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Abstract. A hydrological ensemble prediction system, in-
tegrating a water balance model with ensemble precipita-
tion forecasts from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Ensemble Prediction System
(EPS), is evaluated for two Belgian catchments using veri-
fication methods borrowed from meteorology. The skill of
the probability forecast that the streamflow exceeds a given
level is measured with the Brier Skill Score. Then the value
of the system is assessed using a cost-loss decision model.
The verification results of the hydrological ensemble predic-
tions are compared with the corresponding results obtained
for simpler alternatives as the one obtained by using of the
deterministic forecast of ECMWF which is characterized by
a higher spatial resolution or by using of the EPS ensemble
mean.

1 Introduction

The forecast of future precipitation amounts is one of the
most challenging tasks of weather forecasting. In rainfall
dominated hydrological regimes, it has long been the main
limitation to flood forecasting at the medium-range and be-
yond. The improvement of numerical weather prediction
has been made possible by the increase of spatial resolution,
the assimilation of new remote-sensed information, better
physics parameterizations, all being sustained by a contin-
uous growth of computing power. An alternative use of these
computing resources at several centres is the development of
ensemble methods. By perturbing the initial conditions and
the model physics, a set of different weather scenarios are
computed, all assumed to be equally probable and providing
additional and valuable information on the uncertainty about
the future precipitation amounts. The Ensemble Prediction
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System (EPS) of ECMWF, whose archives will be used in
this study, has been operational since 1992 (Molteni et al.,
1996).

To tackle the problem of uncertainty in streamflow fore-
casting, different probabilistic systems have been developed
varying by the underlying theoretical framework as well as
by the methods of computation (e.g. Day, 1985; Krzyszto-
fowicz, 1999). The advent of skillful probabilistic precipita-
tion forecasts in the medium-range from ensemble prediction
system (Buizza et al., 1999; Mullen and Buizza, 2001; Clark
and Hay, 2004; Hamill et al., 2004) has led to the develop-
ment of ensemble precipitation- based streamflow forecasts.
The use of EPS in a large-scale hydrological model has for
instance been tested for selected historical flood events (de
Roo et al., 2003; Gouweleeuw, 2005; Pappenberger et al.,
2005).

Using six years of archived EPS forecast, Roulin and Van-
nitsem (2005) demonstrated that hydrological ensemble pre-
diction has a positive skill at forecasting the probability of
high flow in two test catchments in Belgium. For win-
ter, when large-scale precipitation prevails, this skill was
found significant during the whole forecast range of 9 days
whereas during summer when convective precipitation dom-
inates, this skill vanishes after 6 to 8 days. The differences in
skill between the two catchments were put in relation with
the differences in their responses to rainfall events. The
changes in spatial resolution of the Numerical Weather Pre-
diction (NWP) in November 2000, from 120 km to 80 km had
a positive impact on the forecasts for winter at lead-time of 3
to 6 days.

In this paper, further insight on the quality of the hydrolog-
ical ensemble predictions will be given. The use of a simple
cost-loss decision model will allow for the estimation of the
value of flood forecast for decision-making. The skill and
value of the ensemble will be compared with those of deter-
ministic approaches. The hydrological prediction system is
described in Sect. 2. The methods to analyze the probability
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726 E. Roulin: Skill and value of hydrological ensemble predictions

Fig. 1. Location map of the Demer and Ourthe catchments in Bel-
gium; grid points (+) of EPS archives corresponding to the T255
NWP in use from November 2000 to January 2006 at ECMWF.

forecasts are outlined in Sect. 3. The results obtained on
two Belgian test catchments using ECMWF archives are pre-
sented in Sect. 4. The conclusions are drawn in Sect. 5.

2 Hydrological ensemble prediction system

This study is based on hydrological hindcast using the
archived precipitation forecasts from the ECMWF EPS since
the date on which the T255 numerical weather prediction
(NWP) model was operational (21 November 2000). This
NWP model has a horizontal resolution of about 80 km. The
EPS has been recently (1 February 2006) upgraded with a
T399 NWP with∼50 km resolution. Precipitation over a grid
cell of the hydrological model is given by the value predicted
at the nearest grid point of the NWP model. The differences
between the scales of the NWP and the hydrologic model
(80 km and 7 km, respectively) as well the possible biases
in the precipitation forecasts deserve future developments.
In the present study, skill and value will be estimated us-
ing directly the forecast total precipitation data, i.e. the sum
of large scale and convective precipitation. These forecasts
start at 12:00 UTC for a period of 240 h and are archived
with a 6-h time step. For verification purposes, data from
the dense (≈100 km−1) network of daily precipitation obser-
vations over Belgium are used; these data are available at
08:00 LT i.e. 07:00 UTC (or 06:00 UTC during the daylight
saving period). Therefore, in this study, the forecast day D+1
covers the EPS forecast period between +18 h to +42 h. The
last forecast day, D+9, corresponds to the forecast range from

+210 h to +234 h. Observed precipitation is interpolated over
a grid cell of the hydrological model by weighting measure-
ments by its intersection with the Thiessen polygons of the
neighbouring raingauges.

The hydrological model is adapted from the IRMB (Inte-
grated Runoff Model – F. Bultot) water balance model (Bul-
tot and Dupriez, 1976, 1985). The model is implemented
with grid cells of 7 km×7 km, and is complemented with
a routing procedure based on the width function (Naden,
1992). The conceptual scheme comprises a snow layer, nine
land covers with an interception layer and two soil reser-
voirs for each vegetation cover, two underground reservoirs,
and a unit hydrograph for simulating surface water runoff.
The IRMB model parameters have been reduced to ten ad-
justable parameters, and optimized using observed stream-
flow on a set of medium-sized catchments. The first six pa-
rameters were obtained by flow separation and a deconvolu-
tion method (Bultot and Dupriez, 1976). The remaining four
were optimized using the SCE-UA algorithm (Duan et al.,
1992). Empirical non-linear relationships have been found
between the values of the parameters and the physical catch-
ment properties using the Nevprop artificial neural network
algorithm (Goodman, 1996). These relationships have been
used to estimate parameters for the entire hydrological model
grid. Note that the high uncertainty introduced in the region-
alization procedure has been estimated but not accounted for
in the present study. The values of the parameters of the
routing function have been obtained by trial and error using
observed streamflow for larger basins. Daily precipitation
data are the main input information. Other meteorological
data (temperature, air humidity, wind speed, solar radiation)
are used to account for snow accumulation and melt, and for
evapotranspiration using a Penman potential evapotranspira-
tion formulation (Bultot and Dupriez, 1985).

The streamflow prediction experiment is performed in two
steps. First, a continuous simulation is made using observed
precipitation. This run constitutes the reference run. Every
day of the verification period, the values of the variables of
the hydrological model are stored and subsequently used as
initial conditions for the forecast runs. An ensemble stream-
flow forecast is then made using the precipitation predicted
by each of the 50 members of the ECMWF Ensemble Pre-
diction System as input. For all other weather variables, the
input data assume their observed values. Besides this en-
semble streamflow, three separate predictions are made: the
first using precipitation from the “operational” forecast from
ECMWF obtained with a NWP at a higher horizontal resolu-
tion (∼50 km); a second, with the “control” run of EPS, i.e.
with the same NWP as EPS but without any perturbation of
initial conditions; finally, a third, with the mean of the en-
semble.

Two catchments are studied (Fig. 1). They belong to the
two main river basins in Belgium and possess contrasted
hydrological regimes. The Demer at Diest (1775 km2) in
the River Scheldt Basin is located in the loamy region of
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�1�1
Fig. 2. Regime of observed daily precipitation(a) averaged over the
Demer catchment (continuous line) and over the Ourthe catchment
(dotted line) during 1971–2000, regime of observed streamflow(b)
of the Demer during 1981–2000 and of the Ourthe during 1971–
2000; corresponding probability distribution of precipitation(c) and
streamflow(d); the maxima are 66 and 57 mm day−1 for precipita-
tion of the Demer and Ourthe, respectively and the corresponding
maxima for the streamflow are 3 and 20 mm day−1.

Hesbaye and in the sandy region of Campine. This catch-
ment is almost flat and covered with crops and pastures. The
Ourthe at Tabreux (1616 km2) in the River Meuse Basin is lo-
cated in the Ardennes which consists of a plateau with deep
valleys, where a bedrock of shale and sandstone is covered
with thin stony loamy soils. The dominant covers are conif-
erous forests and pastures. Precipitation and streamflow av-
erages based on measurements during 1971–2000 in the two
catchments are displayed in Figs. 2a and b. Daily mean dis-
charge values (m3 s−1) have been converted into daily runoff
(mm day−1) to make easier comparison with rainfall and
streamflow of catchments of different area. Precipitation oc-
curs evenly throughout the year. Due to the higher elevation
of the Ardennes, precipitation over the Ourthe catchment is
greater than over the Demer catchment, and the difference
is on average slightly larger during winter. The smoother
streamflow regime of the Demer is characteristic of a high
baseflow contribution due to the high infiltration rate and the
presence of aquifers. The larger seasonal differences of the
streamflow regime of the Ourthe results from a larger contri-
bution of surface flow. Precipitation and streamflow thresh-
olds that will be used in the verification of the probabilistic
forecast are computed from the data observed during 1971–
2000 and summarized on Figs. 2c and d.

6 3)Fig. 3. Management of the Demer during 2002;(a) cumulated vol-
ume of water (in 106 m3) diverted in the Schulensmeer reservoir
(by courtesy of K. Cauwenberghs, AMINAL – afdeling Water);(b)
daily streamflow of the Demer at Diest; the continuous line corre-
sponds to the measured values (data from HIC) and the dashed line
to the “reference” values i.e. simulated using observed precipitation.

Note that the water balance model does not take water
management actions into account. For the Demer basin, de-
cisions to be taken by flood risk managers include diverting
part of the streamflow into flood control reservoirs with a
total capacity of about 11.106 m3 (AMINAL – afdeling Wa-
ter, 2004). On Fig. 3, the cumulated volume of water di-
verted into the main reservoir during 2002 is compared with
the streamflow measured downstream at Diest and with the
reference simulation. The effect of filling the reservoir and
releasing with some delay the stored water may be noticed
for the February and the November events. For this reason,
in the following, the streamflow forecasts are compared to
the values given by the reference simulation.

The autocorrelation function of simulated streamflow for
the two catchments has already been compared to the ones
for the observed values for subcatchments and for the Ourthe
(Roulin and Vannitsem, 2005). During winter, the decorre-
lation time i.e. the lag for which the autocorrelation function
drops below e−1 is around 10 days for sub-catchments during
winter and the autocorrelation function is well reproduced by
the water balance model. During summer, the decorrelation
time varies from 3 to more than 10 days for subcatchments
of the Demer. For the Ourthe, the decorrelation time is even
longer but it is not properly reproduced beyond 2 days. As a
consequence of the daily time step and parameter simplifica-
tion, runoff generated by precipitation falling over the catch-
ment does not reach the outlet until the next day. For this
reason, precipitation observed on day D starts to contribute
to the simulated streamflow at D+1 and precipitation forecast
for D+1 is routed to the outlet starting at D+2 etc. Therefore,
we will begin verification of the streamflow forecasts at D+2.
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3 Validation measures

This study will restrict the verification to methods suited
for probability forecasts. The methods are mainly from the
field of meteorology even if the first validation measure, the
Brier Skill Score (Brier, 1950), has been recently applied in
hydrology (Bradley et al., 2003, 2004; Roulin and Vannit-
sem, 2005). The second method, a simple decision model
(Richardson, 2000; Zhu et al., 2002) allows the hit and false
alarm rates of the ensemble prediction system to be translated
into an economic value of the forecast.

3.1 Brier skill score and derived measures

In this study, the probability forecast that the streamflow will
exceed a threshold is estimated as the relative frequency of
occurrence of this event among the ensemble members. The
ensembles are taken at “face value” (e.g. Richardson 2001;
Katz and Ehrendorfer 2006) and the uncertainty due to the
finite size of the ensembles is ignored. This estimated fore-
cast probability (0≤f ≤1) is compared with the observationx

that the streamflow has exceeded this threshold (x=1) or not
(x=0). In the framework of the distribution oriented (DO) ap-
proach to forecast verification, the forecast quality consists of
the totality of statistical characteristics embodied in the joint
distribution of forecasts and observationsp(f, x) (Murphy
and Winkler, 1987; Murphy, 1997). The first aspect of the
forecast quality is the accuracy measured by the Brier score
(Brier, 1950) or mean square error MSE(f, x). The Brier
Skill Score is the fractional improvement in accuracy of the
forecast over climatology:

BSS= 1 −
MSE(f, x)

σ 2
x

(1)

whereσ 2
x =MSE(µx, x) is the variance of the observations

in the verification sample and is a measure of uncertainty;
µx is the frequency of occurrence of the event during the
verification period.

Two different factorizations of the joint distribution into
conditional and marginal distributions conveniently relate ac-
curacy to other aspects of forecast quality. The first is the
calibration-refinement (CR) factorization:

p (f, x) = p (x|f )p (f ) (2)

In the context of the CR factorization, the mean square error
can be written as:

MSE(f, x) = σ 2
x + Ef

(

µx|f − f
)2

− Ef

(

µx|f − µx

)2 (3)

whereµx|f is the conditional mean of the observed event
given the forecast. The second term of the right-hand side
of (3) is a conditional bias and is a measure of reliability.
A forecast is reliable (or well calibrated) if the occurrence
frequency of an event, for a given forecast value, is close to
its forecast probability of occurrence. The third term is a

measure of resolution (or refinement) by which the relative
frequency of an event given a forecast differs from the un-
conditional mean. Substituting (3) into (1), the Brier Skill
Score may be expressed as:

BSS=RRES-RREL (4)

with RRES for relative resolution and RREL for relative
reliability. A perfect forecast would have RRES=1 and
RREL=0.

The second factorization is the likelihood-base rate (LBR)
factorization:

p (f, x) = p (f |x) p (x) (5)

With this factorization, the mean square error can be decom-
posed as:

MSE(f, x) = σ 2
f + Ex

(

µx|f − x
)2

− Ex

(

µx|f − µf

)2 (6)

whereµf is the average forecast,µf |x its average given the
observation and whereσ 2

f is the variance of the forecasts and
is a measure of the sharpness or degree to which the proba-
bility forecasts are close to 0 or 1. The third term of the right-
hand side of (6) is a measure of discrimination or degree to
which the distribution of forecasts when the event occurs dif-
fers from the distribution when it doesn’t. The second term is
a measure of the bias conditional to the observation (or type
2 conditional bias). Substituting (6) into (1), the Brier Skill
Score may be expressed as:

BSS=1+RDIS+RSH-RTY2 (7)

where RDIS is the relative discrimination, RSH the rela-
tive sharpness and RTY2 the relative conditional bias. Note
that both the sharpness and the discrimination are desirables
aspects of forecast quality but contribute differently to the
MSE.

3.2 Relative economic value

The benefits gained by using streamflow forecasts depends
not only on their skill but also on the impact of the stream-
flow on the system to manage as well as on the actions the
user should take to mitigate the consequences. The value of
the hydrological prediction system is studied in the frame-
work of a simple static cost-loss ratio decision model whose
formulation comes from Richardson (2000).

In this model, the decision has to be made either to take
a protective action again an adverse event, let’s say a flood
eventX, or to do nothing. If the event occurs and no action
has been taken, then a lossL has to be incurred. Taking
action has a costC whatever the outcome but if the event
occurs, a part of the loss,L1 is prevented.

The strategy to be adopted should minimise the expense
on the long term. If the only information available isµ,
the frequency of occurrence of the event in the climatolog-
ical record, the strategy reduces to: either always protect or
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never. Always taking a protective action results in an average
expense ofC+µ(L−L1) whilst the average expense of never
protecting isµL. Therefore, the optimal strategy consists in
always to act ifC+µ(L−L1)<µL that is if C/L1 <µ and
never to act otherwise. The average expense is:

Eclimate= min {C + µ (L + L1) , µL} (8)

If the future were perfectly forecast, it could be possible to
take actions only on those occasions when the event is going
to occur; the average expense would be:

Eperfect= µ (C + L − L1) (9)

The information given by actual forecasts may allow a de-
cision maker to adapt the strategy in order to reduce the av-
erage expense. The reduction of expense is a measure of the
value of the forecasts. The relative economic value compares
the reduction of expense with the reduction which would be
achieved by a perfect forecast as the ratio:

V =
Eclimate− Eforecast
Eclimate− Eperfect

(10)

The decision maker will benefit from the forecast ifV >0.
A deterministic forecast of a dichotomous event like “the

discharge of the Demer will exceed 68 m3 s−1” simply con-
sists in announcing that either it will or will not occur. The
four possible combinations of deterministic forecasts and
event outcomes are depicted on Fig. 4. The event is correctly
rejected at a frequencyf1, it is missed atf2, incorrectly fore-
cast atf3 and correctly atf4. Noting thatµ=f2+f4, the hit
rateH and the false-alarm rateF are defined as:

H = f4
/

µ (11)

F = f3
/

(1 − µ) (12)

The average expense of the deterministic forecast system is
given with:

Eforecast= f2L + f3C + f4 (C + L − L1) (13)

With the definition of the value in Eq. (10), of the expenses
given in Eqs. (8), (9) and (13), and of the hit and false-alarm
rate in Eqs. (11) and (12), the relative economic value of the
deterministic forecast can be written as:

V =
min(α, µ) − Fα (1 − µ) + Hµ (1 − α) − µ

min(α, µ) − µα
(14)

whereα=C/L1, the cost-loss ratio, or cost of taking an action
expressed as a fraction of that part of the potential loss which
is protected by that action. The relative value depends on
the parameterα which characterises the decision making sit-
uation,µ which describes the hydrologic (climatic) context
andH andF which quantify the performance of the forecast
system.

As far as probabilistic forecast is concerned, a decision
maker has to choose the probability thresholdpt at which he

A C L1 LXEi ifi
Fig. 4. Decision tree for a simple static decision problem: a deci-
sionA is taken on an action at the costC on the base of forecast;
this action is aimed at preventing an amountL1 of the lossL that
otherwise should be incurred if the eventX happens; the expenses
Ei are given for each combinationi of forecasts and outcome oc-
curring with frequencyfi .

will take an action. By this choice, the probabilistic forecast
system is changed into a deterministic one. For any value
of pt , the relative economic value of the probabilistic system
can be calculated with Eq. (14). For an optimal strategy, the
decision maker will select the probability threshold which
results in the largest value.

3.3 Value of early warnings

How could a manager take advantage of a positive relative
value at medium-range if hydrological ensemble forecast has
a greater value at shorter range? It was suggested by Richard-
son (2000) that “users with more time to prepare for protec-
tive action may be able to reduce the cost of taking it and
to reduceα towards the region where EPS has the greater
advantage”. Nevertheless, the situation may be such that
the forecast changes or, if the forecast of high risk persists
the following days, actions with gradually more implications
may be undertaken. In other words, the situation is more
likely to be dynamic rather than static.

An extension to the decision problem described in the pre-
vious section is proposed to investigate the relationships be-
tween the probability threshold chosen for the different fore-
cast days, the costs of successive actions and the value of the
forecasts. This problem is represented on Fig. 5 as a decision
tree. Two stages are considered: a forecast is issued, let’s
say, six days before an eventual flood event; preliminary ac-
tion can be decided accordingly at this first stage; three days
later, a second forecast is issued, based on which comple-
mentary action can be undertaken; if no action was decided
at the first stage, the same protection can be obtained with
a late action at a higher cost. Depending upon the actions
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A0 C0A00 C00C0 C00 CL1X Eiifi
Fig. 5. Decision tree for a simple two-stage dynamic decision prob-
lem: a decisionA′ is taken on a preliminary action at costC′ on
the base of a first forecast; later, depending on a second forecast, a
decisionA′′ is taken on either a complementary action at costC′′

or a late action at cost C in case no action had been decided at the
first stage; these actions at total costC′+C′′ or at costC are aimed
at preventing an amountL1 of the loss L that otherwise should be
incurred if the eventX happens; the expensesEi are given for each
combinationi of successive forecasts and outcome occurring with
frequencyfi .

taken at the two stages and upon the occurrence of the flood
event, different total costs are incurred (Fig. 5). Note that this
dynamic problem is different from other models (e.g. Wilks,
1997) consisting in a sequence of decision and event where
losses can be sustained at each step and weather forecasts
used for decision-making have a fixed range.

As in the static problem, if the flood occurs and no pre-
ventive action has been taken, the total loss is given byL and
from that loss, an amountL1 may be protected by the preven-
tive actions. If only one action at the second stage is taken,
its costC is the same as in the static problem to which the dy-
namic problem will be compared. If taken sequentially, the
actions have costsC′ andC′′ at the first and second stage,
respectively, such that the advantage of timeliness is a lower
total costC′+C′′<C. The average expense of this decision
system is:

Eforecast=

8
∑

i=1

fi × Ei (15)

wherefi is the frequency of occurrence of thei-th combi-
nation of successive forecasts and outcome andEi is its as-
sociated cost and loss given in Fig. 5. The frequencies of
occurrence depend upon the choice of the probability thresh-
olds at the two stages. The pair of thresholds resulting in the
minimum average expense is to be selected.

Fig. 6. Brier Skill Score(a) of the EPS precipitation for the Demer
at D+3 (solid line), D+6 (dashed line) and D+9 (dash-dotted line);
CR decomposition: relative measures of resolution(c) and reliabil-
ity or conditional bias(e); LBR decomposition: relative measures
of discrimination(b), sharpness(d) and type 2 conditional bias(f).

4 Results

4.1 Skill of rainfall and runoff predictions

In the Figs. 6 to 8, measures of the accuracy and other as-
pects of probability forecasts quality are summarized for the
precipitation over the Demer and for the streamflow of the
Demer and of the Ourthe. Unlike in Roulin and Vannitsem
(2005) these measures have been calculated over the whole
year whatever the season and are presented over the entire
range of thresholds defined by the percentiles (correspond-
ing to Fig. 2).

For precipitation (Fig. 6), the skill is decreasing for in-
creasing precipitation amounts and for increasing lead times.
Nine days in advance, warnings based solely on the proba-
bility of heavy precipitation are of little use. The most inter-
esting property is that forecasts of the probability of precip-
itation are very reliable. Note also that percentiles below a
value of about 20 are not represented and correspond to no
precipitation.

The probability that the streamflow exceeds a threshold is
forecast with a significant skill over a wide range of thresh-
olds corresponding to percentiles from 5–10 to about 95
(Figs. 7 and 8). This skill results from the high resolution
of the forecasts (RRES), combined with their good reliabil-
ity as seen with the small values of the relative bias condi-
tional to the forecast (RREL). For high flows, the skill of the
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Fig. 7. Brier Skill Score(a) of the hydrological ensemble predic-
tions for the Demer at D+3 (solid line), D+6 (dashed line) and D+9
(dash-dotted line); CR decomposition: relative measures of resolu-
tion (c) and reliability or conditional bias(e); LBR decomposition:
relative measures of discrimination(b), sharpness(d) and type 2
conditional bias(f).

Ourthe is greater than the skill of the Demer. This differ-
ence was linked to the faster response of the Demer to the
precipitation events (Roulin and Vannitsem, 2005), as illus-
trated in Figs. 7a and 8a for percentiles above 40. Below 30,
the reverse is true. The Demer is characterized by a large
contribution of the aquifers to the baseflow; therefore, the
streamflow of the Demer is more predictable in low flow sit-
uations if proper values are given to the initial conditions of
the hydrological model.

With the LBR decomposition, it can be seen that the skill
of the two catchments behave differently. For the Demer,
with increasing value of the threshold, both the sharpness
(RSH) and the discrimination (RDIS) are continuously de-
creasing whereas the bias conditional to the observations in-
creases. For the Ourthe, the bias conditional to the observa-
tions is almost constant up to around a threshold correspond-
ing to the percentile 80 depending on the forecast day. The
sharpness is high in the same range and even very high for
low threshold values indicating that the probability forecasts
are not far from either 0 or 1. This good sharpness does not
correspond to a good discrimination. The discrimination is
nearly constant in this range and the skill is therefore increas-
ing slightly up to around the percentile 50.

The different aspects of the quality of the hydrological en-
semble prediction system are compared with the correspond-
ing aspects of the three deterministic alternatives. On Fig. 9,

Fig. 8. Brier Skill Score(a) of the hydrological ensemble predic-
tions for the Ourthe at D+3 (solid line), D+6 (dashed line) and D+9
(dash-dotted line); CR decomposition: relative measures of resolu-
tion (c) and reliability or conditional bias (e); LBR decomposition:
relative measures of discrimination(b), sharpness(d) and type 2
conditional bias(f).

the Brier Skill Score and measures derived from the CR and
LBR factorization are plotted with the forecast days for a
threshold corresponding to the 95th percentile. The hydro-
logical ensemble prediction system outperforms any of the
three deterministic forecast systems. Its skill remains signif-
icantly positive up to the forecast day D+9 whereas the skill
of the deterministic forecasts vanishes at D+7 for forecasts
using ECMWF “operational” and the EPS control and D+8
for forecasts using the EPS ensemble average.

The CR decomposition shows that this difference in skills
between deterministic and ensemble forecasts comes mainly
from the better resolution of the latter. The forecasts of the
hydrological ensemble prediction system range between 0
and 1 and are binned in 0.1 intervals in order to compute
the resolution. The deterministic forecasts are set to either
0 or 1. According to Eq. (3), a better resolution means that
the frequency of high flows given the probability forecasts of
the ensemble differs from the unconditional mean to a higher
degree than the frequency given the deterministic forecasts.
The bias conditional to the forecasts using the EPS control
or the ECMWF operational precipitation is higher than the
corresponding bias for the EPS ensemble average and for the
hydrological ensemble prediction. It can be noted that, for
a fairer comparison, the results for a deterministic forecast
could be improved by adding small random noise (Dr. Kees
Kok, personal communication; see also end of Sect. 4.2).
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Fig. 9. Brier Skill Score(a) of the probability forecast that the
streamflow of the Ourthe will exceed a threshold corresponding to
the 95th Percentile; calibration-refinement decomposition: relative
resolution(c) and relative reliability(e); likelihood-base rate de-
composition: relative discrimination(b), relative sharpness(d) and
relative type 2 conditional bias(f); the solid lines correspond to the
hydrological ensemble, the dashed lines correspond to the predic-
tion using ECMWF deterministic forecast, the dotted lines, using
the EPS control, the dash-dotted lines, using the EPS ensemble av-
erage, and the dash-triple dotted lines correspond to the streamflow
persistence (verification period 2000–2004).

The LBR decomposition shows that the sharpness of the
forecasts using ECMWF operational and EPS control are
close to 1 as can be expected for deterministic forecasts. For
probability forecasts at this high streamflow threshold, the
sharpness measure is not exactly 1 because the unconditional
means of the forecasts and of the observations are not equal
(µf 6=µx). Nevertheless, this good sharpness is not associ-
ated to a good discrimination. The discrimination of the four
systems is almost the same and decreases with forecast lead
time. Therefore, despite a slightly lower bias conditional to
the observations compared to the hydrological ensemble pre-
diction system, the deterministic system using ECMWF op-
erational and EPS control have less skill. The superiority
of the hydrological ensemble prediction system over the de-
terministic system using the EPS ensemble average has an-
other origin: the sharpness of this deterministic system is
only moderately larger and the bias conditional to the ob-
servation is slightly larger than for the hydrological ensem-
ble prediction system; combined with a discrimination of the
same order, the skill of the hydrological ensemble prediction
remains significantly better.

The skill has been conveniently measured using the sample
uncertainty as a reference even if known a posteriori and as-
sumed for all times of the year. There is a range of alternative
forecasts that would be skillful in this situation: persistence
of the streamflow, persistence of the weather used as forcing
to the hydrological model, ensemble streamflow predictions
using weather series drawn from past climate at the same
time of the year. The latter has skill but less than ensem-
ble streamflow predictions based on ECMWF-EPS (Roulin
and Vannitsem, 2005): the skill of ensemble streamflow pre-
dictions using EPS compared to this alternative probabilistic
forecast was above 0.5 after three days during winter and re-
mained significantly positive after nine days. In the present
study, the Brier Skill Score and its CR and LBR decompo-
sitions for the persistence forecasts are included in Fig. 9:
persistence has a relative resolution decreasing steadily and,
as soon as after two days, the skill of persistence is worst
than climatology due also to increasing biases.

In ensemble forecasting, the choice of perturbed initial
conditions is a crucial step to produce an ensemble with a
spread representing properly the uncertainty about the future
state of the atmosphere. In a perfect ensemble, the observa-
tions should be taken as an additional independent realization
of the same underlying probability distribution (Talagrand et
al., 1997; Hamill and Colucci, 1997). The histogram can be
calculated with the positions of observed values among the
ensemble. This histogram allows one to check the statistical
consistency of the ensemble and may be used to calibrate the
ensemble (Hamill and Colucci, 1997). In this study, the pri-
ority has been given to preserve the consistency in time of
each precipitation scenario of the ensemble. The calibration
method has been tentatively applied to the output ensemble
streamflow but not reported here in detail. Only a marginal
improvement has been obtained by this post-processing. In-
deed, the calibration changes the reliability of the probability
forecasts and not their resolution; since the reliability is al-
ready very good – at least for both cases studied – there is
little room for improvement. Future improvements are rather
to be expected through an increased resolution of the proba-
bility forecasts and such an increase might only follow future
improvements of the NWP model.

4.2 Value of streamflow predictions

The relative economic value of the hydrological ensemble
prediction system is now examined for the Ourthe for stream-
flow exceeding a threshold corresponding to the 95th per-
centile. This value is shown on Fig. 10 for the forecast
day D+6 as a function of the cost-loss ratio. The value is
shown for different probability thresholdspt amongst which
the threshold resulting in the largest economic value has to
be selected. It can be seen on this graph that the hydrologi-
cal ensemble prediction system has a positive value for most
of the cost-loss situations. The optimal probability threshold
depends on the cost-loss ratio (Fig. 14). The decision maker
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V �ptFig. 10. Relative valueV of the hydrological ensemble prediction
for different cost-loss ratiosα: probability that the streamflow of
the Ourthe will exceed a threshold corresponding to the 95th Per-
centile on D+6; the different curves correspond to different prob-
ability thresholdspt ; the overall value is shown with the envelope
(thick line).

faced with large potential loss compared to the cost of pro-
tection (smallα) will benefit by taking actions even when
the forecast probability is low. On the contrary, in a situa-
tion where costly action is to be decided (highα), the user
would benefit from the forecast if she/he decides to act only
when the probability forecast is high. The value of the fore-
cast can substantially drop with an inappropriate choice of
the probability threshold. The overall value of the hydrolog-
ical ensemble prediction system is shown by the envelope of
the different curves on Fig. 10. To benefit from this value,
the decision-maker must have a good perception or knowl-
edge of his situation and select the appropriate probability
threshold.

Note that the highest value of the probability threshold
(pt=0.98) is rarely reached or exceeded and all these oc-
casions correspond to streamflow higher than the 95th per-
centile. The false-alarm rate is therefore zero and it follows
from Eq. (14) that the relative economic value is equal to the
hit rate. This is due to sampling limitation. Note also that the
resolution of the probability thresholds is linked to the size
of the ensemble (Richardson, 2000) and, for the 51 members
EPS, the best resolution is achieved withpt intervals of about
0.02 as plotted on Fig. 10.

The overall relative economic value is compared for the
forecast day D+3 to D+9 on Fig. 11 for the Demer. This value
is positive in most of the cost-loss situations. As the fore-
cast horizon increases, the value for situations where taking
an action is costly decreases more rapidly than for situations
characterized by a cost-loss ratio close to the frequency of oc-
currence of the damaging event. Forα≈µx , where the rela-
tive economic value is optimum, this value remains very high
even at D+9. The results presented in this study may be con-

�Fig. 11. Relative value V of the hydrological ensemble prediction
for different cost-loss ratiosα: probability that the streamflow of the
Demer will exceed a threshold corresponding to the 95th percentile
for the forecast days D+3, D+6 and D+9; the probability forecasts
are compared with 1 or 0 if the “reference” streamflow exceeds the
threshold or not.

�Fig. 12. Relative value V of the hydrological ensemble prediction
for different cost-loss ratiosα: probability that the streamflow of the
Ourthe will exceed a threshold corresponding to the 95th Percentile
for forecast days D+3, D+6 and D+9; continuous line: the probabil-
ity forecasts are compared with 1 or 0 if the “reference” streamflow
exceeds the threshold or not; dashed line: the comparison is made
with the observed streamflow.

sidered as an upper limit to the skill and relative economic
value of the hydrological ensemble predictions because the
streamflow forecast using EPS precipitation is compared to
the streamflow simulated using the observed precipitation.
For the Demer, due to the flood control actions, the stream-
flow forecast has not been compared to the observed stream-
flow.

The overall relative economic value for the Ourthe is
shown on Fig. 12. At D+3, this value is larger for the Ourthe
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�Fig. 13. Relative value V of the hydrological ensemble predic-
tion (solid line) for different cost-loss ratiosα: probability that the
streamflow of the Ourthe will exceed a threshold corresponding to
the 95th Percentile on D+6; the dashed line is the relative value of a
deterministic prediction obtained by using the ECMWF determin-
istic forecasts; the dotted line corresponds to the prediction with the
control run of EPS; the dash-dotted line to the prediction with the
EPS ensemble average, and the dash-triple dotted line to the stream-
flow persistence (verification period 2000–2004).

than for the Demer as was shown for the skill. The relative
economic value has also been estimated on the basis of the
observed values of the streamflow. Due to errors in both input
data and hydrological modelling, the simulated streamflow
at the start of the forecast differs from the observed stream-
flow. At D+3, the comparison of the probability forecast
with the observed streamflow results in a relative economic
value which is much lower than the values based on the ref-
erence streamflow. Nevertheless, after several days, uncer-
tainties about the precipitation forecasts themselves domi-
nate and the differences between the verification measures
made with the reference and the observed streamflow are re-
duced. A further development could complement this hydro-
logical ensemble forecast system with an updating module
(e.g. Goswami et al. 2005).

The overall relative economic value of the hydrological
ensemble prediction is compared with the value of the de-
terministic alternatives on Fig. 13, for the forecast day D+6.
This analysis did not account for forecasts made when a river
is exceeding a flood threshold and this makes the economic
value inflated. This problem is linked with the persistence
of the streamflow already mentioned. The value of persis-
tence is also included in Fig. 13 where it is shown marginal
at D+6. At a threshold corresponding to the 95th Percentile,
flood events last on average three days. The superiority of
the ensemble forecasts over the deterministic forecasts lies
on the flexibility allowed by a proper choice of the probabil-
ity threshold. The advantage of using hydrological ensemble
predictions for decision-making is the highest for the situa-

tion with low cost-loss ratio, where the optimum probability
threshold is also low and whose use is made possible if the
ensemble size is sufficient. For values ofα lower or equal to
µx , the advantage extends for ensemble predictions made at
the medium-range over deterministic forecasts issued within
a shorter delay (e.g. comparing D+9 on Fig. 12 with D+6
of any deterministic forecast on Fig. 13). Note that select-
ing a probability threshold which results in the highest value
is equivalent to some calibration. Zhu et al. (2002) use inde-
pendent verification data to calibrate the probability forecasts
and then evaluate the economic value with the use of a prob-
ability threshold equal to the cost-loss ratio. Regarding the
deterministic forecasts, their skill and value can be improved
if error statistics are used to estimate a probability distribu-
tion (Atger, 1999; Smith et al., 2001).

4.3 Value of early warnings

Numerical examples of the dynamic decision model are
given with ficticious costs and losses but based on the prob-
ability forecast six days and three days in advance that the
streamflow of the Demer exceeds the 95th percentile. In the
following, the day when a terminal consequence is analyzed
will be referred as T and the days when the successive fore-
casts are issued will be referred as T-6 and T-3. In these
examples, the total cost of the two actions taken successively
is set toC′+C′′=C−0.05L1. The model is applied for a
range of cost-loss ratio (α=C/L1) from 0.10 to 0.95. Two
cases are tested: in the first case, the cost of the earlier ac-
tion is taken fixed (C′=0.01L1) for the whole range ofα, the
cost-loss ratio of the corresponding static problem, whereas
in the second case, the costs of both actions are proportional
(4C′=C′′).

The values of the pair of thresholds selected for the dif-
ferent cost-loss ratios are compared with the values of the
single threshold of the static problem on Fig. 14. The thresh-
olds for the probability forecast at T-3 for the dynamic and
static model follow almost the same relationship withα. The
more expensive the action compared to the protected loss,
the higher the probability threshold to optimise the value of
the forecast system. For a perfectly reliable forecast in the
static problem, the optimal threshold would be equal toα

(Richardson, 2000). The threshold for the probability fore-
cast at T-6 follows a different relationship than the threshold
at T-3 and depends upon the rate of the cost of the action at
the first stage,C′, with α (excepted atα=0.15 where both
cases have the sameC′). For a cost constant withα, the
threshold increases slowly withα and is always much lower
than the threshold at T-3. For a costC′ proportional to the
total cost, the threshold increases steeply withα, and, in the
range ofα from 0.2 to 0.8, it is greater than the threshold at
T-3, even if the costC′ at T-6 in this case is still much lower
than the costC′′ at T-3.

The relative economic values of the hydrological ensemble
predictions for the Demer in the framework of the static prob-
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� � C=L1)� C0 C00 L1) C0 L1 C0 C00C0 C00 C�0:05L1)
Fig. 14. Probability thresholds resulting in optimal relative
economic values for different cost-loss ratioα; the continuous
line corresponds to the static decision problem (α=C/L1); the
other lines correspond to the two-stage dynamic decision problem
(α=(C′+C′′)/L1): the dashed and the dash-dotted lines are for the
thresholds used at the first and second stage, respectively; two cost
sharing figures are considered:(a) C′/L1=0.01 and(b) C′=C′′/4;
both dynamic problems have a total cost reduced compared to the
static problem (C′+C′′=C−0.05L1); example of the Demer with
the 95th percentile as streamflow threshold.

lem and of the dynamic problem are presented on Fig. 15.
In this figure the relative economic value is obtained with

� C=L1 C0 L1C0 C00Fig. 15. Relative value of the hydrological ensemble prediction for
different cost-loss ratioα; the continuous line corresponds to the
static problem (T-3); the dashed line corresponds to the dynamic
problem with a cost at the first stage (T-6) set toC′/L1=0.01; the
mixed line corresponds to the dynamic problem with costs at the
two stages proportional:C′=C′′/4; same example as Fig. 14.

Eq. (10) in which the forecast system is compared to two
other decision systems – the first with only climatology as
information and the second with perfect forecasts. For ease
of comparison, in these two decision systems, the cost of ac-
tion is set toC, for both the static and the dynamic problems.
For a same reduction of the total cost, a cost of an earlier
action fixed to a low value gives the highest advantage.

The preliminary results of a dynamic problem in the con-
text of medium-range hydrological predictions presents nu-
merical results based on hindcasts for the Demer catchment.
The event chosen is a streamflow greater than a threshold
defined by the 95th percentile. In the hindcast period, the
frequency of occurrence of this event is 0.07. The results
are presented for a range of cost-loss ratio from 0.10 to 0.95.
Further study will focus on low cost/loss ratios, where the
relative economic values are likely to be the highest and will
have to take uncertainty into account. A formal analysis of
this dynamic problem will also broaden the scope of possible
conclusions towards a better use of medium-range forecasts.
Finally, it is worth investigating the plausible values to be as-
signed to the parameters of the economic model in order to
meet the operational context.

In this dynamic model, the second stage has been defined
at T-3. The value of the early warning could also be com-
pared with the situation at T for which decision are taken,
in most operational river management centers, on the base
of the values of precipitation and streamflow measured in
real time. Likewise, the streamflow threshold has been se-
lected so that a sufficient number of events are included in
the verification period and that statistically meaningful con-
clusions may be drawn. Clearly, the choice of the streamflow
threshold should be addressed and included in the study of
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the interrelationships between probability threshold, forecast
lead-time and value.

The dynamic aspects associated with the medium-range
forecasts are worth being addressed with regard, for instance,
to the belief that persistent probabilistic forecasts have more
value. A simpler two-stage dynamic problem to test this hy-
pothesis would consist in taking a single action provided not
only that a probability threshold is exceeded but also that a
probability threshold, possibly different, has been exceeded
in a previous forecast. In this situation and with the variables
defined in Fig. 5, the expenses could be summarized with
E={0, L, 0, L, 0, L,C, C+L−L1}. Tests not reported here
using this model for successive probabilistic forecasts at T-6
and T-3 but also for T-4 and T-3, haven’t led to additional
value. An even simpler static problem related to this view
consists in pooling successive forecasts into lagged super-
ensembles. Pooling ensembles forecasts issued at ECMWF
at 00:00 UTC and 12:00 UTC did not improve the skill of
hydrological ensemble predictions.

5 Conclusions

A hydrological ensemble prediction system has been devel-
oped based on the use of ECMWF EPS in a hydrological
model. This system has been tested on two Belgian catch-
ments with contrasted hydrological cycle, by performing ex-
tensive hindcasts with archives from ECMWF for the period
from November 2000 to January 2006, which corresponds
to the operational NWP model with∼80 km spatial resolu-
tion. This study focuses on the skill and the relative eco-
nomic value of the probability forecasts.

Ensemble forecasting requires the adaptation of the man-
agement rules towards the use of probability forecasts instead
of deterministic discharge forecasts. This implies also an in-
creased number of simulations with hydrological/hydraulic
modelling systems. For comparison, alternative determinis-
tic hindcasts have been also performed on the basis of either
the archives of the ECMWF operational deterministic runs at
higher spatial resolution or on the basis of the mean of EPS
ensembles or on the control (not perturbed) run of EPS.

The value of early warning and the issue raised by the
choice of probability thresholds has been tackled with a sim-
ple dynamic two-stage decision model. Numerical examples
have been given with ficticious cost and loss amount, but
with forecast probability and event occurrence taken from
the hindcasts for the Demer. It has been shown that the op-
timum value is obtained with a probability threshold for the
decision at the first stage depending upon both the cost of
the preliminary action and the total cost to prevent damage;
the probability threshold for the decision at the second stage
has been found similar to the corresponding threshold in the
static problem.

The hydrological ensemble predictions have greater skills
than deterministic ones. Their greater relative economic

value for many users lies on the choice of a probability
threshold appropriate to the decision-making situation. Opti-
mal thresholds can only be selected on the base of hindcasts.
As the forecasting systems are regularly upgraded, there is a
need to reiterate studies based on hindcasts.

The adaptation of the timestep from daily timestep to 6 h at
which EPS precipitation forecasts are available, the addition
of a streamflow updating model, and the inclusion of flood
control rules are part of future developments. The benefit
would be expected in the first forecast days beyond which
uncertainties on precipitation predictions dominate. Hind-
casts will be used in more realistic management situations
in order to define the probability thresholds corresponding to
the optimal use of forecasts for decision-making.
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