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Abstract. This paper analyses simple models for
“production-utilisation” systems, reduced to two state vari-
ables for producers and utilisers, respectively. Two modes
are distinguished: in “harvester” systems the resource util-
isation involves active seeking on the part of the utilisers,
while in “processor” systems, utilisers function as passive
material processors. An idealised model of biosphere-human
interactions provides an example of a harvester system, and
a model of plant and soil carbon dynamics exemplifies a pro-
cessor system. The biosphere-human interaction model ex-
hibits a number of features in accord with experience, in-
cluding a tendency towards oscillatory behaviour which in
some circumstances results in limit cycles. The plant-soil
carbon model is used to study the effect of random forc-
ing of production (for example by weather and climate fluc-
tuations), showing that with appropriate parameter choices
the model can flip between active-biosphere and dormant-
biosphere equilibria under the influence of random forcing.
This externally-driven transition between locally stable states
is fundamentally different from Lorenzian chaos. A be-
havioural difference between two-component processor and
harvester systems is that harvester systems have a capacity
for oscillatory behaviour while processor systems do not.

1 Introduction

We are by now accustomed to the idea of Planet Earth as a
single entity including interacting geophysical, biotic and hu-
man constituent systems. Among the attributes of the earth
system and its components is a propensity for autonomous
dynamism. Parts of the earth system follow temporal tra-
jectories which can exhibit a wide range of behaviours –
growth, decay, quasi-periodic cycling, relatively sudden flips
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between alternative states, and apparently random fluctua-
tions. These dynamic behaviours are sometimes easily at-
tributable to external drivers, but often they are not. Exam-
ples include climate phenomena from interannual variability
to ice ages; the dynamics of ecosystems, including popu-
lation cycles, explosions and crashes; and the dynamics of
social-ecological systems involving humans, such as boom-
bust cycles and societal collapses associated with resource
exploitation and depletion.

This paper focuses on the dynamical properties of parts
of the earth system which are governed by the linked pro-
duction and utilisation of resources. The broad aim is to
identify basic system attributes which underlie commonly
observed dynamical behaviours such as cycles and thresh-
old transitions. For this purpose, production-utilisation sys-
tems will be idealised to just two components or state vari-
ables, respectively describing the producers and the utilis-
ers. Within this framework, two (not always disjoint) modes
for the production-utilisation interaction will be contrasted.
In the first mode, resource utilisation occurs by active, often
goal-seeking behaviour on the part of the utilisers; such sys-
tems can be characterised as “harvester” systems. Examples
include prey-predator systems and (at a high level of abstrac-
tion) the biosphere-human system. In the second mode, the
utilisers process resources which they receive largely pas-
sively, to achieve closed material cycles (through loops in-
cluding the world outside the system under study) or to pre-
vent accumulation of waste in the production side of the sys-
tem. Examples include water, carbon and nutrient cycling in
terrestrial systems, and the production and disposal of goods
in human societies. Such systems can be characterised as
“processor” systems. It will be shown by example how these
two modes for production and utilisation lead to different
characteristic dynamical properties.

For this comparative exercise, two systems are studied
with highly simplified models consisting of just two equa-
tions – one for producers, one for utilisers. An idealised
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model of biosphere-human interactions is used as an exam-
ple of a harvester system, and a similarly idealised model
of plant and soil carbon dynamics provides a model of a pro-
cessor system. The formal approach is based on the theory of
dynamical systems, drawing from a well-established body of
applied mathematics (e.g. Drazin, 1992; Glendinning, 1994)
and particularly from applications in mathematical ecology
(e.g. Gurney and Nisbet, 1998; Kot, 2001).

The plan of the paper is as follows. In Sect. 2, some nec-
essary aspects of dynamical systems theory are summarised
briefly. Sections 3 and 4 apply this general framework to a
two-equation model of biosphere-human interactions, show-
ing how even this minimal model can reproduce features of
biosphere-human systems which are recognisable from qual-
itative experience. In Sect. 5, a comparable analysis is made
of a two-equation model for interactions between plant and
soil carbon. Section 6 draws conclusions.

2 Dynamical systems theory

Consider a producer-utiliser system with two state variables
(x1,x2), governed by

dx1/dt = f1(x) = g1(x) − g2(x) − k1x1

dx2/dt = f2(x) = rg2(x) − k2x2
(1)

wherex1(t) is the density of resource producers,x2(t) the
density of utilisers,g1(x) is the primary production flux into
thex1 pool,g2(x) is the resource utilisation flux from thex1
pool into thex2 pool, r is the efficiency for conversion ofx1
into x2, ki (i=1, 2) is a first-order decay rate, andfi(x) =
dxi/dt is the net input flux to thexi pool. The equations
are coupled by the dependence of the fluxesg1(x) andg2(x)

on both state variables (x1, x2). The equation system can be
written in matrix form as

dx/dt = f(x) = R · g(x) − K · x

x(t) =
(

x1(t)

x2(t)

)

, f(x) =
(

f1(x)

f2(x)

)

,

g(x) =
(

g1(x)

g2(x)

)

, R =
(

1 −1
0 r

)

, K =
(

k1 0
0 k2

)

(2)

Models are needed for the production and utilisation
fluxes,g1(x) andg2(x). For the production flux, some com-
mon possibilities are:

model P0: g1 (x) = p1

model P1: g1 (x) = p1x1

model P2: g1 (x) = p1

(

x1
x1+q11

)

model P3: g1 (x) = p1

(

x1
x1+q11

) (

x2
x2+q12

)

(3)

In model P0 the production fluxg1 is constant, while in
model P1 it is proportional to the producer biomassx1. In

model P2,g1 has a saturating dependence onx1 of Michaelis-
Menten or Holling Type II form (Gurney and Nisbet, 1998)
with scaleq11, so that production depends linearly onx1
whenx1<<q11 and is independent ofx1 whenx1>>q11. In
model P3,g1 has a saturating dependence onx1 as for model
P2, together with a similar dependence on the utiliser as a
symbiont,x2, with scaleq12.

For the utilisation fluxg2(x), common possibilities are

model U0: g2 (x) = p2x1

model U1: g2 (x) = p2x2x1

model U2: g2 (x) = p2x2

(

x1
x1+q21

)

(4)

In model U0,g2 is independent of utiliser level (x2) and de-
pends only on resource availability (x1). Models U1 and
U2 both assume a dependence ofg2 on x2. The notation in
Eqs. (3) and (4) is thatpi is a scale for the overall magnitude
of the fluxgi , andqij is a scale for the modification ofgi by
state variablexj (soqij appears in the equation forgi and has
the dimension ofxj ).

The distinction between two-component harvester and
processor systems, as characterised above, can be made for-
mal through the model forg2(x). In processor systems,
where the utilisers receive recources passively,g2(x) is in-
dependent ofx2 and depends only onx1 (as in model U0);
in harvester systemsg2(x) depends on bothx1 andx2 (as in
models U1 and U2).

A particular model is specified by the parameterisa-
tions for the production and utilisation fluxes from the
above possibilities (or others). For instance, the well-
known Lotka-Volterra equations (dx1/dt=p1x1−p2x2x1,
dx2/dt=p2x2x1−k2x2) for predator-prey dynamics (Lotka
1920; Volterra, 1926), are of the class P1U1. Several cases,
including P0U1 and P2U1, are analysed by Gurney and Nis-
bet (1998) and Kot (2001).

The solution of the system is a trajectoryx(t) in state (x)
space, from a given initial statex(0) at timet=0, with given
models forg1 andg2 and with given parameters (r, ki , pi ,
qij ,. . . ). Much of the behaviour of this solution is determined
by the equilibrium points (xQ, denoted by a superscriptQ) at
whichdx/dt=f(x)=0, and by the local stability of the trajec-
tories around these points (Drazin, 1992; Glendinning, 1994;
Casti, 1996, 2000). The existence of equilibrium points is
governed by the nonlinear equation

f
(

xQ
)

= R · g
(

xQ
)

− K · xQ = 0 (5)

which is satisfied whenxQ is an equilibrium point. The sta-
bility of xQ is determined by the linearised system

dx′/dt = J · x′ (6)

whereJ=Jij is the Jacobian matrix (∂fi/∂xj ) of the vector
function f(x), andx′=x−xQ is a perturbation aboutxQ. The
eigenvalues (λi) of J are solutions of the characteristic equa-
tion Det(J−λI)=0. If all eigenvalues ofJ (evaluated atxQ)
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have negative real parts, thenxQ is stable (so that trajectories
nearxQ converge toxQ ast → ∞ ), and if at least oneλi has
a positive real part, thenxQ is unstable (so that an infinitesi-
mal disturbance fromxQ causes trajectories to diverge from
xQ ast→∞). The imaginary parts ofλi determine whether
the solutions nearxQ have oscillatory components.

For the two-dimensional system of Eq. (1), the Jacobian is
(with ∂jgi=∂gi/∂xj ):

J =
(

∂1g1 − ∂1g2 − k1 ∂2g1 − ∂2g2
r∂1g2 r∂2g2 − k2

)

(7)

For this (or any) two-dimensional system, the characteristic
equation for the eigenvalues ofJ is

λ2 − (Tr J) λ + (Det J) = 0 (8)

It is well known (Drazin 1992 p. 170–176) that for two-
dimensional systems the main options for the stability of an
equilibrium pointxQ are as follows: if both roots (λ1,2) of
Eq. (8) are real and negative (positive), thenxQ is a sta-
ble (unstable) node: nearby trajectories converge to (diverge
from) xQ along non-spiralling curves. If both rootsλ1,2 are
complex with negative (positive) real parts, thenxQ is a sta-
ble (unstable) focus or spiral point: nearby trajectories spiral
inward to (outward from)xQ. If the rootsλ1,2 have real parts
of opposite sign, thenxQ is a saddle point: nearby trajec-
tories are hyperbolic. A saddle point is unstable in general,
except for approach along particular directions. These con-
ditions are equivalent to the following:

xQ is stable if (DetJ) > 0 and(Tr J) < 0
xQ is unstable if (DetJ) > 0 and(Tr J) > 0
xQ is a saddle if (DetJ) < 0

(9)

The spiral (oscillatory) tendency of the local trajectories
aroundxQ is determined by the discriminant (D) of the left
side of Eq. (8):

D > 0 (stable node: nonspiral)
D < 0 (stable focus: spiral)
with D = (Tr J)2 − 4 DetJ

(10)

For two-component processor systems as defined above,
∂2g2=0 and D=(∂1g1−∂1g2−k1+k2)

2+4(∂1g2)(∂2g1)r.
Provided∂1g2≥0 and ∂2g1≥0, as in all examples above,
D is positive. In these conditions, oscillatory (spiralling)
behaviour is not possible.

3 Biosphere-human interactions: basic model

As an example of a producer-utiliser system of the har-
vester type, we consider a minimal model of biosphere-
human interactions in which the biosphere acts as producer
and humans as utilisers. The interaction between humans
and the natural biosphere that sustains them clearly involves
a vast range of biophysical, economic, social and cultural

processes which together have shaped human populations
diverse ways determined by both biogeographical circum-
stances and contingent history (Flannery, 1994; Diamond,
1991, 1997, 2005). It goes without further emphasis that a
two-equation model cannot capture even a fraction of this
richness. Nevertheless, even such a simple model is capable
of discerning some broad patterns.

The state variables are the biomassb(t) and human pop-
ulation h(t) in a specified region. We first consider a very
simple formulation in whichb(t) andh(t) are governed by

db/dt = p − cbh − kb (11)

dh/dt = r(cbh − mh) (12)

wherep is a constant primary biomass production flux,c the
rate of extraction of biomass per human;k the rate of de-
cay of biomass by respiration,m the maintenance biomass
requirement per unit time per human, andr the fractional
growth rate of human population per unit biomass surplus.
The model assumes that the growth rate ofh depends on the
difference(cbh−mh) between the extraction of biomass by
harvest (cbh) and the biomass per unit time required to main-
tain the human population (mh). This difference is a surplus
production measured in biomass units, leading to population
increase (decrease) at rater when the surplus(cbh−mh) is
positive (negative). This model is a special case of Eqs. (1) to
(4) with production and harvest models of the class P0U1 and
variable substitutions(x1, x2)→(b, h), (g1, g2)→(p, cbh),
and (k1, k2)→(k, rm). Assumptions in this highly simpli-
fied model are that there is no transfer of eitherb or h across
the boundaries of the model region, and also that biomass
production (p) does not depend directly onh, for instance by
technological innovation (see Wirtz and Lemmen (2003) for
a model in which there is a dependence ofp onh).

Given its idealisations and restrictions, the model can be
interpreted in two ways. First,b and h can be regarded
strictly as biomass and human population, respectively. This
view is relevant to interactions between isolated, homoge-
neous human populations and their environments. A second,
broader view regardsb as “renewable natural capital” andh
as “human capital”. In this case the model may have some
applicability to technologically advanced societies where in-
crease in human capital continues unchecked even though
human populations are stabilising or declining. In the con-
text of farm management, a model with some similarities to
the present(b, h) model has been proposed by Fletcher et
al. (2006), withb andh interpreted in this way.

The model has three independent dimensional metrics,
biomass [B], humans [H] and time [T]. There are five param-
eters (p, c, k, m andr), with unitsp [BT−1], c [H−1T−1],
k [T−1], m [BH−1T−1] andr [HB−1]. Dimensional analysis
(Bridgman 1931; Huntley 1967) then shows that the system
has two (=5–3) independent dimensionless groups. These
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Fig. 1. Trajectories(b(t), h(t)) of the basic biosphere-human model
on thebh plane, with different curves showing variation of (top left)
primary productionp; (top right) human maintenance requirement
m; (bottom left) extraction ratec; (bottom right) growth rater. The
centre case (black curve, identical in all plots) has parametersp=1,
k=1, m=2, c=4, r=1. In each plot, the varied parameter takes log-
arithmically spaced values from 0.4 to 2.5 of its centre-case value
(rainbow curves, red to violet). All trajectories have initial condition
(b(0), h(0))=(1, 0.1). Note that the ordinate scale differs between
panels.

can be defined as

U =
km

cp
, V =

rm

k
(13)

Equations (11) and (12) have two equilibrium points (de-
noted A and B), given by:

Point A: bQA = p/k, hQA = 0

Point B: bQB = m/c, hQB = (p/m) − (k/c)
(14)

These points have the following properties.

1. Point A, the biosphere-only equilibrium, occurs in the
absence of humans (h=0), when the biosphere equili-
brates to a biomassbQA=p/k at which production (p)
balances respiration (kb). Point A is a saddle point with
its stable axis along the lineh=0 (Appendix A).

2. As soon ash exceeds zero for any reason, the system
leaves point A and approaches point B, the equilibrium
for coexistence of a human population with the bio-
sphere. Point B is always a stable equilibrium point
(Appendix A). It is a stable focus (spiral trajectories)
whenV >(4U(1−U))−1, and a stable node (non-spiral
trajectories) otherwise.

3. Production (p) determines the equilibrium biomass at
point A (bQA), but at point B,p instead determines the
equilibrium human population (hQB ). The biomass at
point B (bQB ) is independent ofp and is determined by
m andc, attributes of the human population.

4. Points A and B are both independent of the growth rate
r and therefore of the groupV . The role ofr (andV )
is to determine the nature of the approach to point B, as
illustrated below.

5. For hQB to be positive, the parameters must satisfy
0<U<1.

A “resource condition index”W can be defined as the ratio
of the equilibrium biomass values with and without human
utilisation:

W =
bQB

bQA
(15)

In the presence of a human population at equilibrium, a
fraction W of the potential (unutilised) biomass remains in
place, and a fraction(1−W) is removed by utilisation. Equa-
tions (13) and (14) show that for the basic system governed
by Eqs. (11) and (12), we haveW=U . (In an extended ver-
sion of this model considered below,W is a function ofU ).
The fractional human appropriation of net primary produc-
tion, or HANPP (Boyden, 2004), isg2/g1=cbh/p, which
for the basic model at equilibrium point B is 1−U=1−W .

Figure 1 illustrates the system dynamics by plotting trajec-
tories(b(t), h(t)) on thebh plane under four scenarios, re-
spectively corresponding to variation ofp, m, c andr about a
centre case withp=1,k=1,m=2,c=4, r=1. The total range
for the varied parameter is about a factor of 5 in each case.
The initial condition is that the biomass takes the potential
valuebQA (= 1 with the centre-case parameter choices) with
a small human population.

– Scenario 1 (variation of p): As p (the primary pro-
duction of biomass) increases, the system responds
through an increase in the equilibrium human popu-
lation (hQB=p/m−k/c), not the equilibrium biomass
(bQB=m/c), as noted above. For low values ofp, the
dimensionless groupU exceeds 1 and the coexistence
equilibrium (point B) is no longer viable as it is both
unphysical (hQB<0) and also unstable, so the system
reverts to the biosphere-only equilibrium (point A). This
occurs at different points along theb axis under varia-
tion of p, sincebQA=p/k.

– Scenario 2 (variation of m): One might expect that de-
creasing the human maintenance requirementm would
cause the human population to “walk more lightly upon
the land”, increasing the equilibrium resource condition
indexW . However, the reverse is the case: decreasing
m decreasesW , increases the equilibrium human pop-
ulation rapidly, and decreases the equilibrium biomass.
With decreasingm there is a decreasing tendency of tra-
jectories to spiral, and lowm values are associated with
nodes (non-spiral trajectories near equilibrium point B).

– Scenario 3 (variation of c): This corresponds to varia-
tion of the rate of extraction of biomass by humans, or
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the intensity of human exploitation of the biosphere. In-
creasingc causes the equilibrium biomass to decrease
(as might be intuitively expected) but the human popu-
lation increases only slowly. Also, asc increases, there
is an increase in the amplitude of oscillations associated
with spiral orbits. The qualitative insight provided by
this scenario is that more aggressive resource extraction
has the counter-intuitive effect of decreasing the equilib-
rium biomass while not increasing the equilibrium hu-
man population by anything like as much. Equation (14)
shows that asc→∞, hQB approaches the upper-limit
value ofp/m while bQB approaches zero. In this limit
the biomass is over-exploited without a return in the
form of a high human population as in Scenario 2.

– Scenario 4 (variation of r): Under variation of the
growth rate of the human population per unit biomass
surplus, equilibrium point B does not change (see prop-
erty 4, above) but there is an increase in the amplitude
of the decaying oscillations with which the system ap-
proaches this point. Hence, increase ofr increases the
tendency of the system to exhibit “boom-bust” oscilla-
tions. A similar trend is evident with increasingc, al-
though in that case there is also a shift in the equilibrium
point as noted in the previous paragraph.

The oscillatory behaviour of this simple model (especially
at high c and r values) echoes the hypothesis of Flannery
(1994) that when humans move into a previously unoccu-
pied ecosystem, the biosphere-human system undergoes an
initial rapid exploitation phase, a resource crash accompa-
nied by rapid decrease in the human population, and finally
an equilibration.

4 Biosphere-human interactions: extended model

4.1 Model formulation

The above basic two-equation model of biosphere-human in-
teractions is open to several criticisms (other than those as-
sociated with the extreme idealisation to just two state vari-
ables). Two of the main ones are: (1) the primary produc-
tion p is assumed to be constant at all levels of the biomass
b, whereas production is actually limited (approximately lin-
early) byb at lowb, and saturates to a constant value at high
b; and (2) the harvest fluxcbh is assumed in the basic model
to be resource (b) limited at all resource levels, so there is
no resource level (no matter how large) at which the harvest
flux saturates with respect tob. To investigate the effect of
these possible limitation and saturation attributes of the pro-
duction and harvest fluxes, we extend the basic model from
class P0U1 to class P2U2.

The extended model is

db

dt
= p

(

b

b + bP

)

− kb − cbh

(

bH

b + bH

)

(16)

dh

dt
= rcbh

(

bH

b + bH

)

− rmh (17)

wherebP andbH are respectively the biomass scales for re-
source saturation of production and harvest. The factors in
brackets, accounting for resource saturation, are written in
a form which keeps the dimensions ofp, c, k, m andr the
same as in the basic model. AsbP →0 andbH →∞, these
factors approach 1 and Eqs. (16) and (17) revert to Eqs. (11)
and (12).

The model now has seven dimensional parameters (p, c,
k, m, r, bP , bH ) and three dimensions ([B], [H], [T]). Hence
there are four independent dimensionless groups. With this
many parameters, analysis is greatly helped by normalising
the model rigorously to a dimensionless form. (This was not
done in the foregoing analysis of the basic model; the di-
mensionless approach provides a more concise description
at the expense of the need for careful interpretation when pa-
rameters appear in both dimensionless groups and scales, as
illustrated below). Dimensionless versions of the model vari-
ablesb, h andt are defined asx1=b/bscale, x2=h/hscaleand
s=t/tscale, wherebscale, hscaleandtscaleare scales to be con-
structed from the externally specifed parameters. They are
chosen as follows:bscale is the equilibrium biomass in the
absence of a human population,bscale=bQA=(p/k)−bP , so
thatx1=1 for the equilibrium biosphere without utilisation;
hscale is set ashscale=rbscale, becauser is the obvious pa-
rameter with dimension [H B−1] for relating the scales for
h andb; andtscale is chosen as 1/k, the intrinsic biospheric
time scale. With these choices, the dimensionless biomass,
human population and time are

x1 =
b

p/k − bP

, x2 =
b

r(p/k − bP )
, s = kt (18)

The four independent dimensionless groups are chosen as

U =
m

cbQA
, V =

rm

k
, a1 =

bP

bQA
, a2 =

bQA

bH

(19)

The definition of U reverts to that for the basic model
(Eq. 13) asbP →0, and the definition ofV is identical to
that for the basic model. Substituting these dimensionless
variables into Eqs. (16) and (17), the dimensionless form of
the extended model is found to be:

dx1

ds
=

(1 + a1)x1

x1 + a1
− x1 −

V x1x2

U(1 + a2x1)
(20)

dx2

ds
=

V x1x2

U(1 + a2x1)
− V x2 (21)

The basic model (without resource saturation of production
and harvest) is recovered asbP →0 andbH →∞, or asa1→0

www.hydrol-earth-syst-sci.net/11/875/2007/ Hydrol. Earth Syst. Sci., 11, 875–889, 2007
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Fig. 2. Production term in the dimensionless extended biosphere-
human model,g1(x1)=(1+a1)x1/(x1+a1), plotted againstx1 for
a1 ranging from 0 to 1.
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Fig. 3. (top) Coexistence equilibrium(xQB
1 , x

QB
2 ) for the dimen-

sionless extended biosphere-human model withV =1, plotted on the
x1x2 plane withW varying parametrically from 0 to 1 along each
curve (left to right) anda1 varying from 0 to 1 across curves (red:
a1=0; violet; a1=1). (bottom)Umax=1/(1+a2) as a function of
a2.

and a2→0. The reason for defininga2 as proportional to
1/bH rather thanbH is that it is more convenient to take the
zero than the infinite limit in computations.

The production term in Eq. (20), g1(x1) =
(1+a1)x1/(x1+a1), is plotted againstx1 in Fig. 2 for a
range ofa1 values. The choicea1=0 gives constant produc-

tion (g1=1), while all other choices give a resource-limited
production withg1=0 atx1=0 andg1=1 atx1=1.

4.2 Equilibrium points

Equations (20) and (21) have three equilibrium points at
whichdx1/ds=0 anddx2/ds=0:

Point Z: (x
QZ
1 , x

QZ
2 ) = (0, 0)

Point A: (x
QA
1 , x

QA
2 ) = (1, 0)

Point B:







x
QB
1 = U

1−a2U

x
QB
2 = U(1−a2U−U)

V (1−a2U)(a1(1−a2U)+U)

(22)

Points A and B are respectively a biosphere-only equilibrium
and a biosphere-human coexistence equilibrium, similar to
those for the basic model (Eq. 14). Point Z is an additional
equilibrium point at the origin, with biomass and human pop-
ulation both zero. Evaluation of the resource condition index
W , defined by Eq. (15), gives

W =
x

QB
1

x
QA
1

=
U

1 − a2U
, U =

W

1 + a2W
(23)

Hence, for the extended model,W is a function of the dimen-
sionless groupU , in contrast with the basic model for which
W=U . SubstitutingW for U in Eq. (22), equilibrium point
B can be written in the alternative, simpler form

x
QB
1 = W, x

QB
2 =

W(1 − W)

V (a1 + W)
(24)

Biophysically realistic equilibrium solutions can only ex-
ist in a subset of parameter space. First, all parameters
must be non-negative. Second, for the biosphere-only equi-
librium biomass (bQA) to be positive, it is necessary that
bscale>0, which requires that(p/k)>bP . This is a con-
dition on the dimensional parameters which becomes im-
plicit when the model is made dimensionless, being incor-
porated into a requirement onbscale. Third, the equilibrium
biomass in a harvested system cannot exceed the equilib-
rium biomass without harvest, so biophysically realistic so-
lutions at equilibrium point B exist only whenW is between
0 and 1. From Eq. (23), this means that 0<U<Umax, where
Umax=1/(1+a2). This is the counterpart for the extended
model of the requirement 0<U<1 for the basic model.

Figure 3 shows the behaviour of equilibrium point B on
thex1x2 plane in response to variation of the parametersa1
(which varies 0 to 1 across curves) andU (which varies para-
metrically along each curve from 0 toUmax). This variation
of U means thatW varies from 0 to 1 along each curve.
The curves do not change asa2 is varied, but the paramet-
rically varying U values along each curve change witha2
because of the dependence ofUmax on a2, shown in the
small lower panel of Fig. 3. The main panel of Fig. 3 as-
sumesV =1, the effect of increasing (decreasing)V being
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Fig. 4. Flow fields onx1x2 plane for the dimensionless extended
biosphere-human model, withV =1, a1=a2=0.5, and W=0.2
(top), 0.5 (middle) and 1.0 (bottom). Thex1 (horizontal) axis ex-
tends from 0 to 1.2, and thex2 (vertical) axis from 0 to 0.5.

to shrink (stretch) the vertical axis. The most important as-
pect of this figure is the change in the behaviour of equi-
librium point B in the transition from the basic model (with
constant production anda1=0) to the extended model (with
biomass-limited production anda1>0). As resource condi-
tion declines (W→0 orU→0), the human population in the
basic model increases (x

QB
2 →1/V , hQB→(k/m)bQB ), but

in the model with biomass-limited production,x
QB
2 andhQB

both decline (more realistically) to zero.

4.3 Trajectories

A first glimpse into the dynamical behaviour of the ex-
tended model is provided in Fig. 4, in which the flow vector
(f1(x1, x2), f2(x1, x2)) = (dx1/ds, dx2/ds) is plotted on the
x1x2 plane for three differentW values, 0.2, 0.5 and 1 (other
parameters areV =1, a1=0.5, a2=0.5). ForW=0.2 and 0.5,
the oscillatory nature of the flow around equilibrium point
B is clear. ForW=1, point B coincides with point A, the
biosphere-only equilibrium.
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Fig. 5. Trajectories onx1x2 plane for the dimensionless extended
biosphere-human model, with centre-case parametersW=0.5,
V =1, a1=0.5, a2=0.5. The initial condition is alwaysx1=1.0,
x2=0.2. Panels show (with colours proceeding through the rain-
bow from red to violet) the effect of(a) variation ofW from 0.1 to
1; (b) variation ofV from 0.5 to 2;(c) variation ofa1 from 0 to 2;
(d) variation ofa2 from 0 to 2.

Figure 5 shows the response of trajectories to variation (in
turn) of W , V , a1 and a2 around the centre caseW=0.5,
V =1, a1=0.5 anda2=0.5. This is a high-level summary
of the response of the system to changes in external condi-
tions, but it needs care in interpretation because dimensional
parameters (p, c, k, m, r, bP , bH ) affect both the dimension-
less groups (W or U , V , a1 anda2) and also the normalising
scales (bscale, hscale and tscale). To infer the response of di-
mensional state variables (b andh) to changes in dimensional
external parameters with Fig. 5 and similar dimensionless
plots, it is necessary to consider the influences of the dimen-
sional parameters both on the dimensionless groups and also
on the scales with which the axes in Fig. 5 are normalised.
Keeping this in mind, the implications of Fig. 5 are as fol-
lows.

– Variation of W : SinceW is a function ofU through
Eq. (23), variation ofW from 0 to 1 occurs asU varies
from 0 to Umax. As this occurs, the equilibrium point
follows a trajectory consistent with Fig. 3. The rate of
convergence to equilibrium (the rate at which the am-
plitude of successive spirals diminishes) increases with
W andU , so that the system is more prone to strong
oscillatory behaviour at low than at highW . Since
U is defined in terms of dimensional parameters by
U=m/(cbQA)=m/(c((p/k)−bP )), variation ofU (and
W ) can occur through variation of any ofp, m, c, k or
bP . Hence this variation is the counterpart for the ex-
tended model of all of scenarios 1, 2 and 3 for the basic
model. Variation ofp, k andbP also affects the equilib-
rium biomass scalebQA=p/k−bP , but this affects the
scaling on both thex1 andx2 axes in a similar way.
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Fig. 6. Instability threshold for the coexistence equilibrium point
of the dimensionless extended biosphere-human model as a func-
tion of a1, a2 andW . Curves show the instability threshold on the
(W, a2) plane, witha1=1, 2, 4, 8, 16 (red to blue). Points above the
curves are unstable.
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Fig. 7. Trajectories onx1x2 plane for the dimensionless extended
biosphere-human model illustrating the effect of crossing the insta-
bility threshold for the coexistence equilibrium (point B). Centre-
case parameters areW=0.2, V =0.1, a1=2, a2=2. Left panel: two
trajectories withW=0.3 and 0.1 and other parameters at centre-case
values. Right panel: two trajectories witha2=1 and 4, and other pa-
rameters at centre-case values. In each case the first (red) trajectory
is stable, and the second (blue) trajectory is unstable, entering a
limit cycle.

– Variation of V : This variation reflects essentially a vari-
ation in the growth rater. AsV increases the oscillatory
tendency of the model increases, as for the basic model
(Fig. 1). With increasingV there is also a decrease
in x

QB
2 , the equilibrium dimensionlesshQB , whereas

the equilibrium point (bQB , hQB ) for the basic model
is independent ofr andV (see Scenario 4 for the basic
model). The apparent difference arises becauser ap-
pears in the normalisation ofhQB to x

QB
2 (see Eq. 18).

– Variation of a1:Increasinga1 occurs with increase ofbP

and thus the limitation of production at low biomass and
saturation at high biomass (Fig. 2). This has a strong
tendency to increase the oscillatory behaviour of the
model, and also causes a reduction inx

QB
2 , the equi-

librium dimensionlesshQB , while x
QB
1 stays constant

(a trend also evident in Fig. 3).

– Variation of a2: Increasinga2 occurs with progressively
more saturation of the harvest flux at high biomass, and
with decreasingbH . For the parameter range shown in
Fig. 5, increase ina2 causes a mild decrease in the os-
cillatory tendency of the trajectories while leaving the
equilibrium point (xQB

1 , x
QB
1 ) unchanged.

4.4 Stability

The stability of the equilibrium points for the extended model
is more subtle than for the basic model, for which the co-
existence equilibrium (point B) is stable for all parameter
choices. Stability analysis for the extended model leads to
the following conclusions (see details in Appendix B).

– Equilibrium point Z (the origin) is a saddle point with its
stable axis oriented along thex2 axis, so point Z is un-
stable with respect to an infinitesimal variation inx1 and
stable with respect to a variation inx2. Hence a small
positive perturbation in biomass from point Z causes
the biosphere to move away from point Z and approach
point A, whereas a small human population dies out as
it has nothing to live on.

– Point A (the biosphere-only equilibrium) is a saddle
point with its stable axis in thex1 direction, as in the
basic model. In the absence of humans, the biosphere
approaches point A along thex1 axis from either direc-
tion. A small positive perturbation inh or x2 causes the
system to leave point A and approach point B.

– Point B (the coexistence equilibrium) can be either sta-
ble or unstable, depending on values ofW , a1 anda2.

The condition for stability of point B is (see Appendix B):

Y > 0 (stable)
Y < 0 (unstable)
with Y = 1 + a1 − a1a2 + 2a1a2W + a2W

2
(25)

Hence, for givenW anda1, instability occurs whena2 ex-
ceeds a threshold value:

a2 > a2Thresh =
1 + a1

a1 − 2a1W − W2
(26)

This threshold value is plotted on the (W ,a2) plane in Fig. 6,
for several values ofa1. Instability occurs whenW is low
anda2 anda1 are high. Figure 7 shows how the system be-
haviour changes asW anda2 cross this threshold. When the
parameters are on the stable side of the threshold, trajectories
are attracted to point B, but for parameters on the unstable
side of the threshold, trajectories are repelled from point B
and enter a limit cycle in which oscillatory behaviour of the
system does not die away but continues for all time.

To conclude the analysis of the simple model of biosphere-
human interactions, we summarise four significant differ-
ences between its basic (constant-production) and extended
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(resource-limited production and utilisation) forms. First, the
basic model has biosphere-only and coexistence equilibrium
points, but the extended model has an additional equilibrium
point at the origin. Second, with declining resource condi-
tion (W ), h increases in the basic model but (more realis-
tically) declines toward zero in the extended model. Third,
the extended model is more prone to strong oscillatory be-
haviour than the basic model, especially at lowW . Fourth, in
the basic model the coexistence equilibrium is always stable,
but in the extended model it becomes unstable at lowW and
with strong resource limitation of production and/or utilisa-
tion (largea1 or a2). In these conditions, trajectories enter a
limit cycle of orbits about the coexistence equilibrium point,
rather than eventually reaching it.

5 Plant and soil carbon dynamics

Carbon dynamics in the plant-soil system provides an ex-
ample of a producer-utiliser system which operates in pro-
cessor mode, as defined in the introduction. The producers
are plants, through the assimilation of atmospheric CO2 into
biomass, and the utilisers are soil heterotrophic organisms
which feed off plant litter and respire the carbon back to the
atmosphere as CO2.

5.1 Model formulation

The system is modelled using an idealised, two-equation rep-
resentation with state variables for the stores of biomass car-
bon (x1) and litter and soil carbon (x2). The governing equa-
tions are:

dx1

dt
= F(t)

(

x1

x1 + q1

)(

x2

x2 + q2

)

+ s1 − k1x1 (27)

dx2

dt
= k1x1 − k2x2 (28)

whereF(t) is a forcing term describing the net primary pro-
duction (NPP);q1 andq2 are scales for the limitation of pro-
duction by lack ofx1 andx2, respectively;k1 andk2 are rate
constants for the decay ofx1 andx2, respectively; ands1 is a
component of the primary production which is independent
of bothx1 andx2. We consider both the case whereF(t) is
independent of time,F(t)=F0, and also the case whereF(t)

is a random function of time. The model parameters areq1,
q2, k1, k2, ands1, together withF0 or parameters character-
isingF(t) as a random function.

These equations are a simplification the carbon dynamics
in typical terrestrial biosphere models, including models of
global vegetation dynamics as in the DGVM intercompari-
son of Cramer et al. (2001), and the terrestrial biosphere com-
ponents of coupled carbon-climate models as in the C4MIP
intercomparison of Friedlingstein et al. (2006). Character-
istics of such terrestrial biosphere models at several levels

of complexity are reviewed by Raupach et al. (2005). Rela-
tive to sophisticated terrestrial biosphere models, Eqs. (27)
and (28) are an extreme idealisation: all biomass carbon
(leaf, wood, root) is lumped into a single storex1 governed
by an equation of the formdx1/dt=(NPP)–(litterfall), and
all litter and soil carbon into a single storex2 governed
by dx2/dt=(litterfall)–(heterotrophic respiration). Litterfall
and heterotrophic respiration are parameterised as first-order
decay fluxes,k1x1 and k2x2. NPP is assumed to depend
on three factors: (1) a forcing termF(t) representing the
fluctuating availability of light and water resources through
weather and climate variability, (2) a factorx1/(x1+q1) of
Michaelis-Menten form describing the limitation of NPP by
lack of biomass in resource-gathering organs (leaves, roots),
and (3) a factorx2/(x2+q2), also of Michaelis-Menten form,
describing the integrated symbiotic effects of soil carbon
on plant productivity. This symbiotic factor accounts for
the overall beneficial effect of soil carbon on plant growth,
through processes such as nutrient cycling and improvement
in soil water holding capacity (often not included in sophisti-
cated terrestrial biosphere models such as those surveyed in
the references above). The parameters1 represents a (small)
production term that is not dependent onx1 andx2, for ex-
ample generation of biomass from a long-term reservoir of
seed propagules. For the present purpose,s1 is assumed to
be a constant flux independent of external conditions as well
asx1 andx2.

Equations (27) and (28) are identical to the test model
used in the OptIC (Optimisation Intercomparison) project
(Trudinger et al., 2007; also http://www.globalcarbonproject.
org). The aim of OptIC is to compare several model-
data synthesis (parameter estimation and data assimilation)
approaches for determining parameters in biogeochemical
models from multiple sources of noisy data. Equations (27)
and (28) are used as a simple test model which embodies
features of a real biogeochemical model, together with gen-
erated data from model forward runs with added noise, for
which “true” parameters are known.

5.2 Equilibrium points and stability

We consider first the situation with steady forcing,F(t)=F0.
Seeking the equilibrium points pointsxQ at whichdx1/dt =
dx2/dt = 0, Eq. (28) shows that

x
Q
2 = x

Q
1 k1/k2 (29)

and Eq. (27) implies thatxQ
1 satisfies the cubic equation

j (x1) = c0 + c1x1 + c2x
2
1 + c3x

3
1 = 0









c0
c1
c2
c3









=









q1q2k2s1/k
2
1

((q1k1 + q2k2)s1 − q1q2k1k2)/k2
1

(F0 − q1k1 − q2k2 + s1)/k1
−1









(30)
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Figure 8:  The cubic j(x ) defined by Equation (30), with reference-case parameter values F  = 1, 

Fig. 8. The cubicj (x1) defined by Eq. (30), with reference-case
parameter valuesF0=1, q1=1, q2=1, k1=0.2, k2=0.1, s1=0.01.
Solid red and blue lines show the effect of varyings1 (red:
s1=0.01; blue: s1=0, with other parameters at reference-case val-
ues). Dashed orange (heavy) and yellow (light) lines show effect of
varying k1 (orange:k1=0.4; yellow: k1=0.5, with other parame-
ters at reference-case values). Left panel shows all zeros ofj (x1).
Right panel is an expanded view showingj (x1) near the origin.

Thus the equilibrium points are of the form
xQ=(x

Q
1 , x

Q
1 k1/k2), where x

Q
1 is a solution of the cu-

bic equationj (x
Q
1 )=0. This equation has either one or three

real roots, yielding either one or three equilibrium points.
At least one root must be positive (x

Q
1 >0) for a nontrivial,

biophysically meaningful solution to exist. The cubicj (x1)

is plotted in Fig. 8 with reference-case parametersF0=1,
q1=1, q2=1, k1=0.2, k2=0.1 (the red curve; other curves
are described below).

When the equilibrium points are determined by the roots
of a single equation, it is not necessary to appeal to the Ja-
cobian and its characteristic equation to determine stability.
A sufficient criterion is that an equilibrium pointxQ

1 is sta-

ble if dj/dx1<0 at x1=x
Q
1 , and unstable otherwise. Since

j (x1)=−x3
1+. . ., it is clear from the geometry (see Fig. 8)

that if there is just one equilibrium point then it is stable,
whereas if there are three equilibrium points, say A, B, C
with equilibriumx1 valuesxQA

1 , x
QB
1 andx

QC
1 in increasing

order, thenxQA
1 andx

QC
1 are stable andxQB

1 is unstable. For
all biophysically admissible parameter choices,j (x1) has at
least one stable root withx1>0. This will be designated
asx

QC
1 , the largest stable equilibrium value ofx1, and can

be identified as a “healthy” or “active” equilibrium state of
the system. It is important to understand whether and when
there is another biophysically attainable and stable equilib-
rium state, equilibrium point A, withxQA

1 ≥0. This depends
on the parameter choices, particularly fors1. There are three
main possible kinds of behaviour, as follows.

1. If s1>0 and the cubicj (x1) crosses thex1 axis only
once, then there is only one equilibrium pointx

QC
1 , the

“active-biosphere” point. It is always stable, so the sys-
tem must approach it under steady forcing. This is the
outcome with the reference-case parameters, as shown
by the red curve in Fig. 8.

2. If s1>0 andj (x1) crosses thex1 axis three times, all

greater than zero, then there are two stable, positive
equilibrium points (xQA

1 andx
QC
1 ) on either side of one

unstable point (xQB
1 ). The two dashed curves in Fig. 8

show this outcome occurring ask1 is increased from
0.2 to (respectively) 0.4 and 0.5, with other parame-
ters held at reference-case values. In this case,x

QC
1

is the “active-biosphere” point as before, andx
QA
1 is a

“dormant-biosphere” equilibrium.

3. If s1=0, then there is a stable equilibrium point (A)
of Eqs. (27) and (28) at the origin, in addition to
the “active-biosphere” equilibrium pointxQC

1 >0. (Ex-
istence of this root is assured becauses1=0 implies
c0=0, sox

Q
1 =0 is a root ofj (x1); stability follows be-

causedj/dx1=c1 at x1=0, and whens1=0, we have
c1= − q1q2k2/k1, which is negative for positive values
of q1, q2, k2). The equilibrium point at the origin cor-
responds to “extinction” of the biosphere in this simple
model system, since once the system reaches the origin
with s1=0, it remains there for all subsequent time, no
matter what the forcingF(t). The blue curve in Fig. 8
shows this case.

In addition to these three options, there are other possibil-
ities. For some parameter combinations the cubicj (x1) has
no positive or zero solutions (that is, all crossings of thex1
axis occur whenx1<0), so these parameter combinations are
not biophysically realisable. Also, ifs1=0 and eitherq1=0
or q2=0, the model relaxes to a simpler form asj (x1) is of
lower degree than a cubic. In these cases there can be only
one stable equilibrium point.

Figure 9 shows how the three main kinds of behaviour
can all arise as parameters are varied around the reference
case. Each panel of this figure superimposes plots ofx

Q
1

(red),xQ
2 (orange), DetJ (green),−Tr J (blue) and the dis-

criminant(D=(Tr J)2−4 DetJ), at a particular equilibrium
point (A, B, C, in different columns), and examines the re-
sponse of these quantities to variation of a parameter (s1, k1,
k2, q1, q2, in different rows). No lines are plotted where
real equilibrium solutions do not exist. The trace and the de-
terminant ofJ show the stability of the point, since DetJ
and−Tr J must both be positive for stability, from Eq. (9).
The discriminant shows whether local trajectories around the
point are non-spiral or spiral, from Eq. (10). The picture is
rich: the “active-biosphere” equilibrium point C exists as a
stable node (non-spiral trajectories) for nearly all parameter
choices. Points A and B form a pair, in that neither exists
or both exist. When both exist, point A is always stable and
point B always unstable. The discriminant is always posi-
tive where points exist, indicating that spiral behaviour is not
observed in this model over the slices of parameter space sur-
veyed in Fig. 9.

The non-spiral nature of the trajectories in this model is
further illustrated in Fig. 10, where trajectories are plotted
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Fig. 9. Variation of xQ

1 /10 (red),xQ
2 /10 (orange), 10 DetJ (green), -TrJ (blue) and the discriminant(D=(Tr J)2−4 Det J) (violet) at

equilibrium points A, B, C (columns) for the two-equation model of plant (x1) and soil (x2) carbon dynamics, Eqs. (27) and (28), with steady
forcing (F(t)=F0) and reference-case parameter valuesF0=1, q1=1, q2=1, k1=0.2, k2=0.1, s1=0.01. Rows 1 to 5 show effect of varying
s1, k1, k2, q1, q2 about reference-case values.

by numerically integrating Eqs. (27) and (28) for a number
of parameter choices. In all cases the trajectories decay to-
wards equilibrium, rather than spiralling towards it as for the
biosphere-human model (Fig. 5). This is consistent with the
behaviour of the discriminant (see Fig. 9 and Eq. (10)). An
equivalent statement is that at all stable equilibrium points of
the model, all eigenvalues ofJ are real and negative. This
is in accord with the finding of Bolker et al. (1998) that
the eigenvalues of the Century plant-soil carbon model are
real and negative, so that the model shows no oscillatory be-
haviour.

5.3 Random forcing

To this point there has been no time-dependent forcing ap-
plied to any model considered. This section investigates the
effect of random forcingF(t), or “noise”, on the system de-
scribed by Eqs. (27) and (28). Random forcing here rep-

resents the effects of fluctuating resource (water and light)
availability on the net primary productivity of the system.
WhenF(t) is an externally prescribed random process, then
the solutionsx1(t) andx2(t) are also random processes.

The forcing F(t) is prescribed here by taking its nor-
malised logarithm (ln(F (t)/F0), whereF0 is a measure of
the magnitude ofF(t)) to be a Markovian, Gaussian ran-
dom processm(t) with zero mean, standard deviationσm

and time scaleTm. This process, known as the Ornstein-
Uhlenbeck process (van Kampen 1981), is fundamental in
the theory of random processes; it has an exponential auto-
correlation function (exp(−|τ |/Tm), whereτ is the time lag)
and a power spectrum with high-frequency roll-off propor-
tional to (frequency)−2. In finite-difference form, at timesti
with increments1t (<<Tm), the processesm(ti) andF(ti)

obey

mi = αmi−1 + βσmζiF (ti) = F0 exp(mi) (31)
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Fig. 10. Trajectories onx1x2 plane for the two-equation model
of plant (x1) and soil (x2) carbon dynamics, Eqs. (27) and (28),
with steady forcing (F(t)=F0) and reference-case parameter val-
uesF0=1, q1=1, q2=1, k1=0.2, k2=0.1, s1=0.01. The initial
condition is alwaysx1=1.0, x2=1.0. Panels show the effect of
(a) variation ofs1 from 0 to 0.1;(b) variation ofk2 from 0.05 to
0.2; (c) variation ofq1 from 0 to 1; (d) variation ofq2 from 0 to
1. All these trajectories converge to the “active” equilibrium point,

(xQC
1 , x

QC
2 ).

whereα = exp(−1t/Tm), β=(1 − α2)1/2, andζi is a Gaus-
sian random number with zero mean and unit variance. This
formulation ensures thatF(ti) is always positive, with a
mean determined byF0 (in fact the mean ofF(ti) is a lit-
tle larger thanF0 because of nonlinearity). The parameters
determiningF(t) areF0, σm andTm (but not1t , which is
merely a discretisation interval).

Figure 11 shows time series ofx1(t) (red) andx2(t) (blue),
calculated using a random forcingF(t) with F0=1,σm=0.5,
Tm=1, and a computational time step1t=0.1 time units.
The forcing functionF(t) is shown in the bottom panel. In
the top panel, the parameters are set at reference-case values
(see figure caption). The behaviour of the system is (not sur-
prisingly) thatx1(t) andx2(t) fluctuate around the “active-
biosphere” equilibrium point for the system with steady forc-
ing, (xQC

1 , x
QC
2 ). This is an example of the first kind of be-

haviour described above. For these parameter values there is
only one stable equilibrium point (C), so the system under-
goes excursions around point C under random forcing.

The next two panels in Fig. 11 show the effects of increas-
ing k1 from its reference-case value of 0.2 to 0.4 and 0.5, re-
spectively. These parameter values illustrate the second kind
of behaviour. There are now two stable equilibrium points, A
and C, with C being the “active-biosphere” point and A being
a “dormant-biosphere” point close to, but not at, the origin.
(The cubic curvesj (x1) which determine equilibrium points
A and C for these parameter values are shown as the dashed
lines in Fig. 8). Under the influence of random forcing the
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Fig. 11. Time series ofx1(t) (red) andx2(t) (blue) for the
two-equation model of plant (x1) and soil (x2) carbon dynamics,
Eqs. (27) and (28), with parametersq1=1, q2=1, k2=0.1, and
(k1, s1) = (0.2,0.01), (0.4,0.01), (0.5,0.01), and (0.4,0) (top to sec-
ond bottom panels). Parameters for the top panel correspond to the
reference case. The bottom panel shows the forcing termF(t), from
Eq. (31) withF0=1, σm=0.5, Tm=1.

system flips randomly between these two states, fluctuating
around one of these points and then the other. The flips are
triggered by the interaction between the forcingF(t), the
state(x1(t), x2(t)) and the basin of attraction for each equi-
librium point. If the system is in the active state (fluctuating
near point C) and a “drought” occurs, represented by a period
whenF(t) is anomalously low, then the system can flip into
the dormant state and fluctuate around point A. Conversely,
a period of anomalously highF(t) can flip the system from
point A to point C. It is not visually apparent what aspects
of F(t) cause the flip. This aspect of the model behaviour is
reminiscent of the blooming of desert ecosystems in response
to rain, interspersed with long periods of dormancy.

The third kind of behaviour is illustrated by the fourth
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panel in Fig. 11. In this cases1=0 andk1=0.4 (with other
parameters at reference-case values), so the fourth panel is
the same as the second except for the change ofs1 from 0.01
to 0. The effect of this change is that equilibrium point A is
now at the origin, so the first flip of the system from point C
to point A leads to “extinction”. Recovery from point A is
impossible under any forcing withs1=0.

The random, noise-driven flips between locally stable
states evident in Fig. 11 are not the same as dynamical de-
terministic chaos, for which a paradigm is the 3-dimensional
Lorenz system (Drazin, 1992; Glendinning, 1994). Deter-
ministic chaos is exhibited by nonlinear deterministic sys-
tems with solutions which are aperiodic, bounded and sensi-
tively dependent on initial conditions, meaning that nearby
trajectories separate rapidly in time (Glendinning, 1994,
p291). These properties are inherent in the system equa-
tions themselves, rather than being imposed by external ran-
dom forcing or noise. There is an ongoing debate about
whether external noise can induce chaos in ecological sys-
tems with otherwise stable equilibrium points. Dennis et
al. (2003) argued that this is not possible, while Ellner and
Turchin (2005) argued that the boundary between determin-
istic and noise-induced chaos is more subtle, exhibiting re-
gions of “noisy stability”, “noisy chaos”, “quasi-chaos” and
“noise-domination” depending on the noise level and the
dominant Lyapunov exponent (the real part of the fastest-
growing eigenvalue). The debate appears to depend on the
precise definition of “chaos”. It is certainly important to dis-
tinguish between endogenous, deterministic chaos as in the
Lorenz system and noise-induced chaos as in Fig. 11, be-
cause noise-induced chaos disappears as the noise level goes
to zero whereas deterministic chaos does not.

6 Summary and conclusions

This paper has analysed simple models for “production-
utilisation” systems, reduced to two state variables
(x1(t), x2(t)) for producers and utilisers, respectively. Two
modes have been distinguished: in “harvester” systems, re-
source utilisation involves active seeking on the part of the
utilisers (as in prey-predator systems, for example), while in
“processor” systems, utilisers act as processors which pas-
sively receive material from the production part of the sys-
tem. The formal expression of this distinction is that the util-
isation flux (g2) depends directly on the utiliser component
x2 in harvester systems, for example asg2=p2x2x1, whereas
g2 is not dependent onx2 in processor systems.

An idealised model of biosphere-human interactions, con-
sisting of two coupled equations for the time evolutions of
biomassb(t) and human populationh(t), provides an exam-
ple of a harvester system. This model has been analysed in
two forms, a basic form in which production is constant and
harvest is simply proportional tobh, and an extended form
in which the production and harvest fluxes (g1, g2) are both

limited by biospheric resources (b) at low b and saturate at
highb. The properties of these two variants of the model are
somewhat different, but the following aspects are common
to both: the model produces a “biosphere-only” equilibrium
which is stable in the absence of humans, and a “coexistence”
equilibrium to which the system is attracted whenever the ini-
tial human population is greater than zero. Trajectories in the
bh plane tend to the coexistence equilibrium point from any
initial state withh>0, either without or with oscillatory be-
haviour manifested as decaying spiral orbits. The properties
of the coexistence equilibrium can be quantified in terms of
a “resource condition index” (W ), the ratio of the biomasses
at the coexistence and biosphere-only equilibria. However,
there are also some significant differences between the basic
and extended forms of the model: four important ones are
(1) an additional equilibrium point at the origin in the ex-
tended model; (2) different responses to declining resource
condition (W), the extended model being more realistic; (3)
a greater tendency to strong oscillatory behaviour in the ex-
tended model than in the basic model; and (4) the possibility
in the extended model that the coexistence equilibrium is un-
stable, leading to limit cycles at lowW with strong resource
limitation.

An idealised model of plant and soil carbon dynamics is
used as an example of a processor system. The model formu-
lation includes a production term with a resource-limitation
dependence on producer (plant carbon,x1) level and a sym-
biotic dependence on utiliser (soil carbonx2) level, together
with a small constant production term (s1) which is inde-
pendent of bothx1 and x2. The model has three equilib-
rium points: a stable “active-biosphere” equilibrium, a stable
“dormant-biosphere” equilibrium, and an unstable equilib-
rium point between them. The dormant-biosphere equilib-
rium is biophysically realisable only in a subset of parame-
ter space. If the production terms1 is zero, then the stable,
dormant-biosphere equilibrium (if parameter values allow it
to exist) is at the origin and corresponds to an extinction point
for the system. All stable equilibria for this plant-soil carbon
model are nodes, that is, they have negative, real eigenval-
ues so that trajectories approach them without oscillatory be-
haviour.

The plant-soil carbon model has been used to study the
effect of random forcing of production (for example by
weather and climate fluctuations). With parameter choices
that allow the existence of both the active-biosphere and
dormant-biosphere equilibria, the model can flip between
them under the influence of random forcing, producing a bi-
modal behaviour in which the model fluctuates alternately
around these two very different equilibrium states. It is im-
portant to distinguish this kind of externally-driven transition
between states from Lorenzian chaos (Glendinning, 1994).
In the Lorenzian system, random flips between states (repre-
sented by the two lobes of the Lorenz attractor) are endoge-
nous properties of the system. In the present example, flips
between states occur as the system crosses a threshold under
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the influence of external forcing, although the interactions
between state, trajectory and forcing make it hard to form a
simple rule for when the flip will occur.

Finally, we have highlighted a basic difference between
processor and harvester forms of two-component producer-
utiliser systems as introduced at the start of this paper: har-
vester systems may exhibit oscillatory behaviour whereas
processor systems do not.

Appendix A

Stability properties of the basic biosphere-human
model

The basic biosphere-human model, Eqs. (11) and (12), has
two equilibrium points (A and B) given by Eq. (14). From
Eqs. (9) and (10), the stability properties of an equilibrium
point (bQ, hQ) are characterised by the determinant and
trace of the JacobianJ, evaluated at that point. For this
model, the Jacobian is

J =

(

−k − h −cb

rch r(cb − m)

)

(A1)

In terms of the dimensionless groupsU andV , the determi-
nant and trace ofJ at the two equilibrium points are:

A: Det J = k2V (U−1)
U

, Tr J = k
(

V (1−U)
U

− 1
)

B: Det J = k2V (1−U)
U

, Tr J = − k
U

(A2)

Hence, for all biophysically admissible parameter choices
(0≤U≤1 and 0≤V ), Det J<0 at point A and DetJ>0,
Tr J<0 at point B. Evaluating stability with Eq. (9), point
A is a saddle point and point B is stable.

The two eigenvalues at each equilibrium point are

A: λ1 = −k, λ2 = kV (U−1 − 1)

B: λ1,2 = k
2U

(

1 ±
√

1 − 4UV (1 − U)
)

(A3)

The eigenvalues at point A are both real and of opposite sign.
Inspection of Eqs. (11) and (12) (or evaluation of the eigen-
vectors) shows that the stable axis of this saddle point is ori-
ented along the axish=0, so that point A is stable ifh=0
and unstable otherwise. The eigenvalues at point B both have
negative real parts, consistent with stability. Point B is a sta-
ble focus (spiral trajectories) whenV >(4U(1−U))−1, and a
stable node otherwise.

Appendix B

Stability properties of the dimensionless extended
biosphere-human model

The dimensionless extended biosphere-human model,
Eqs. (20) and (21), has three equilibrium points (Z, A, B)

given by Eq. (22). In terms of the resource condition index
W defined by Eq. (23), the Jacobian of the model is:

J =





a1(1+a1)

(x1+a1)
2 − 1 − V (1+a2W)x2

W(1+a2x1)
2 −V (1+a2W)x1

W(1+a2x1)

V (1+a2W)x2
W(1+a2x1)

2 − V (x1−W)
W(1+a2x1)



 (B1)

The determinant and trace ofJ at each equilibrium point are:

Z: Det J = − V
a1

, Tr J = 1
a1

− V

A: Det J = V (W−1)
W(1+a1)(1+a2)

,

Tr J = − V (W−1)(1+a1)+W(1+a2)
W(1+a1)(1+a2)

B: Det J = V (1−W)
(W+a1)(1+a2W)

,

Tr J = − W(1+a1−a1a2+2a1a2W+a2W
2)

(W+a1)
2(1+a2W)

(B2)

Using Eqs. (9) and (10) and the existence conditions
0≤W≤1, 0≤V , 0≤a1 and 0≤a2 for biophysically admissible
parameters, the following stability properties are obtained for
the three equilibrium points. At point Z (the origin), DetJ is
always negative and TrJ is of either sign. Therefore, point Z
is a saddle point. Inspection of Eqs. (20) and (21) (or evalu-
ation of the eigenvectors) shows that point Z is unstable with
respect to an infinitesimal variation inx1 and stable with re-
spect to a variation inx2, so the stable axis of the saddle point
at the origin is oriented along thex2 axis. At point A (the
biosphere-only equilibrium), DetJ is always negative and
Tr J is always negative. Hence this point is a saddle point.
Its stable axis is oriented along thex1 (biomass) axis, as in
the basic model. At point B (the coexistence equilibrium),
Det J is always positive and TrJ is of either sign. Hence
this point is either stable (if(Tr J)<0, evaluated at point B)
or unstable (if(Tr J)>0). This leads to the criteria given in
Eqs. (25) and (26).
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