢27, x2%) unchanged.

4.4  Stability

The stability of the equilibrium points for the extended model

is more subtle than for the basic model, for which the co-
existence equilibrium (point B) is stable for all parameter

choices. Stability analysis for the extended model leads to
the following conclusions (see details in Appendix B).

of the dimensionless extended biosphere-human model as a func- — Equilibrium point Z (the origin) is a saddle point with its

tion of a1, ap andW. Curves show the instability threshold on the
(W, ap) plane, witha1=1, 2, 4, 8, 16 (red to blue). Points above the
curves are unstable.

x2 vary w from 0.3 to 0.1 x2 vary a2 from 1 to 4

08 0.8
0.6
0.4

0.2

04
0.2

x1 x1
0.2 0.4 0.6 0.8 1

Fig. 7. Trajectories onx1x2 plane for the dimensionless extended

biosphere-human model illustrating the effect of crossing the insta-

bility threshold for the coexistence equilibrium (point B). Centre-
case parameters a¢=0.2, V=0.1, a1=2, ap=2. Left panel: two

trajectories withW=0.3 and 0.1 and other parameters at centre-case

values. Right panel: two trajectories withb=1 and 4, and other pa-

stable axis oriented along the axis, so point Z is un-
stable with respect to an infinitesimal variationdinand
stable with respect to a variation 2. Hence a small
positive perturbation in biomass from point Z causes
the biosphere to move away from point Z and approach
point A, whereas a small human population dies out as
it has nothing to live on.

Point A (the biosphere-only equilibrium) is a saddle
point with its stable axis in the; direction, as in the
basic model. In the absence of humans, the biosphere
approaches point A along theg axis from either direc-
tion. A small positive perturbation i or x, causes the
system to leave point A and approach point B.

— Point B (the coexistence equilibrium) can be either sta-
ble or unstable, depending on values®dfa; andas.

rameters at centre-case values. In each case the first (red) trajectohe condition for stability of point B is (see Appendix B):
is stable, and the second (blue) trajectory is unstable, entering a

limit cycle.

— Variation of V: This variation reflects essentially a vari-
ation in the growth rate. AsV increases the oscillatory

tendency of the model increases, as for the basic mod

(Fig. 1). With increasingV there is also a decrease
in x2%, the equilibrium dimensionless??, whereas
the equilibrium point 28, h28) for the basic model
is independent of andV (see Scenario 4 for the basic
model). The apparent difference arises becauap-

pears in the normalisation &% to x2” (see Eq. 18).

Variation of a;:Increasingz; occurs with increase @fp

Y >0 (stablg
Y <0 (unstable
with Y =1+ a1 — aiaz + 2a1a2W + a2W2

(25)

Hence, for givenW andaj, instability occurs wherm, ex-

e?eeds a threshold value:

1+m
a1 — 2 W — W2

This threshold value is plotted on th# (a2) plane in Fig. 6,

for several values of;. Instability occurs wherW is low
andaz andaj are high. Figure 7 shows how the system be-
haviour changes a# anday cross this threshold. When the
parameters are on the stable side of the threshold, trajectories
are attracted to point B, but for parameters on the unstable

az > d2Thresh = (26)

and thus the limitation of production at low biomass and giqe of the threshold, trajectories are repelled from point B
saturation at high biomass (Fig. 2). This has a strongynq enter a limit cycle in which oscillatory behaviour of the
tendency to increase the oscillatory behaviour of thesystem does not die away but continues for all time.

model, and also causes a reductionxle, the equi-

librium dimensionless 25, while x2* stays constant
(atrend also evident in Fig. 3).

Hydrol. Earth Syst. Sci., 11, 875-889, 2007

To conclude the analysis of the simple model of biosphere-
human interactions, we summarise four significant differ-
ences between its basic (constant-production) and extended
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(resource-limited production and utilisation) forms. First, the of complexity are reviewed by Raupach et al. (2005). Rela-
basic model has biosphere-only and coexistence equilibriuntive to sophisticated terrestrial biosphere models, Eqgs. (27)
points, but the extended model has an additional equilibriumand (28) are an extreme idealisation: all biomass carbon
point at the origin. Second, with declining resource condi- (leaf, wood, root) is lumped into a single storggoverned
tion (W), h increases in the basic model but (more realis- by an equation of the formdxy/dr=(NPP)—(litterfall), and
tically) declines toward zero in the extended model. Third, all litter and soil carbon into a single store governed
the extended model is more prone to strong oscillatory beby dx,/dt=(litterfall)—(heterotrophic respiration). Litterfall
haviour than the basic model, especially at [dw Fourth, in  and heterotrophic respiration are parameterised as first-order
the basic model the coexistence equilibrium is always stabledecay fluxeskix; and kox2. NPP is assumed to depend
but in the extended model it becomes unstable atWownd  on three factors: (1) a forcing terrfi(¢) representing the
with strong resource limitation of production and/or utilisa- fluctuating availability of light and water resources through
tion (largeas or a2). In these conditions, trajectories enter a weather and climate variability, (2) a factoy/(x1+g1) of
limit cycle of orbits about the coexistence equilibrium point, Michaelis-Menten form describing the limitation of NPP by
rather than eventually reaching it. lack of biomass in resource-gathering organs (leaves, roots),
and (3) a factoxy/(x2+¢2), also of Michaelis-Menten form,
describing the integrated symbiotic effects of soil carbon
5 Plant and soil carbon dynamics on plant productivity. This symbiotic factor accounts for
the overall beneficial effect of soil carbon on plant growth,
Carbon dynamics in the plant-soil system provides an ex+hrough processes such as nutrient cycling and improvement
ample of a producer-utiliser system which operates in pro-in sojl water holding capacity (often not included in sophisti-
cessor mode, as defined in the introduction. The producergated terrestrial biosphere models such as those surveyed in
are plants, through the assimilation of atmospherie @@  the references above). The parameiaepresents a (small)
biomass, and the utilisers are soil heterotrophic organism@roduction term that is not dependent .onandx,, for ex-
which feed off plant litter and respire the carbon back to theample generation of biomass from a long-term reservoir of
atmosphere as GO seed propagules. For the present purpesés assumed to
be a constant flux independent of external conditions as well
asxi andxo.
. . . . . Equations (27) and (28) are identical to the test model
The system is modelled using an idealised, two-equation repﬁsed in the OptiC (Optimisation Intercomparison) project

resentation with state variables for the stores of biomass car- : i i ;
bon (x1) and litter and soil carbornxf). The governing equa- (Trudinger et al., 2007; also http://www.globalcarbonproject.

tions are: org). The aim of OptIC is to compare several model-

' data synthesis (parameter estimation and data assimilation)

dxy X1 X2 approaches for determining parameters in biogeochemical

dr F() <X1 T q1> (xz T qz) + 51— k1 27) " models from multiple sources of noisy data. Equations (27)
and (28) are used as a simple test model which embodies

dxz features of a real biogeochemical model, together with gen-

dar kxy — kax (28)  erated data from model forward runs with added noise, for
which “true” parameters are known.

whereF (¢) is a forcing term describing the net primary pro-

duction (NPP)gz1 andq> are scales for the limitation of pro- 5.2  Equilibrium points and stability

duction by lack ofr1 andxy, respectivelyki andk; are rate

constants for the decay of andx,, respectively; and; is a We consider first the situation with steady forcidg;)=Fp.

component of the primary production which is independentSeeking the equilibrium points point§ at whichdxy/dt =

of bothx; andxz. We consider both the case wherér) is dx»/dt = 0, Eq. (28) shows that

independent of timeF (r)=Fp, and also the case whef&r)

5.1 Model formulation

is a random function of time. The model parametersqgare sz = xf)kl/kz (29)
q2, k1, k2, andsy, together withFy or parameters character-
ising F (1) as a random function. and Eq. (27) implies that? satisfies the cubic equation

These equations are a simplification the carbon dynamics
in typical terrestrial biosphere models, including models of j(x1)

2 3
. : . ) . = co+ c1x1 + c2xf +c3xy =0
global vegetation dynamics as in the DGVM intercompari- ! 1

son of Cramer et al. (2001), and the terrestrial biosphere com-/ ¢ q1g2kosy /kf

an i th 2 (30)
ponents of coupled carbon-climate models as in theli@ c1 | _ | ((giks + q2k2)s1 — quq2kikz)/ k3
intercomparison of Friedlingstein et al. (2006). Character- | ¢ | — (Fo — qik1 — qoko + 51)/ k1
istics of such terrestrial biosphere models at several levels\ ¢ -1
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Fig. 8. The cubicj(x1) defined by Eq. (30), with reference-case
parameter value$p=1, g1=1, go=1, k1=0.2, k=0.1, s1=0.01.
Solid red and blue lines show the effect of varying (red:

s1=0.01; blue: s1=0, with other parameters at reference-case val-
ues). Dashed orange (heavy) and yellow (light) lines show effect of

varying k1 (orange:k1=0.4; yellow: k1=0.5, with other parame-
ters at reference-case values). Left panel shows all zerpévgj.
Right panel is an expanded view showijg1) near the origin.

equilibrium points are of the form

Thus the
xQ=(le,lek1/k2), where le is a solution of the cu-

bic equationy (le)=O. This equation has either one or three
real roots, yielding either one or three equilibrium points.

At least one root must be positive3>0) for a nontrivial,
biophysically meaningful solution to exist. The cubitx1)

is plotted in Fig. 8 with reference-case parametggs-1,
g1=1, g2=1, k1=0.2, k,=0.1 (the red curve; other curves
are described below).

M. R. Raupach: Resource production and utilisation

greater than zero, then there are two stable, positive
equilibrium points (leA andleC) on either side of one
unstable point;(lQB). The two dashed curves in Fig. 8
show this outcome occurring &g is increased from
0.2 to (respectively) 0.4 and 0.5, with other parame-
ters held at reference-case values. In this ca$é,

is the “active-biosphere” point as before, a;nﬁA is a
“dormant-biosphere” equilibrium.

3. If 51=0, then there is a stable equilibrium point (A)
of Egs. (27) and (28) at the origin, in addition to
the “active-biosphere” equilibrium point’“ >0. (Ex-
istence of this root is assured becauge-0 implies
co=0, 50x1Q=O is a root ofj (x1); stability follows be-
causedj/dxi=cy at x1=0, and whens;=0, we have
c1= — q192k2/ k1, which is negative for positive values
of g1, g2, k2). The equilibrium point at the origin cor-
responds to “extinction” of the biosphere in this simple
model system, since once the system reaches the origin
with s1=0, it remains there for all subsequent time, no
matter what the forcing"(z). The blue curve in Fig. 8
shows this case.

In addition to these three options, there are other possibil-
ities. For some parameter combinations the cylgiq) has
no positive or zero solutions (that is, all crossings of the

When the equilibrium points are determined by the rootsaxis occur when; <0), so these parameter combinations are
of a single equation, it is not necessary to appeal to the Janot biophysically realisable. Also, ifi=0 and eithey;=0
cobian and its characteristic equation to determine stabilityor 4,—0, the model relaxes to a simpler form a&c1) is of

A sufficient criterion is that an equilibrium pOi[leQ is sta-
ble if dj/dx1<0 atx1:x1Q, and unstable otherwise. Since
j(xl)z—xf+. .., it is clear from the geometry (see Fig. 8)

that if there is just one equilibrium point then it is stable,

lower degree than a cubic. In these cases there can be only
one stable equilibrium point.

Figure 9 shows how the three main kinds of behaviour
can all arise as parameters are varied around the reference

whereas if there are three equilibrium points, say A, B, Ccase. Each panel of this figure superimposes plotleof

with equilibriumxy vaIueleQA, leB andleC in increasing

order, then2” andx2€ are stable and2” is unstable. For
all biophysically admissible parameter choicgéy1) has at
least one stable root with;>0. This will be designated
anlQC, the largest stable equilibrium value of, and can
be identified as a “healthy” or “active” equilibrium state of

(red),sz (orange), Detl (green),—Tr J (blue) and the dis-
criminant(D=(Tr J)°—4 DetJ), at a particular equilibrium
point (A, B, C, in different columns), and examines the re-
sponse of these quantities to variation of a parametek{,

k2, q1, q2, in different rows). No lines are plotted where
real equilibrium solutions do not exist. The trace and the de-

the system. It is important to understand whether and wher€rminant ofJ show the stability of the point, since Dat
there is another biophysically attainable and stable equilib-2nd—Tr J must both be positive for stability, from Eq. (9).

rium state, equilibrium point A, witbleAzo. This depends
on the parameter choices, particularly f@r There are three
main possible kinds of behaviour, as follows.

1. If s17>0 and the cubicj(x1) crosses ther; axis only
once, then there is only one equilibrium poirrﬁc, the

The discriminant shows whether local trajectories around the
point are non-spiral or spiral, from Eq. (10). The picture is
rich: the “active-biosphere” equilibrium point C exists as a
stable node (non-spiral trajectories) for nearly all parameter
choices. Points A and B form a pair, in that neither exists
or both exist. When both exist, point A is always stable and

“active-biosphere” point. It is always stable, so the sys- point B always unstable. The discriminant is always posi-
tem must approach it under steady forcing. This is thelive where points exist, indicating that spiral behaviour is not

outcome with the reference-case parameters, as showpbserved in this model over the slices of parameter space sur-

by the red curve in Fig. 8.

2. If s9>0 andj(x1) crosses the axis three times, all

Hydrol. Earth Syst. Sci., 11, 875-889, 2007

veyed in Fig. 9.
The non-spiral nature of the trajectories in this model is
further illustrated in Fig. 10, where trajectories are plotted

www.hydrol-earth-syst-sci.net/11/875/2007/
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Fig. 9. Variation ofle/lo (red),x2Q/10 (orange), 10 Del (green), -Trd (blue) and the discriminantD=(Tr J)2—4 DetJ) (violet) at
equilibrium points A, B, C (columns) for the two-equation model of plan) @nd soil ¢2) carbon dynamics, Egs. (27) and (28), with steady
forcing (F (1)=Fp) and reference-case parameter valtigs 1, g1=1, go=1, k1=0.2, k»=0.1, s1=0.01. Rows 1 to 5 show effect of varying
s1, k1, k2, q1, g2 about reference-case values.

by numerically integrating Eqgs. (27) and (28) for a number resents the effects of fluctuating resource (water and light)
of parameter choices. In all cases the trajectories decay toavailability on the net primary productivity of the system.
wards equilibrium, rather than spiralling towards it as for the When F (¢) is an externally prescribed random process, then
biosphere-human model (Fig. 5). This is consistent with thethe solutionsr1(¢) andxz(¢) are also random processes.
behaviour of the discriminant (see Fig. 9 and Eq. (10)). An  The forcing F(r) is prescribed here by taking its nor-
equivalent statement is that at all stable equilibrium points ofmalised logarithm i:(F (t)/ Fo), where Fp is a measure of
the model, all eigenvalues dfare real and negative. This the magnitude ofF (1)) to be a Markovian, Gaussian ran-
is in accord with the finding of Bolker et al. (1998) that dom processn(t) with zero mean, standard deviatiap,

the eigenvalues of the Century plant-soil carbon model areand time scalef;,. This process, known as the Ornstein-
real and negative, so that the model shows no oscillatory beyhlenbeck process (van Kampen 1981), is fundamental in

haviour. the theory of random processes; it has an exponential auto-
correlation function (ex@-|t|/ T,,), wherer is the time lag)
5.3 Random forcing and a power spectrum with high-frequency roll-off propor-

tional to (frequency)?. In finite-difference form, at times

To this point there has been no time-dependent forcing apWith incrementsAz (<<T,,), the processes (1;) and F (1;)
plied to any model considered. This section investigates th@PeY

effect of random forcing (¢), or “noise”, on the system de-

scribed by Eqgs. (27) and (28). Random forcing here rep-m; = am;_1 + Bon i F (t;) = Foexp(m;) (31)
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of plant (c1) and soil ) carbon dynamics, Egs. (27) and (28), 25 {jj [ NLM& ) 1 ML
with steady forcing £ (1)=Fgp) and reference-case parameter val- 200 400 600 800 1000
ues Fp=1, q1=1, ¢»=1, k1=0.2, k»=0.1, s7=0.01. The initial
condition is alwaysx1=1.0, xo=1.0. Panels show the effect of ” k1.0.4,51:0
(a) variation ofs1 from 0 to 0.1;(b) variation ofk, from 0.05 to s
0.2; (c) variation ofgq from 0 to 1;(d) variation ofg, from 0 to 128
1. All these trajectories converge to the “active” equilibrium point, 75 ih
(£ oc. QC 28 m ‘ ‘ ‘
200 400 600 800 1000
Forcing
wherea = exp(—At/T,), B=(1 — «?)¥/2, and¢; is a Gaus- Z
sian random number with zero mean and unit variance. This 2
formulation ensures thaf'(;) is always positive, with a 3]
mean determined byy (in fact the mean ofF (1;) is a lit- T
tle larger thanFy because of nonlinearity). The parameters 20 400 600 800 1000
determiningF (¢) are Fo, o, andT,, (but notAz, which is
merely a discretisation interval). Fig. 11. Time series ofx1(¢r) (red) andxx(r) (blue) for the

. . . two-equation model of plantcg) and soil &) carbon dynamics,
Figure 11 shows time seriesof(¢) (red) andxa(¢) (blue), Egs. (27) and (28), with parameteyg=1, go=1, k»=0.1, and

calculated using a random forcidyt) with Fo=1, 0,,=0.5, (k1 s1) = (0.2,0.01), (0.4,0.01), (0.5,0.01), and (0.4,0) (top to sec-

T,»=1, and a computational time stefr=0.1 time units.  ond bottom panels). Parameters for the top panel correspond to the

The forcing functionF (¢) is shown in the bottom panel. In  reference case. The bottom panel shows the forcing F from

the top panel, the parameters are set at reference-case values. (31) with Fo=1, 6,,=0.5, T;;,=1.

(see figure caption). The behaviour of the system is (not sur-

prisingly) thatx1(¢) andxz(¢) fluctuate around the “active-

biosphere” equmbrlum point for the system with steady forc- system flips randomly between these two states, fluctuating

ing, (xQC, 2y This is an example of the first kind of be- around one of these points and then the other. The flips are

haV|0ur descnbed above. For these parameter values there iiggered by the interaction between the forcifg:), the

only one stable equilibrium point (C), so the system under-state(x1(¢), x2(¢)) and the basin of attraction for each equi-

goes excursions around point C under random forcing. librium point. If the system is in the active state (fluctuating
The next two panels in Fig. 11 show the effects of increas-near point C) and a “drought” occurs, represented by a period

ing k1 from its reference-case value of 0.2 to 0.4 and 0.5, rewhenF (¢) is anomalously low, then the system can flip into

spectively. These parameter values illustrate the second kinthe dormant state and fluctuate around point A. Conversely,

of behaviour. There are now two stable equilibrium points, A @ period of anomalously high () can flip the system from

and C, with C being the “active-biosphere” point and A being Point A to point C. It is not visually apparent what aspects

a “dormant-biosphere” point close to, but not at, the origin. of F (¢) cause the flip. This aspect of the model behaviour is

(The cubic curveg (x1) which determine equilibrium points ~ reminiscent of the blooming of desert ecosystems in response

A and C for these parameter values are shown as the dashé@ rain, interspersed with long periods of dormancy.

lines in Fig. 8). Under the influence of random forcing the  The third kind of behaviour is illustrated by the fourth
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panel in Fig. 11. In this casg=0 andk;=0.4 (with other limited by biospheric resources)(at low » and saturate at
parameters at reference-case values), so the fourth panel lBghb. The properties of these two variants of the model are
the same as the second except for the changefodm 0.01  somewhat different, but the following aspects are common
to 0. The effect of this change is that equilibrium point A is to both: the model produces a “biosphere-only” equilibrium
now at the origin, so the first flip of the system from point C which is stable in the absence of humans, and a “coexistence”
to point A leads to “extinction”. Recovery from point A is equilibrium to which the system is attracted whenever the ini-
impossible under any forcing witih =0. tial human population is greater than zero. Trajectories in the
The random, noise-driven flips between locally stablebh plane tend to the coexistence equilibrium point from any
states evident in Fig. 11 are not the same as dynamical denitial state withz>0, either without or with oscillatory be-
terministic chaos, for which a paradigm is the 3-dimensionalhaviour manifested as decaying spiral orbits. The properties
Lorenz system (Drazin, 1992; Glendinning, 1994). Deter-of the coexistence equilibrium can be quantified in terms of
ministic chaos is exhibited by nonlinear deterministic sys-a “resource condition indexW(), the ratio of the biomasses
tems with solutions which are aperiodic, bounded and sensiat the coexistence and biosphere-only equilibria. However,
tively dependent on initial conditions, meaning that nearbythere are also some significant differences between the basic
trajectories separate rapidly in time (Glendinning, 1994,and extended forms of the model: four important ones are
p291). These properties are inherent in the system equdd) an additional equilibrium point at the origin in the ex-
tions themselves, rather than being imposed by external rartended model; (2) different responses to declining resource
dom forcing or noise. There is an ongoing debate aboutondition (%), the extended model being more realistic; (3)
whether external noise can induce chaos in ecological sysa greater tendency to strong oscillatory behaviour in the ex-
tems with otherwise stable equilibrium points. Dennis ettended model than in the basic model; and (4) the possibility
al. (2003) argued that this is not possible, while Eliner andin the extended model that the coexistence equilibrium is un-
Turchin (2005) argued that the boundary between determinstable, leading to limit cycles at loW with strong resource
istic and noise-induced chaos is more subtle, exhibiting redimitation.
gions of “noisy stability”, “noisy chaos”, “quasi-chaos” and  An idealised model of plant and soil carbon dynamics is
“noise-domination” depending on the noise level and theused as an example of a processor system. The model formu-
dominant Lyapunov exponent (the real part of the fastestlation includes a production term with a resource-limitation
growing eigenvalue). The debate appears to depend on thdependence on producer (plant carhoy),level and a sym-
precise definition of “chaos”. It is certainly important to dis- biotic dependence on utiliser (soil carbes) level, together
tinguish between endogenous, deterministic chaos as in theith a small constant production termy) which is inde-
Lorenz system and noise-induced chaos as in Fig. 11, bependent of bothx; andx;. The model has three equilib-
cause noise-induced chaos disappears as the noise level go@gm points: a stable “active-biosphere” equilibrium, a stable
to zero whereas deterministic chaos does not. “dormant-biosphere” equilibrium, and an unstable equilib-
rium point between them. The dormant-biosphere equilib-
rium is biophysically realisable only in a subset of parame-
6 Summary and conclusions ter space. If the production term is zero, then the stable,
dormant-biosphere equilibrium (if parameter values allow it
This paper has analysed simple models for “production-to exist) is at the origin and corresponds to an extinction point
utilisation” systems, reduced to two state variablesforthe system. All stable equilibria for this plant-soil carbon
(x1(r), x2(t)) for producers and utilisers, respectively. Two model are nodes, that is, they have negative, real eigenval-
modes have been distinguished: in “harvester” systems, redes so that trajectories approach them without oscillatory be-
source utilisation involves active seeking on the part of thehaviour.
utilisers (as in prey-predator systems, for example), while in  The plant-soil carbon model has been used to study the
“processor” systems, utilisers act as processors which paseffect of random forcing of production (for example by
sively receive material from the production part of the sys-weather and climate fluctuations). With parameter choices
tem. The formal expression of this distinction is that the util- that allow the existence of both the active-biosphere and
isation flux (g2) depends directly on the utiliser component dormant-biosphere equilibria, the model can flip between
x2 in harvester systems, for examplegas=poxox1, whereas  them under the influence of random forcing, producing a bi-
g2 is not dependent ok in processor systems. modal behaviour in which the model fluctuates alternately
An idealised model of biosphere-human interactions, con-around these two very different equilibrium states. It is im-
sisting of two coupled equations for the time evolutions of portant to distinguish this kind of externally-driven transition
biomass (r) and human populatiok(r), provides an exam- between states from Lorenzian chaos (Glendinning, 1994).
ple of a harvester system. This model has been analysed ilm the Lorenzian system, random flips between states (repre-
two forms, a basic form in which production is constant and sented by the two lobes of the Lorenz attractor) are endoge-
harvest is simply proportional tbz, and an extended form nous properties of the system. In the present example, flips
in which the production and harvest fluxeg,( g2) are both  between states occur as the system crosses a threshold under
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the influence of external forcing, although the interactionsgiven by Eq. (22). In terms of the resource condition index
between state, trajectory and forcing make it hard to form aWw defined by Eq. (23), the Jacobian of the model is:
simple rule for when the flip will occur.

Finally, we have highlighted a basic difference between adia) 4 _ VddeWiy _ ViteWixn

_ (x1+a1)? W (14ax1)? W (1+azx1) B1
processor and harvester forms of two-component producer‘J = V (A+asW)xp V(x—W) (B1)
utiliser systems as introduced at the start of this paper: har- W (L+azx1)? W(1+azx1)

vester systems may exhibit oscillatory behaviour wherea

processor systems do not *The determinant and trace &t each equilibrium point are:

Z: DetJ=—a—V1, TrJ=a—11—V

Appendix A _ Vw—1)
A: DetJ = W(d+a1)(1+az)’

Stability properties of the basic biosphere-human TrJ = — YW-Dd+a)+W(l+ap) B2

model = W(1+ay) (I+az) (B2)
B: DetJ = Y- W) __

The basic biosphere-human model, Egs. (11) and (12), has (Wetay)d+aW)

two equilibrium points (A and B) given by Eq. (14). From Tri=— W<l+ara1azJ2r2a1azW+azW2)

Egs. (9) and (10), the stability properties of an equilibrium (Way)*(I+azW)

point (b¢, h?) are characterised by the determinant andysing Egs. (9) and (10) and the existence conditions
trace of the Jacobiad, evaluated at that point. For this o<w <1, 0<V, 0<as and O<a» for biophysically admissible

model, the Jacobian is parameters, the following stability properties are obtained for
—k—h —cb ) the three equilibrium points. At point Z (the origin), Dikts
J = (A1) always negative and Tris of either sign. Therefore, point Z
( rch r(ch —m) is a saddle point. Inspection of Egs. (20) and (21) (or evalu-
In terms of the dimensionless grougisandV, the determi-  ation of the eigenvectors) shows that point Z is unstable with
nant and trace af at the two equilibrium points are: respect to an infinitesimal variation in and stable with re-
spect to a variation imy, so the stable axis of the saddle point
A: DetJ = "ZLIL]"D Trd=k (W - 1) at the origin is oriented along the axis. At point A (the
_ 12V A-U) ) (A2) biosphere-only equilibrium), Del is always negative and
B: Detd =—F3—, Trd=—g7 Tr J is always negative. Hence this point is a saddle point.

Hence, for all biophysically admissible parameter choices!tS Stable axis is oriented along the (biomass) axis, as in
(0<U<1 and G<V), Det J<0 at point A and Det)>0, the basic model. At point B (the coexistence equilibrium),
Tr J<O0 at point B. Evaluating stability with Eq. (9), point DetJ is always positive and Td is of either sign. Hence
Ais a saddle point and point B is stable. this point is either stable (ifTr J)<O0, evaluated at point B)

The two eigenvalues at each equilibrium point are or unstable (if(Tr J)>0). This leads to the criteria given in
Egs. (25) and (26).

A a=—k, r=kVU1-1 3)
A . . . . .
. ok Acknowledgements. Discussions with N. J. Grigg, C. M. Trudinger,
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negative real parts, consistent with stability. Point B is a sta-
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stable node otherwise.

References
Appendix B Bolker, B. M., Pacala, S. W., and Parton, W. J.: Linear analysis
B ) ) ] of soil decomposition: Insights from the century model, Ecol.
Stability properties of the dimensionless extended Appl., 8, 425-439, 1998.
biosphere-human model Boyden, S.: The Biology of Civilisation, p. 189, University of New

) ) _ South Wales Press Ltd., Sydney, 2004.
The dimensionless extended biosphere-human modeBridgman, P. W.: Dimensional Analysis, p. 113, Yale University

Egs. (20) and (21), has three equilibrium points (Z, A, B)  Press, New Haven, CT, 1931.

Hydrol. Earth Syst. Sci., 11, 875-889, 2007 www.hydrol-earth-syst-sci.net/11/875/2007/



M. R. Raupach: Resource production and utilisation 889

Casti, J. L.: Five Golden Rules, p. 235, John Wiley and Sons, Inc.,Gurney, W. S. C. and Nisbet, R. M.: Ecological Dynamics, p. 335,

New York, 1996. Oxford University Press, Oxford, 1998.
Casti, J. L.: Five More Golden Rules, p. 267, John Wiley and Sons,Huntley, H. E.: Dimensional Analysis, p. 158, Dover Publications,
Inc., New York, 2000. New York, 1967.

Dennis, B., Desharnais, R. A., Cushing, J. M., Henson, S. M., andKot, M.: Elements of Mathematical Ecology, pp. 1-453, Cambridge
Costantino, R. F.: Can noise induce chaos?, Oikos, 102, 329— University Press, Cambridge, 2001.

339, 2003. Lotka, A. J.: Undamped oscillations derived from the law of mass
Diamond, J.: The Rise and Fall of the Third Chimpanzee, p. 360, action, J. Am. Chem. Soc., 42, 1595-1599, 1920.
Vintage, London, 1991. Raupach, M. R., Barrett, D. J., Briggs, P. R., and Kirby, J. M.: Sim-
Diamond, J.: Guns, Germs and Steel, p. 480, Vintage, London, plicity, complexity and scale in terrestrial biosphere modelling,
1997. in: Predictions in Ungauged Basins: International Perspectives
Diamond, J.: Collapse, p. 575, Allen Lane, Penguin Group, New on the State-of-the-Art and Pathways Forward (IAHS Publica-
York, 2005. tion No. 301), edited by: Franks, S. W., Sivapalan, M., Takeuchi,
Drazin, P. G.: Nonlinear Systems, p. 317, Cambridge University K., and Tachikawa, Y., 239-274, IAHS Press, Wallingford, 2005.
Press, Cambridge, 1992. Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu,
Ellner, S. P. and P. Turchin: When can noise induce chaos and why Q., Pak, B. C., Reichstein, M., Renzullo, L., Richardson, A. E.,
does it matter: a critique, Oikos, 111, 620-631, 2005. Roxburgh, S. H., Styles, J. M., Wang, Y. P., Briggs, P. R., Barrett,
Flannery, T. F.: The Future Eaters, p. 423, Reed Books, Melbourne, D. J., and Nikolova, S.: The OptIC project: an intercomparison
1994, of optimisation techniques for parameter estimation in terrestrial

Fletcher, C. S., Miller, C., and Hilbert, D. W.: Operationalizing re-  biogeochemical models, JGR Biogeosci., in press, 2007.
silience in Australian and New Zealand agroecosystems. 2006van Kampen, N. G.: Stochastic Processes in Physics and Chemistry,
Pocklington, York, UK, International Society for the Systems  p. 419, North-Holland, Amsterdam, 1981.
Sciences. Proceedings of the 50th Annual Meeting of the ISSS\olterra, V.: Variazioni e fluttuazioni del numero d'individui in
Sonoma State University, Rohnert Park, California, USA. specie animali conviventi, Mem. Accad. Naz. Lincei, 2, 31-113,
Glendinning, P.: Stability, Instability and Chaos: an Introductionto  1926.
the Theory of Nonlinear Differential Equations, pp. 1-388, Cam- Wirtz, K. W. and Lemmen, C.: A global dynamic model for the
bridge University Press, Cambridge, 1994. neolithic transition, Clim. Change, 59, 333-367, 2003.

www.hydrol-earth-syst-sci.net/11/875/2007/ Hydrol. Earth Syst. Sci., 11, 875-889, 2007



