
HAL Id: hal-00305055
https://hal.science/hal-00305055v1

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting long-memory: Monte Carlo simulations and
application to daily streamflow processes

W. Wang, P. H. A. J. M. van Gelder, J. K. Vrijling, X. Chen

To cite this version:
W. Wang, P. H. A. J. M. van Gelder, J. K. Vrijling, X. Chen. Detecting long-memory: Monte Carlo
simulations and application to daily streamflow processes. Hydrology and Earth System Sciences
Discussions, 2007, 11 (2), pp.851-862. �hal-00305055�

https://hal.science/hal-00305055v1
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 11, 851–862, 2007
www.hydrol-earth-syst-sci.net/11/851/2007/
© Author(s) 2007. This work is licensed
under a Creative Commons License.

Hydrology and
Earth System

Sciences

Detecting long-memory: Monte Carlo simulations and application
to daily streamflow processes

W. Wang1,2, P. H. A. J. M. Van Gelder2, J. K. Vrijling 2, and X. Chen1

1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
2Faculty of Civil Engineering & Geosciences, Section of Hydraulic Engineering, Delft University of Technology, 2628 CN
Delft, Netherlands

Received: 15 May 2006 – Published in Hydrol. Earth Syst. Sci. Discuss.: 14 July 2006
Revised: 1 December 2006 – Accepted: 30 January 2007 – Published: 6 February 2007

Abstract. The Lo’s modified rescaled adjusted range test
(R/S test) (Lo, 1991), GPH test (Geweke and Porter-Hudak,
1983) and two approximate maximum likelihood estimation
methods, i.e., Whittle’s estimator (W-MLE) and another one
implemented in S-Plus (S-MLE) based on the algorithm of
Haslett and Raftery (1989) are evaluated through intensive
Monte Carlo simulations for detecting the existence of long-
memory. It is shown that it is difficult to find an appropri-
ate lag q for Lo’s test for different short-memory autore-
gressive (AR) and fractionally integrated autoregressive and
moving average (ARFIMA) processes, which makes the use
of Lo’s test very tricky. In general, the GPH test outperforms
the Lo’s test, but for cases where a strong short-range de-
pendence exists (e.g., AR(1) processes withφ=0.95 or even
0.99), the GPH test gets useless, even for time series of large
data size. On the other hand, the estimates ofdgiven by S-
MLE and W-MLE seem to give a good indication of whether
or not the long-memory is present. The simulation results
show that data size has a significant impact on the power of
all the four methods because the availability of larger sam-
ples allows one to inspect the asymptotical properties bet-
ter. Generally, the power of Lo’s test and GPH test increases
with increasing data size, and the estimates ofd with GPH
method, S-MLE method and W-MLE method converge with
increasing data size. If no large enough data set is available,
we should be aware of the possible bias of the estimates.

The four methods are applied to daily average discharge
series recorded at 31 gauging stations with different drainage
areas in eight river basins in Europe, Canada and USA to
detect the existence of long-memory. The results show that
the presence of long-memory in 29 daily series is confirmed
by at least three methods, whereas the other two series are
indicated to be long-memory processes with two methods.
The intensity of long-memory in daily streamflow processes
has only a very weak positive relationship with the scale of
watershed.

Correspondence to: W. Wang
(w.wang@126.com)

1 Introduction

Long-memory, or long-range dependence, refers to a not neg-
ligible dependence between distant observations in a time se-
ries. Long-memory processes can be expressed either in the
time domain or in the frequency domain. In the time do-
main, long-memory is characterized by a hyperbolically de-
caying autocorrelation function. In fact, it decays so slowly
that the autocorrelations can not be summed. For a stationary
discrete long-memory time series process, its autocorrelation
functionρ(k) at lagksatisfies (Hosking, 1981)

ρ(k) ∼
Ŵ(1 − d)

Ŵ(d)
k2d−1, ask → ∞ (1)

where,d is the long-memory parameter (or fractional dif-
ferencing parameter), and 0<|d|<0.5; Ŵ(•) is the Gamma
function.

Since the early work of Hurst (1951), it has been well rec-
ognized that many time series, in diverse fields of applica-
tion, such as financial time series (e.g., Lo, 1991; Meade
and Maier, 2003), meteorological time series (e.g., Haslett
and Raftery, 1989; Bloomfield, 1992; Hussain and Elbergali,
1999) and internet traffic time series (see Karagiannis et al.,
2004), etc., may exhibit the phenomenon of long-memory.
A number of models have been proposed to describe the
long-memory feature of time series. The Fractional Gaus-
sian Noise model is the first model with long-range depen-
dence introduced by Mandelbrot and Wallis (1969). Then
Hosking (1981) and Granger and Joyeux (1980) proposed
the fractionally integrated autoregressive and moving aver-
age model, denoted by ARFIMA (p, d, q) that is defined by

φ(B)(1 − B)dxt = θ(B)εt (2)

where{xt }, t=1, 2, . . . ,n, is the time series;B is the back-
shift operator, that is,Bxt=xt−1; φ(B)=1–φ1B–. . . –φpBP

and θ(B)=1–θ1B – ... – θqBq represent the ordinary au-
toregressive and moving average components;εt is a white
noise process with zero mean and varianceσ 2. When –
0.5<d<0.5, the ARFIMA (p, d, q) process is stationary,
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and if 0<d<0.5 the process presents long-memory behav-
ior. Instead of usingd, we may useH=d+0.5 ∈ (0.5, 1)
which is known as the Hurst coefficient (see Hurst, 1951) to
measure the long memory in{xt }. The largerd or H , the
longer the memory the stationary process has. Whend=0,
the ARFIMA model is reduced to an ARMA(p,q) model. If
q=0, the ARMA(p,q) model is further reduced to an AR(p)
model.

In the hydrology community, many studies have been car-
ried out on the test and modeling for long-memory in hy-
drological processes. Montanari et al. (1997) applied the
ARFIMA model to the monthly and daily inflows of Lake
Maggiore, Italy. Rao and Bhattacharya (1999) explored
some monthly and annual hydrologic time series, includ-
ing average monthly streamflow, maximum monthly stream-
flow, average monthly temperature and monthly precipita-
tion, at various stations in the mid-western United States.
They stated that there is little evidence of long-term memory
in monthly hydrologic series, and for annual series the evi-
dence for lack of long-term memory is inconclusive. Mon-
tanari et al. (2000) introduced seasonal ARFIMA model and
applied it to the Nile River’s monthly flows at Aswan. The re-
sulting model indicates that nonseasonal long-memory is not
present in the data. At approximately the same time, Ooms
and Franses (2001) documented that monthly river flow data
displays long-memory, in addition to pronounced seasonality
based on simple time series plots and periodic sample auto-
correlations. Wang et al. (2005) investigated the existence of
long-memory in two daily streamflow series of the Yellow
River in China, and found that both daily streamflow pro-
cesses exhibit a strong long-memory.

This study seeks to evaluate several methods for detect-
ing the presence of long-memory in time series and investi-
gate the possible relationship between the intensity of long-
memory in daily streamflow processes and the watershed
scales. In Sect. 2, four methods used in the present study
to detect long-memory will be described briefly. Simulation
results with these methods are presented in Sect. 3. Then,
the four methods are applied to 31 daily streamflow series to
detect the existence of long-memory in Sect. 4, and finally,
some conclusions are drawn in Sect. 5.

2 Methods for detecting the existence of long-memory

Many methods are available for detecting the existence of
long-memory and estimating the fractional differencing pa-
rameterd. Many of them are well described in the mono-
graph of Beran (1994). These techniques include graphi-
cal methods (e.g., classic rescaled adjusted range analysis,
i.e., R/S analysis; aggregated variance method etc.), paramet-
ric methods (e.g., Whittle maximum likelihood estimation
method) and semi-parametric method (e.g., GPH method
and local Whittle method). Graphical methods are useful to
heuristically test if there exists a long-range dependence in

the data and to find a first estimate ofd, but they generally
are inaccurate and sensitive to short range serial correlations.
The parametric methods obtain consistent estimates ofdvia
maximum likelihood estimation of parametric long-memory
models. They give a more accurate estimate ofd, but gener-
ally require knowledge of the true model which is in fact al-
ways unknown. Semi-parametric methods, such as the GPH
method (Geweke and Porter-Hudak, 1983), seek to estimate
dunder few prior assumptions concerning the spectral den-
sity of a time series and, in particular, without specifying
a finite parameter model for thed-th difference of the time
series. In the present study, two statistic tests: Lo’s mod-
ified R/S test, which is a modified version of classical R/S
analysis, and the GPH test will be used to test for the null
hypothesis of no presence of long-memory. Besides, two ap-
proximate maximum likelihood estimation methods are used
to estimate the fractional differencing parameterd, but with-
out testing for the significance level of the estimate.

2.1 Lo’s modified R/S test

In classical R/S analysis, for a given time series{xt }, t = 1, 2,
. . . , n, with thej th partial sumYj =

∑j

i=1 xi , j = 1, 2, . . . ,

n, and the sample varianceS2
j = j−1∑j

i=1 (xi − j−1Yj )
2,

j = 1, 2, . . . ,n, the rescaled adjusted range statistic or R/S-
statistic is defined by

R/S(j) =
1

Sj

[

max
0≤t≤j

(

Yt −
t

j
Yj

)

− min
0≤t≤j

(

Yt −
t

j
Yj

)]

, j = 1, 2, ..., n (3)

The classicalR/Sanalysis is sensitive to the presence of ex-
plicit short-range dependence structures, and lacks a distri-
bution theory for the underlying statistic. To overcome these
shortcomings, Lo (1991) proposed a modifiedR/S statistic
that is obtained by replacing the denominatorSj in Eq. (3),
i.e., the sample standard deviation, by a modified standard
deviation Sq which takes into account the autocovariances of
the firstq lags, in order to discount the influence of the short-
range dependence structure that might be present in the data.
Instead of considering multiple lags as in Eq. (3), only focus
on lagj = n. TheSq is defined as

Sq =

(

1

n

n
∑

j=1

(xj − x̄n)
2 +

2

n

q
∑

j=1

ωj (q)

[

n
∑

i=j+1

(xi − x̄n)(xi−j − x̄n)

])1/2

(4)

wherex̄n denotes the sample mean of the time series, and the
weightsωj (q) are given bywj (q)=1–j /(q+1), q<n. Then
the Lo’s modifiedR/S statistic is defined by

Qn,q =
1

Sq

{

max
0≤i≤n

i
∑

j=1

(xj − x̄n) − min
0≤i≤n

i
∑

j=1

(xj − x̄n)

}

(5)
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If a series has no long-range dependence, Lo (1991) showed
that given the right choice ofq, the distribution ofn−1/2Qn,q

is asymptotic to that of

W = max
0≤r≤1

V (r) − min
0≤t≤1

V (r),

whereV is a standard Brownian bridge, that is,V (r)=B(r)–
rB(1), whereB denotes standard Brownian motion. Since
the distribution of the random variableW is known as

P(W ≤ x) = 1 + 2
∞
∑

j=1

(1 − 4x2j2)e−2x2j2
, (6)

Lo gave the critical values ofx for hypothesis testing at six-
teen significance levels using Eq. (6), which can be used for
testing the null hypothesis H0 that there is only short-term
memory in a time series at a significance levelα.

2.2 GPH Test

Geweke and Porter-Hudak (1983) proposed a semi-
parametric approach to the testing for long-memory. Given
a fractionally integrated process{xt }, its spectral density is
given by:

f (ω) = [2 sin(ω/2)]−2d fu(ω)

whereω is the Fourier frequency,fu(ω) is the spectral den-
sity corresponding tout , andut is a stationary short memory
disturbance with a zero mean. Consider the set of harmonic
frequenciesωj =(2πj /n), j=0, 1, . . . ,n/2, wheren is the sam-
ple size. By taking the logarithm of the spectral densityf (ω)
we have

ln f (ωj ) = ln fu(ωj ) − d ln
[

4 sin2 (ωj

/

2
)

]

which may be written in the alternative form

ln f (ωj )= ln fu(0)−d ln
[

4 sin2(ωj/2)
]

+ ln
[

fu(ωj )
/

fu(0)
]

(7)

The fractional difference parameterd can be estimated by
the regression equations constructed from Eq. (7). Geweke
and Porter-Hudak (1983) showed that using a periodogram
estimate off (ωj ), if the number of frequencies used in the
regression Eq. (7) is a functiong(n) (a positive integer) of the
sample sizen whereg(n)=nα with 0<α<1, the least squares
estimated̂using the above regression is asymptotically nor-
mally distributed in large samples:

d̂ ∼ N(d,
π2

6
∑g(n)

j=1 (Uj − U)2
)

whereUj= ln[4 sin2(ωj

/

2)] andU is the sample mean of
Uj , j = 1, · · · , g(n) . Under the null hypothesis of no
long-memory (d=0), thet-statistic

td=0 = d̂ ·





π2

6
∑g(n)

j=1 (Uj − U)2





−1/2

has a limiting standard normal distribution.

2.3 Maximum likelihood estimation (MLE) of fractional
differencing parameterd

The Gaussian log-likelihood of a long-memory ARFIMA
processX defined by Eq. (2) is given by

logL(η, σ 2)=−
n

2
log(2π)−

1

2
log |6|−

1

2
Xt6−1X (8)

whereη = (φ1, . . . ,φp; d; θ1, . . . , θq) is the parameter vec-
tor; 6 denotes then×n covariance matrix ofX depending
on η and σ 2, and |6| denotes the determinant of6. The
maximum likelihood estimatorŝη and σ̂ 2 can be found by
maximizing logL(η, σ 2) with respect toη andσ 2.

Due to the computational problems (Beran, 1994, 108–
109), some approximate MLE’s are needed. In this study,
two approximate maximum likelihood estimators are ap-
plied: (1) the maximum likelihood estimation method imple-
mented in S-Plus version 6 (referred to as S-MLE) is used to
estimate the fractional differencing parameterd. S-MLE is
implemented based on the approximate Gaussian maximum
likelihood algorithm of Haslett and Raftery (1989); (2) Whit-
tle’s estimator (referred to as W-MLE), which is the value of
the vector that minimizes the function:

LW (η) =

∫ π

−π

I (λ)

f (λ; η)
dλ +

∫ π

−π

logf (λ; η)dλ,

where the subscriptW stands for Whittle;f (λ; η) is the spec-
tral density andI (λ) is the periodogram of the process. The
S-Plus code of Whittle’s estimator is available in the book of
Beran (1994). A modified version by M. S. Taqqu is avail-
able at http://math.bu.edu/people/murad/methods/whittle/. If
the estimateddobtained with S-MLE or W-MLE is signifi-
cantly greater than zero, we consider it an evidence of the
presence of long-memory.

3 Monte Carlo simulations

3.1 Implementation of Monte Carlo simulations

An extensive Monte Carlo investigation is performed in or-
der to find out how reliable the Lo’s test, the GPH test,
the S-MLE method and the W-MLE method are for detect-
ing the long-memory property of AR and ARFIMA pro-
cesses. We consider five AR(1) and six ARFIMA(1,d,0)
processes. All AR(1) models are of the form (1-φB)xt=εt ,
and all ARFIMA(1,d,0) of form (1-B)d (1-φB)xt=εt , where
{εt } are i.i.d standard normal, andB is the backshift oper-
ator. For the AR models, large autoregressive coefficients,
i.e., φ=0.5, 0.8, 0.9, 0.95 and 0.99, are considered, because
these are commonly seen cases in streamflow processes. For
the ARFIMA models,φ=0, 0.5, 0.9 andd=0.3, 0.45. We
generate 500 simulated realizations of size 500, 1000, 3000,
10 000 and 20 000, respectively, for each model. The AR se-
ries and the ARFIMA series are produced with thearima.sim
andarima.fracdiff.sim function built in S-Plus version 6.
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For Lo’s modifiedR/S test, the right choice ofq is essen-
tial. It must be chosen with some consideration of the data at
hand. Some simulation studies (Lo, 1991; Teverovsky et al.,
1999) have shown that the probability of accepting the null
hypothesis varied significantly withq. In general, the larger
theq, the less likely the null hypothesis is to be rejected. One
appealing data-driven formula (Andrew, 1991) for choosing
qbased on the assumption that the true model is an AR(1)
model is given by

q =

[

(

3n

2

)1/3( 2ρ̂

1 − ρ̂2

)2/3
]

where [•] denotes the greatest integer function,n is the
length of the data,̂ρ is the estimated first-order autocorre-
lation coefficient. However, our simulation for AR processes
and ARFIMA processes with different intensity of depen-
dence indicates that this data-driven formula is too conser-
vative in rejecting the null hypothesis of no long-memory,
especially for cases where autocorrelations at lag 1 are high.
After a trial-and-error procedure, we use the following mod-
ified formula to choose the lagq:

q =

[

( n

10

)1/4
(

2ρ̂

1 − ρ̂2

)2/3
]

, (9)

whereρ̂ is the autocorrelation at lag 1, i.e., ACF(1). This
modified formula is a trade-off between lowering the prob-
ability of wrongly rejecting the null hypothesis of no long-
memory for AR processes, and reserving the power of cor-
rectly rejecting the null hypothesis for ARFIMA processes.
The null hypothesis of no long-memory is rejected at a 5%
significance level ifQn,q is not contained in the interval
[0.809, 1.862] (Lo, 1991).

Similarly to the case with Lo’s test, there is a choice of the
number of frequenciesg(n) used in the regression Eq. (7)
for the GPH test. This choice entails a bias-variance trade-
off. For a given sample size, asg(n) is increased from 1, the
variance of thedestimate decreases, but this decrease is typ-
ically offset by the increase in bias due to non-constancy of
fu(ω). Geweke and Porter-Hudak (1983) found that choos-
ing g(n)=n0.5 gave good results in simulation. We adopt
such a criterion in our Monte Carlo simulation study. The pe-
riodogram used for calculating GPH test statistic is smoothed
with a modified Daniell smoother of length 5. The null hy-
pothesis of no long-memory (d=0) is rejected at a 5% sig-
nificance level if thet-statistic is not contained in the interval
[–1.960, 1.960].

When estimating the parameterd with S-MLE method and
W-MLE method, the orderp of the AR component for a
given time series process is usually unknown. One way to
estimate the orderp of the AR component of an ARFIMA
process is using the AIC criterion (Akaike, 1973). But in
the present study, we assume that the orderp of the AR
component for each simulated ARFIMA process is known

(herep=1) in order to make the comparison between S-MLE
method and W-MLE method clear. In the S-MLE method,
thed is optimized in the range (0, 0.5).

3.2 Results of simulations

The results of detecting long-memory in simulated AR and
ARFIMA processes of sizes ranging from 500 to 20 000 with
Lo’s test, GPH test, S-MLE and W-MLE method based on
500 Monte Carlo simulations are reported in Table 1. For
Lo’s test, we list the average values of the lags chosen with
the data-driven Eq. (9) (denoted as “average lag”), the stan-
dard deviations of the lags (“SD of lag”), and the number
of acceptance of the null hypothesis for 500 simulations.
For GPH test, we list the average values of the estimates of
d(“averaged”), the standard deviations of the estimates (“SD
of d”), and the number of acceptance of the null hypothe-
sis for 500 simulations. For both the S-MLE method and
the W-MLE method, the averages and standard deviations of
the estimates ofd (“averaged” and “SD ofd”) are reported.
According to the results of simulated AR and ARFIMA pro-
cesses, shown in Table 1, we have the following findings:

(1) For AR(1) processes, when the autocorrelation is less
than 0.9, both the Lo’sR/S test and the GPH test work well,
but the GPH test has a better performance. However, when
the autoregressive coefficient is higher than 0.9, the proba-
bility of committing Type I error with the GPH test increases
very fast, and the GPH test gets useless for the cases whereφ

is above 0.97 (to save space, the results withφ=0.97 are not
presented in Table 1), even for the size of 20 000 points. In
contrast, the probability of committing Type I error with the
Lo’s R/S test is still considerably low even for AR processes
with aφ of as high as 0.99.

(2) For ARFIMA(1,d,0) processes, the GPH technique
yields negatively biased estimates ofd when an AR com-
ponent of low autoregressive coefficient value (e.g.,φ ≤ 0.5)
is present, whereas it yields positively biased estimates ofd

when an AR component of high autoregressive coefficient
value (e.g.,φ=0.9) is present. This seems to be not in agree-
ment with the results of Sowell (1992), who showed that,
when the sample length is small, the GPH technique yields
upwardly biased estimates ofd when AR and MA terms
are present. On the other hand, the power of GPH test in-
creases with the increase of data size, the intensity of long-
memory, and autocorrelations of their AR components. For
cases where the data size is over 10 000, the probability of
committing Type II error, i.e., false acceptance of the null
hypothesis of no long-memory, by the GPH test is close to
zero. In contrast, the Lo’s test only performs slightly better
than the GPH test when the intensity of long-memory is not
strong and the value ofφ in the AR component is low, but for
the cases of strong intensity of long-memory and with an AR
component of strong autocorrelation, the Lo’s test performs
far less powerful than the GPH test.
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Table 1. Long-memory test results for simulated AR and ARFIMA series.

Model Data size
Lo’s R/S test GPH test S-MLE W-MLE

average
lag

SD of
lag

accepted average d SD of d accepted average d SD average d SD

AR(1) 500 2.8 0.5 464 –0.0167 0.1302 495 0.0178 0.0378 –0.1060 0.1490
ar = .5 1000 3.2 0.4 454 –0.0123 0.1141 490 0.0146 0.0280 –0.0612 0.1071

3000 4.6 0.5 468 –0.0124 0.0772 490 0.0101 0.0183 –0.0198 0.0492
10 000 6.1 0.2 455 –0.0119 0.0607 490 0.0067 0.0112 –0.0069 0.0238
20 000 7.8 0.4 469 –0.0078 0.0479 488 0.0047 0.0078 -0.0043 0.0159

AR(1) 500 6.7 0.8 428 0.1220 0.1388 470 0.0395 0.0733 0.0010 0.1127
ar = .8 1000 8.0 0.7 442 0.0637 0.1110 489 0.0272 0.0517 –0.0032 0.0776

3000 10.8 0.5 441 0.0163 0.0827 490 0.0159 0.0271 –0.0027 0.0431
10 000 14.7 0.5 441 –0.0016 0.0605 490 0.0084 0.0131 –0.0016 0.0226
20 000 17.6 0.5 454 –0.0036 0.0511 483 0.0062 0.0099 –0.0010 0.0165

AR(1) 500 11.3 1.6 431 0.3252 0.1342 268 0.0341 0.0702 0.0711 0.2062
ar = .9 1000 13.5 1.4 408 0.2189 0.1135 326 0.0193 0.0379 0.0550 0.1902

3000 18.1 1.1 414 0.0957 0.0851 436 0.0098 0.0162 0.0105 0.0969
10 000 24.6 0.8 441 0.0273 0.0600 483 0.0054 0.0082 0.0001 0.0303
20 000 29.4 0.7 457 0.0107 0.0500 489 0.0040 0.0063 –0.0005 0.0105

AR(1) 500 18.7 3.6 451 0.5739 0.1395 24 0.0286 0.0510 0.0082 0.0614
ar = .95 1000 22.4 3.1 429 0.4488 0.1154 34 0.0158 0.0225 0.0022 0.0364

3000 29.6 2.4 426 0.2594 0.0800 91 0.0102 0.0139 0.0023 0.0225
10 000 40.3 1.8 416 0.1201 0.0601 300 0.0051 0.0076 0.0004 0.0122
20 000 47.9 1.6 416 0.0665 0.0475 409 0.0034 0.0051 0.0000 0.0084

AR(1) 500 52.9 20.3 494 0.9122 0.1617 0 0.0207 0.0268 0.0082 0.0427
ar = .99 1000 65.3 19.3 484 0.8530 0.1226 0 0.0124 0.0170 0.0030 0.0284

3000 86.8 14.7 399 0.7297 0.0826 0 0.0068 0.0094 0.0005 0.0168
10 000 119.7 11.9 389 0.5555 0.0583 0 0.0037 0.0052 0.0002 0.0091
20 000 142.4 9.5 380 0.4478 0.0477 0 0.0025 0.0037 –0.0001 0.0065

ARFIMA 500 2.2 0.5 129 0.2587 0.1360 353 0.2663 0.0638 0.2720 0.0784
d = 0.3 1000 2.8 0.5 61 0.2749 0.1157 228 0.2852 0.0427 0.2890 0.0437

3000 3.8 0.5 15 0.2821 0.0826 68 0.2971 0.0233 0.2969 0.0233
10 000 5.2 0.4 0 0.2884 0.0572 2 0.3018 0.0128 0.2985 0.0124
20 000 6.3 0.5 0 0.2900 0.0470 0 0.3035 0.0093 0.2992 0.0089

ARFIMA 500 7.1 1.4 255 0.2729 0.1402 333 0.1951 0.1258 0.1964 0.1615
ar = 0.5 1000 8.6 1.3 139 0.2783 0.1130 233 0.2441 0.0928 0.2473 0.1086
d = 0.3 3000 11.4 1.2 63 0.2878 0.0919 83 0.2881 0.0496 0.2864 0.0502

10 000 15.6 1.0 8 0.2934 0.0604 4 0.3027 0.0241 0.2944 0.0229
20 000 18.6 0.9 5 0.2955 0.0493 0 0.3083 0.0172 0.2973 0.0160

ARFIMA 500 41.1 12.2 493 0.6375 0.1513 16 0.2820 0.0620 0.3795 0.2251
ar = 0.9 1000 49.4 11.6 478 0.5213 0.1123 6 0.2903 0.0460 0.3686 0.2078
d = 0.3 3000 65.4 11.2 345 0.3964 0.0881 5 0.2974 0.0278 0.3360 0.1536

10 000 89.4 9.2 155 0.3316 0.0627 2 0.3008 0.0158 0.3261 0.1270
20 000 106.6 8.3 78 0.3145 0.0512 0 0.3014 0.0108 0.3099 0.0776

ARFIMA 500 7.0 4.0 130 0.4077 0.1506 157 0.3926 0.0544 0.4228 0.0676
d = 0.45 1000 8.5 4.4 56 0.4274 0.1237 53 0.4192 0.0362 0.4372 0.0431

3000 11.2 5.2 11 0.4371 0.0873 0 0.4414 0.0218 0.4468 0.0235
10 000 15.4 6.0 0 0.4373 0.0613 0 0.4542 0.0137 0.4493 0.0126
20 000 18.6 7.0 0 0.4371 0.0489 0 0.4588 0.0111 0.4498 0.0094

ARFIMA 500 19.1 10.1 346 0.4331 0.1515 133 0.2874 0.1370 0.3452 0.1636
ar = 0.5 1000 22.9 10.6 204 0.4385 0.1164 33 0.3627 0.0976 0.3973 0.1142
d = 0.45 3000 31.0 12.2 66 0.4404 0.0893 3 0.4290 0.0425 0.4397 0.0496

10 000 42.4 14.6 11 0.4429 0.0635 0 0.4579 0.0218 0.4482 0.0239
20 000 50.2 16.2 4 0.4459 0.0507 0 0.4683 0.0162 0.4498 0.0157

ARFIMA 500 135.0 78.5 493 0.7956 0.1394 2 0.3806 0.1040 0.5035 0.2649
ar = 0.9 1000 163.4 90.2 495 0.6733 0.1172 1 0.4230 0.0775 0.5087 0.2384
d = 0.45 3000 222.9 116.2 472 0.5539 0.0878 0 0.4651 0.0386 0.4629 0.1533

10 000 299.5 138.7 273 0.4856 0.0599 0 0.4690 0.0262 0.4465 0.0654
20 000 361.8 158.0 140 0.4666 0.0491 0 0.4695 0.0225 0.4485 0.0502

(3) It seems difficult to choose an appropriate lag for Lo’s
test that is valid for all cases. For the cases where the data
sizes are less than 3000, while the lag chosen by Eq. (9)

seems to be already very large and cannot get larger with-
out a high probability of wrongly rejecting the null hypothe-
sis of no long-memory for AR processes, the lag seems not
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Fig. 1 Estimates of d with S-MLE versus W-MLE for 500 simulations of  

(a) (c) (b)

(d) (e) (f)

Fig. 1. Estimates ofd with S-MLE versus W-MLE for 500 simulations of(a) ARFIMA (0,0.3,0); (b) ARFIMA(0.5,0.3,0); (c)
ARFIMA(0.9,0.3,0) (d) ARFIMA (0,0.45,0); (e) ARFIMA(0.5,0.45,0); (f) ARFIMA(0.9,0.45,0) (Note: the straight line has a slope of
0.5).

to be large enough to avoid the high probability of wrong
acceptance of the null hypothesis for ARFIMA processes.
The good news is that the lag chosen by Eq. (9) works well
when the data size is over 104, especially when the value
of φ in the AR component is low (e.g.,φ ≤0.5). But for
AR(1) processes with high autoregressive coefficients and
ARFIMA(1,d,0) processes with high values ofφ in their AR
components, the lag chosen by Eq. (9) seems to be too small
for AR series of large size, but not large enough for ARFIMA
processes. Namely, no good trade-off can be achieved in
choosing an appropriate lag for the Lo’s test. This result fur-
ther substantiates the limitation of the use of the Lo’s test,
which has been shown in the previous study of Teverovsky et
al. (1999).

(4) The estimates ofd given by both the S-MLE method
and the W-MLE method seem to give a good indication of
whether or not the long-memory is present, and the estimates
given by the two MLE methods have less standard deviation
than those given by the GPH method in general (even taking
the fact thatd is optimized in the range (0, 0.5) in S-MLE into
account). Therefore, the estimate ofd given by S-MLE or W-
MLE could be used to detect the presence of long-memory,
and the estimates given by the two MLE methods are more
accurate than the GPH method. It is shown by our simulation
study that:

1. For AR(1) processes, both S-MLE and W-MLE give ba-
sically correct estimates ofd, i.e., d=0, even when the
autoregressive coefficients are very high. Although the
estimates tend to be slightly positively biased when the

data size is small (e.g., 500 points) with both methods,
the estimates get more accurate (according to the aver-
ages) and more stable (according to the standard devia-
tions) with the increase of sample size.

2. For ARFIMA processes, S-MLE provides significantly
negatively biased estimates when the data size is small
(e.g., less than 103). The estimates ofd given by S-
MLE increase with increasing sample size and are basi-
cally correct when the data size is close to 104. But the
estimates ofd get upwardly biased when the data size
is too big (say,>104). This is in contradiction with the
result of Kendziorski (1999), who showed that S-MLE
provided unbiased estimates ofd for ARFIMA(0,d,0)
processes of length 211 (2048) or greater.

3. The estimates given by W-MLE are also significantly
biased when the data size is small (e.g., less than
3×103) for ARFIMA processes. But the direction of
bias may depend on the autoregressive coefficient of
the AR component of the ARFIMA processes. For
an ARFIMA process withd=0.3 and 0.45, when the
autoregressive coefficient of the AR component in the
ARFIMA process is equal to or less than 0.5, the esti-
mates ofd are negatively biased, whereas they are posi-
tively biased when the autoregressive coefficient is high
(e.g., 0.9).

(5) We plotted the estimates of S-MLE versus the es-
timates with W-MLE for 500 simulations of 6 different
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ARFIMA models in Fig. 1. The estimates are all based on
the data size of 104. Comparing the estimates of S-MLE
and W-MLE, we see that, although the estimates given by
S-MLE are in general slightly larger than by W-MLE, the es-
timates of the two estimators are generally consistent when
the autoregressive coefficientφ of the AR component in the
ARFIMA process is not high (i.e.,≤0.5), especially when the
size ofd is moderate (i.e.,d=0.3). But the estimation given
by either S-MLE or W-MLE often goes wrong forφ = 0.9
(see Figs. 1c, f). The estimates given by S-MLE tend to be
close to 0.5 for ARFIMA(0.9, 0.45, 0) processes (notice that
the range ofd is optimized between 0 and 0.5 with S-MLE),
whereas the estimates given by W-MLE sometimes are larger
than 0.8 for ARFIMA (0.9, 0.3, 0) processes. This indicates
that a value close to 0.5 given by S-MLE or a value higher
than 0.5 given by W-MLE may be due to the presence of
strong short-range dependence in the process. On the other
hand, according to the results for ARFIMA(0.9, 0.45, 0) pro-
cesses, shown in Fig. 1f, estimates ofd given by W-MLE are
concentrated in the region around 0.45, whereas many esti-
mates ofd given by S-MLE are close to 0.5, indicating that
W-MLE seems to work better than S-MLE for cases where
both the strong short-range dependence and the strong long-
range dependence exist.

(6) Data size has a significant impact on the power of all
the four methods. Generally, the power of Lo’s test and GPH
test increases with the increase of data size, and the esti-
mates ofd with GPH method, S-MLE method and W-MLE
method converge with the increase of data size. This is a
result that can be proven through theoretical reasoning be-
cause the availability of larger samples allows one to inspect
the asymptotical properties better, but is sometimes not well-
recognized in previous literature. For instance, Agiakloglou
et al. (1993) found that GPH estimators performed poorly for
AR(1) processes withφ=0.9 for sample size of 100 to 900.
The simulation results of Hurvich and Beltrao (1993) also
showed the poor performance of the GPH estimator when
φ=0.9 for not only AR(1) processes but also ARFIMA(1,d,0)
processes. In our simulation study, it is shown that, on one
hand, the power of GPH test does decrease with the increase
of the autoregressive coefficient; on the other hand, its power
increases with the increase of sample size. If we use a sample
size larger than 104 points, GPH test still performs very well
for AR(1) processes withφ=0.9. But the use of GPH test is
useless whenφ is larger than 0.95, even with a data size of
larger than 104. One possible solution could be to choose the
number of frequencies used in the regression Eq. (7) more
carefully (Giraitis et al., 1997; Hurvich and Deo, 1999). But
the effectiveness of these methods seems to be limited. For
example, when Hurvich and Deo (1999) proposed the plug-
in method to choose the number of frequenciesg(n) in the
GPH test, they also showed that asφ increases, the estimates
of d using the number of frequenciesg(n) selected by the
plug-in method are much more positively biased than simply
usingg(n)=n1/2.

On the basis of above findings, we have two suggestions to
obtain reliable test results on detecting the presence of long-
memory: Firstly, use a large enough data set (e.g., of size
3000∼10 000) when detecting the existence of long-memory,
especially for the cases where data exhibit strong serial de-
pendence. If no large enough data set available, we should be
aware of the possible bias of the estimates. For example, the
estimate with S-MLE has a significant negative bias when
the data size is less than 3000, and the estimates with W-
MLE as well as GPH method may be negatively/positively
biased when the autoregressive coefficient of the AR compo-
nent in the ARFIMA process is small (e.g.,≤0.5)/big (e.g.,
0.9). But notice that S-MLE has a positive bias in general
when the data size is greater than 104. Therefore, the most
appropriate date size for estimatingd with S-MLE may be
slightly less than 104. Secondly, use the methods in com-
bination with each other for detecting the existence of long-
memory. Here we consider the combined use of Lo’s test,
GPH-test, S-MLE and W-MLE. According to the simulation
results, the combined use of these four methods produces the
following alternatives:

1. Failure to reject by both the Lo’s test and the GPH-test,
and low values of estimatedd (e.g.,<0.1) with S-MLE
and W-MLE, provide evidence in favour of no existence
of long-memory;

2. Rejection by both Lo’s test and GPH test, and high val-
ues of estimatedd(e.g.,>0.2) with S-MLE and W-MLE
support that the series is a long-memory process;

3. For other cases, the data are not sufficiently informative
with respect to the long-memory properties of the series.
But if the GPH test, S-MLE and W-MLE give positive
results in detecting the existence of long-memory, then
we may consider the long-memory is present whatever
the result given by the Lo’s test, and vice versa.

4 Results with daily streamflow data

4.1 Daily streamflow data used

Daily average discharge series recorded at 31 gauging sta-
tions in eight basins in Europe, Canada and USA are
analyzed in the present study. The data come from
Global Runoff Data Centre (GRDC) (http://grdc.bafg.de),
US Geological Survey Water Watch (http://water.usgs.gov/
waterwatch), and Water Survey of Canada (http://www.wsc.
ec.gc.ca). We generally have the following three rules to se-
lect stations in each basin:

1. The selection of basins covers different geographical
and climatic regions;
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Table 2. Description of selected daily streamflow time series.

No. Basin Location of gauging stations Area
(km2)

Latitude. Longitude Elevation (m) Period Average
discharge
(m3/s)

Color-1 Colorado Colorado River At Lees Ferry 289,400 36.865 –111.588 946.8 1922–1951 489.1
Color-2 Colorado River Near Cisco 62 390 38.811 –109.293 1246.6 1923–1952 222.3
Color-3 Colorado River Near Kremmling 6167 40.037 –106.439 2231.1 1904-1918 52.3
Color-4 Williams Fork Near Parshall 476 40.000 –106.179 2380.2 1904–1924 4.9
Colum-1 Columbia Columbia River At The Dalles 613,565 45.108 –121.006 0.0 1880-1909 6065.7
Colum-2 Columbia River at Trail 88 100 49.094 –117.698 – 1914–1936 2029.4
Colum-3 Columbia River at Nicholson 6660 51.244 –116.912 – 1933–1962 107.5
Colum-4 Columbia River Near Fairmont Hot Springs 891 50.324 –115.863 – 1946–1975 11.1
Danu-1 Danube Danube river at Orsova 576232. 44.700 22.420 44 1901–1930 5711.9
Danu-2 Danube river at Achleiten 76653. 48.582 13.504 288 1901–1930 1427.0
Danu-3 Inn river at Martinsbruck 1945. 46.890 10.470 – 1904-1933 57.8
Fras-1 Fraser Fraser River at Hope 217,000 49.381 –121.451 – 1913–1942 2648.8
Fras-2 Fraser River at Shelley 32 400 54.011 –122.617 – 1950-1979 825.3
Fras-3 Fraser River at Mcbride 6890 53.286 –120.113 – 1959–1988 197.3
Fras-4 Canoe River below Kimmel Creek 298 52.728 –119.408 – 1972–1994 14.5
Missi-1 Mississippi Mississippi River At Vicksburg 2962,974 32.315 –90.906 14.1 1932–1961 16 003.1
Missi-2 Mississippi River at Clinton 221 608 41.781 –90.252 171.5 1874–1903 1477.3
Missi-3 Minnesota River At Mankato 38,574 44.169 –94.000 228.0 1943–1972 94.9
Missi-4 Minnesota River At Ortonville 3003 45.296 –96.444 291.5 1943-1972 3.4
Misso-1 Missouri Missouri River at Hermann 1 353 000 38.710 –91.439 146.8 1929-1958 2162.0
Misso-2 Missouri River at Bismarck, 482 776 46.814 –100.821 493.0 1929–1953 604.6
Misso-3 Missouri River at Fort Benton 64,070 47.818 –110.666 796.8 1891–1920 219.7
Misso-4 Madison River near McAllister 5,659 45.490 –111.633 1429.2 1943–1972 50.5
Ohio-1 Ohio Ohio River At Metropolis 525 500 37.148 -88.741 84.2 1943–1972 7567.5
Ohio-2 Ohio River at Sewickley 50 480 40.549 –80.206 207.3 1943–1972 922.4
Ohio-3 Tygart Valley River At Colfax 3529 39.435 –80.133 261.0 1940–1969 72.4
Ohio-4 Tygart Valley River Near Dailey 479 38.809 –79.882 591.3 1940-1969 9.2
Rhine-1 Rhine Rhine at Lobith 160 800 51.840 6.110 8.5 1911–1940 2217.8
Rhine-2 Rhine at Rheinfelden 34 550 47.561 7.799 259.6 1931–1960 1017.3
Rhine-3 Rhine at Domat/Ems 3229 46.840 9.460 562.0 1911–1940 126.9
Rhine-4 Emme River at Emmenmatt 443 46.960 7.740 – 1915-1944 12.0

2. The drainage area of each station is basically within
5 different watershed scales, namely,<103 km2;
103∼104 km2; 104∼105 km2; 105∼106 km2;
>106 km2;

3. The stations are located in the main river channel of the
river if possible so that river flows come from the same
origin. When stations at the main channel are not avail-
able, stations at major tributaries are used.

For each station, we select a segment of historical daily
streamflow records of mostly 30 years long. However, be-
cause of data limitations, the shortest series covers a period
of only 14 years. The segments are chosen with the following
criteria:

(1) The series should be approximately stationary, as least
by visual inspection. Stationarity is our primary criterion
because, when certain types of non-stationarity are present,
many long-memory parameter estimators may fail (Klemes,
1974).

(2) The recording period of the data should be as early
in time as possible, assuming that the influence of human
intervention would be less intensive in an earlier period (in

early 20th century or even late 19th century) than in later
period.

(3) The temporal spans of streamflow series at different
locations in one basin should be as close as possible, so as
to avoid possible impacts of regional low-frequency climatic
variations.

The description of selected stations and their correspond-
ing daily streamflow series is listed in Table 2.

4.2 Results

The Lo’s modifiedR/S test and the GPH test are carried out
with S+FinMetrics, a module of S-plus, for financial time se-
ries analysis (Zivot and Wang, 2003). To alleviate the impact
of skewed distribution and the seasonality in mean values and
standard deviations of daily discharge series, it is common to
firstly log-transform the series and then deseasonalize the se-
ries by subtracting the daily means and dividing by the daily
standard deviations (see e.g., Wang et al., 2006). The daily
means and the daily standard deviations are calculated on the
basis of each day over the year, and then smoothed with their
first 8 Fourier harmonics.
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Table 3. Results of long-memory detection for daily streamflow series.

No. data size ACF(1)
Lo’s R/S test GPH test S-MLE W-MLE

Lag-1 Stat-1 Lag-2 Stat-2 d Stat d d

Color-1 10957 0.9738 64 2.9566 50 3.2475 0.5125 7.5412 0.4478 0.4287
Color-2 10958 0.9627 50 3.4320 50 3.4320 0.4906 7.2192 0.4506 0.4386
Color-3 5113 0.9431 31 2.1437 50 1.8067 0.4766 5.6613 0.4863 0.5390
Color-4 7305 0.9549 40 1.1811 50 1.0826 0.4043 5.3169 0.0000 0.7390
Colum-1 10957 0.9910 132 1.5357 50 2.1519 0.5071 7.4617 0.4615 0.4433
Colum-2 8401 0.9966 238 1.1342 50 1.8357 0.4673 6.3838 0.4187 0.3642
Colum-3 10957 0.9778 72 3.1202 50 3.5159 0.3466 5.1010 0.4392 0.4042
Colum-4 10957 0.9676 55 1.8590 50 1.9213 0.3642 5.3600 0.4213 0.3939
Danu-1 10957 0.9931 158 1.5328 50 2.0899 0.3441 5.0639 0.2634 0.2001
Danu-2 10957 0.9577 46 1.9412 50 1.8957 0.3017 4.4398 0.3598 0.3557
Danu-3 10958 0.9326 33 3.1827 50 2.7771 0.3782 5.5651 0.4059 0.3834
Fras-1 10957 0.9772 70 1.5279 50 1.6994 0.3879 5.7077 0.3878 0.3318
Fras-2 10958 0.9734 63 2.9821 50 3.1849 0.2511 3.6952 0.3529 0.2720
Fras-3 10958 0.9582 47 2.3767 50 2.3411 0.2272 3.3430 0.1886 0.1436
Fras-4 8401 0.9294 30 2.2163 50 1.9096 0.2769 3.7833 0.3100 0.2912
Missi-1 10958 0.9961 232 1.8789 50 3.0163 0.4133 6.0813 0.3909 0.3594
Missi-2 10956 0.9921 144 2.6780 50 3.7589 0.3846 5.6601 0.4001 0.3654
Missi-3 10958 0.9917 139 1.8277 50 2.6476 0.5098 7.5018 0.4847 0.5463
Missi-4 10958 0.9563 45 2.7527 50 2.6345 0.5358 7.8847 0.0000 0.7818
Misso-1 10958 0.9711 60 3.6930 50 3.9396 0.4484 6.5985 0.4238 0.4033
Misso-2 9131 0.9805 75 3.6145 50 4.1707 0.4639 6.4915 0.4124 0.3678
Misso-3 10958 0.9165 29 5.1261 50 4.1325 0.4179 6.1498 0.0000 0.7054
Misso-4 10958 0.9522 42 3.2612 50 3.0869 0.2450 3.6050 0.0000 0.1070
Ohio-1 10958 0.9723 62 1.7652 50 1.8735 0.2910 4.2822 0.2983 0.2813
Ohio-2 10958 0.9547 44 2.1173 50 2.0477 0.2569 3.7810 0.2581 0.2450
Ohio-3 10958 0.9291 32 1.7894 50 1.6164 0.3289 4.8401 0.2263 0.2123
Ohio-4 10958 0.8985 25 1.9601 50 1.5937 0.3659 5.3839 0.3324 0.3353
Rhine-1 10957 0.9897 120 1.2813 50 1.6822 0.3787 5.5729 0.4254 0.4296
Rhine-2 10958 0.9715 61 2.0457 50 2.1880 0.3513 5.1699 0.0000 0.6647
Rhine-3 10958 0.9048 26 2.1554 50 1.7478 0.3792 5.5799 0.4176 0.4214
Rhine-4 10958 0.8739 21 2.2409 50 1.7306 0.2489 3.6627 0.3447 0.3300

Note: In the Lo’s R/S test, lag-1 is determined by the data-driven formula, lag-2 is the fixed lag, and, stat-1 and stat-2 are their corresponding
test statistics.

For Lo’s modifiedR/S test, both a fixed lag (i.e., 50) and
a lag determined by the data-driven formula (Eq. 9) are used.
For GPH test, we chooseg(n)=n0.5 as suggested by Geweke
and Porter-Hudak (1983). When using S-MLE to estimate
the fractional differencing parameterd, the orderp of the AR
component in ARFIMA (p,d,q) model is determined by the
AIC criteria (Akaike, 1973). The same AR order is used for
the W-MLE method. The results of detecting long-memory
in daily streamflow processes are reported in Table 3, which
show the following:

1. The Lo’s test indicates that about 1/3 (11 according to
the data-driven lag, and 9 according to the fixed lag) of
all the 31 streamflow series do not exhibit long-memory
property; GPH test results are positive in detecting the
presence of long-memory for all the streamflow series;

estimates ofd given by S-MLE indicate that 5 out of
all the series haved ’s of zero value, implying the ab-
sence of long-memory in these 5 series; estimates of
d given by W-MLE are all significantly larger than 0,
but one has a small value of 0.1, and four have val-
ues over 0.5. In summary, evidence of the existence
of long-memory is found with all the four methods for
about half of all the streamflow processes; except for
one case of Williams Fork of the Colorado River basin
near Parshall where both the results of Lo’s test and S-
MLE indicating the absence of long-memory, and an-
other case of the Madison River of the Missouri River
basin near McAllister where the estimate ofd given by
S-MLE is zero and the estimate ofd by W-MLE is close
to zero (≈0.1), at least three methods applied here give
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Fig. 2. Comparison of different estimates for observed daily streamflow processes 
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Fig. 2. Comparison of different estimates for observed daily streamflow processes (Note: the straight line has a slope of 0.5).
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estimates of d given by S-MLE versus watershed scale for streamFig. 3. The estimates ofd given by S-MLE versus watershed scale

for streamflow processes.

evidences of the existence of long-memory in the other
29 daily streamflow processes.

2. Teverovsky et al. (1999) pointed out that, picking a sin-
gle value of q with Lo’s test to determine whether or
not to reject the null hypothesis of no long-range depen-
dence in a given data set is highly problematic. Conse-
quently, they recommended that one always relies on
a wide range of different q-values, and does not use
Lo’s method in isolation, instead, always uses it in con-
junction with other graphical and statistical techniques
for checking for long-memory, especially when Lo’s
method results in accepting the null hypothesis of no
long-range dependence. While we agree that we should
not use Lo’s method in isolation, it is doubtful that using
a wide range of differentq-values may improve the test
reliability. With a wide range of q-values, we are still
not sure which one gives the right answer, as shown here
in the cases for detecting long-memory in daily stream-
flow series. In addition, Lo’s test sometimes may give
results that are not in agreement with all other meth-
ods with respect to the intensity of long-memory. For
example, with either the data-driven value of lagq or
the fixed value of lagq, the Lo’s test indicates that the
daily streamflow process of the Rhine River at Lobith

is a short-memory process, whereas all the other three
methods indicate that it exhibits long-memory.

3. The estimates ofd given by the GPH method, S-MLE
method and W-MLE method are in good agreement, as
shown in Fig. 2, especially between the estimates given
by S-MLE and W-MLE, except for five series for which
the estimates ofd given by S-MLE are zero, whereas
the estimates ofd given by W-MLE are either higher
than 0.6 or lower than 0.2. The estimates of zero given
by S-MLE are possibly due to its erroneousness, so are
the estimates over 0.5 given by W-MLE. In addition,
similar to the results of Monte Carlo simulations, we see
that the estimates given by S-MLE are generally larger
than those by W-MLE.

4. The intensity of long-memory, denoted by the estimates
of d given by S-MLE (with zero estimates removed) has
little relationship with the watershed scale, as shown in
Fig. 3. Only a very positive weak relationship can be es-
tablished between the intensity of long-memory and the
watershed scale, that is, the larger the watershed scale,
the stronger the intensity of the long-memory.

5 Conclusions

Many studies have been carried out on detecting and model-
ing long-memory in various field since the seminal work of
Hurst (1951). The Lo’s modified rescaled adjusted range test
(R/S test) (Lo, 1991), GPH test (Geweke and Porter-Hudak,
1983) and two approximate maximum likelihood estimation
methods, i.e., Whittle’s estimator (W-MLE) and another one
implemented in S-Plus (S-MLE) based on the algorithm of
Haslett and Raftery (1989) are evaluated through intensive
Monte Carlo simulations for detecting the existence of long-
memory. It is shown that it is difficult to find an appropri-
ate lag q for Lo’s test for different short-memory autoregres-
sive (AR) and long-memory fractionally integrated autore-
gressive and moving average (ARFIMA) processes, which
makes the use of Lo’s test very tricky. In general, the GPH
test outperforms the Lo’s test, but for cases where there is a
very strong autocorrelation such as AR(1) processes withφ =
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0.95 or even 0.99, the GPH test gets useless, even for time se-
ries of very large data size. On the other hand, the estimates
of d given by S-MLE seem to be good indicators of the pres-
ence of long-memory. Data size has a significant impact on
the power of all the four methods, which is in agreement with
theoretical reasoning because the availability of larger sam-
ples allows one to better inspect the asymptotical properties.
Generally, the power of Lo’s test and GPH test increases with
the increase of data size, and the estimates ofd with GPH
test and S-MLE converge with the increase of data size. If
no large enough data set available, we should be aware of
the possible bias of the estimates. For example, the estimate
with S-MLE has a significant negative bias generally when
the data size is less than 3000, and the estimates with W-
MLE as well as GPH method may be negatively/positively
biased when the autoregressive coefficient of the AR compo-
nent in the ARFIMA process is small (e.g.,≤0.5)/big (e.g.,
0.9). But S-MLE has a positive bias when the data size is
above 104.

The four methods are applied to daily average discharge
series recorded at 31 gauging stations with different drainage
areas in eight river basins in Europe, Canada and USA to de-
tect the existence of long-memory. The results show that, ev-
idence of the existence of long-memory is found with all the
four methods for about half of all the streamflow processes;
except for one case where both the results of Lo’s test and
S-MLE indicating the absence of long-memory, and another
case where the estimate ofd given by S-MLE is zero and
the estimate ofd by W-MLE is close to zero (≈0.1), at least
three methods applied here give evidence of the existence of
long-memory in the other 29 daily streamflow processes; the
intensity of long-memory in daily streamflow processes only
has a very weak positive relationship with the scale of the
watershed, that is, the larger the watershed scale, the stronger
the intensity of the long-memory.

One limitation of the present study, especially for the anal-
ysis of the daily streamflow observations, is the restricted
number of approaches considered here. The detection of long
memory is affected by some uncertainty. It would be bet-
ter to use several estimators so as to increase the reliability
of the estimation. For instance, Koutsoyiannis (2002) rec-
ommended the use of the aggregated variance method (Be-
ran, 1994), while in climate research many authors (see, e.g.,
Ribsky et al., 2006) used the detrended fluctuation analysis.
These methods may not be very suitable for Monte Carlo
simulations, but could make the detection of long-memory
in observed time series more convincing if results of differ-
ent methods are combined.
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