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Abstract. A simplified, vertically-averaged model of soil

moisture interpreted at the daily time scale and forced by

a stochastic process of instantaneous rainfall events is com-

pared with a vertically-averaged model which uses a non-

overlapping rectangular pulse rainfall model and a more

physically based description of infiltration. The models are

compared with respect to the importance of short time-scale

(intra-storm) variable infiltration in determining the proba-

bilistic structure of soil-moisture dynamics at the daily time-

scale. Differences in approach to infiltration modelling show

only minor effects on the probabilistic structure of soil-

moisture dynamics as simulated in the two models. The par-

titioning of losses during a single rainfall event are examined

closely and the conditions under which surface-controlled

runoff is significant, as a proportion of total losses, are de-

lineated.

1 Introduction

As both a reservoir and a regulator of water movement in the

soil-plant-atmosphere continuum, the soil is an enormously

rich and complicated domain for hydrologic enquiry. In

ecosystems where water is the limiting resource, understand-

ing the dynamics and variability of soil water is essential not

only for understanding the cycling of water, but also for un-

derstanding ecosystem dynamics, such as patterns of vege-

tation form, adaptation, and distribution (both spatially and

temporally) (Rodriguez-Iturbe and Porporato, 2004). How-

ever, these are complex, nonlinear systems making math-

ematical analysis of the dynamics difficult. Development

of simplified soil-moisture models (e.g., Eagleson, 1978c;

Milly, 1993; Kim et al., 1996; Rodriguez-Iturbe et al., 1999;

Laio et al., 2001; Porporato et al., 2004; Rodriguez-Iturbe

and Porporato, 2004; Daly and Porporato, 2006) is therefore
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an important step in assembling the analytical tools neces-

sary to unravel the intertwined dynamics of ecosystems and

the hydrologic cycle. The aim of developing such models

is to balance the faithful representation of physical dynam-

ics (e.g., nonlinearities of infiltration and plant dynamics)

against the mathematical simplicity that may allow analytical

solutions. These solutions in turn provide insight into the re-

lationships between component processes in determining the

character of soil water dynamics.

One of the many tasks in developing simplified models

of soil moisture is determining how to represent the parti-

tioning of rainfall into runoff and infiltration. Two mech-

anisms are commonly associated with runoff: that of sub-

surface control or saturation deficit, and surface control (of-

ten associated with Horton). While the distinction is some-

what artificial, it is useful for describing approximate mod-

els of infiltration which require an imposed discontinuity in

the infiltration curve at saturation (s=1) to avoid supersatu-

rating the soil. By surface-controlled runoff here we mean

runoff generated due to an explicitly time dependent soil

infiltrability. By subsurface control we simply mean that,

for time resolved events, at saturation the infiltrability is in-

stantaneously reduced to the saturated conductivity or that,

for instantaneous events, the infiltrated depth cannot exceed

the saturation deficit. In simplified models it is often con-

venient to ignore surface-controlled runoff in favor of the

saturation deficit approach given its simple implementation

(Rodriguez-Iturbe et al., 1999; Rodriguez-Iturbe and Por-

porato, 2004). In this paper we examine the relationship

between models treating runoff solely from the saturation

deficit approach in favor of analytical (probabilistic) solu-

tions and models which take into account surface-controlled

runoff at some analytical cost.

To make such a comparison we have selected two models

(each with some modifications for the purposes of this inves-

tigation) of soil moisture at a point which broadly illustrate

the differing treatments of infiltration while otherwise re-

maining similar in structure. The first model is that of
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Rodriguez-Iturbe et al. (1999) (see also Milly, 1993; Laio et

al., 2001; Porporato et al., 2004) which models soil moisture

at the daily time-scale using instantaneous rainfall events and

ignoring surface-controlled runoff. We will hereafter refer

to this model as the Instantaneous Event Model (IEM). The

second model is derived from those of Eagleson (1978b,c)

and Kim et al. (1996) which take into account rainfall du-

ration/intensity and the associated possibility of surface-

controlled runoff. This model will be referred to as the Fi-

nite Duration Event Model (FDEM). Both the IEM and the

FDEM treat soil-moisture content averaged vertically over

the root zone (i.e., instantaneous vertical redistribution). For

a comparison of vertically lumped versus distributed models

see Guswa et al. (2002).

The fundamental differences between the two models are

in the representation of rainfall and infiltration. For models

using the saturation deficit approach it is not necessary (at

the daily time scale) to resolve the dynamics of soil moisture

during the rainfall event (since only the initial soil satura-

tion deficit and the rainfall depth determine the infiltration

response). In such models an instantaneous pulse of rain-

fall containing a finite depth may then be used as a model

for rain events. Alternatively, in order to resolve surface-

controlled runoff the model must also ascribe an intensity to

the rainfall event in order to determine the infiltration. This

amounts to assigning a (stochastic) duration to each rain-

fall event and then defining a function which transforms a

given rainfall depth and duration into an infiltrated depth. In

the absence of an analytical solution for this transformation,

storm events must be resolved numerically. Otherwise, at

the daily time scale a new probability density of jumps in

soil moisture could be derived from the known distribution

of rainfall depths. For the second model in this paper we fol-

low the approach of Eagleson (1978c) and Kim et al. (1996)

in using Philip’s (1957) infiltration solution modified by the

time compression approximation (e.g., Smith, 2002) as the

basis for this function. The two models for comparison dif-

fer then only in accounting losses during storm events. As

the stochastic forcing is generally the factor determining an-

alytical tractability of the problem, it is of particular interest

to understand what is gained from the added complexity of

resolving storm duration and whether modifications of the

instantaneous storm models are available which might retain

the possibility of analytical solutions while improving the ac-

curacy of the model.

2 Description of models

The basic structure of vertically-averaged models of soil

moisture at the daily time-scale is that of a stochastic differ-

ential equation describing the rate of change in soil moisture

as the sum of inputs and losses associated with the active soil

layer. The balance equation is then given by

nZr
ds

dt
= φ(Rt )− ET − L, (1)

where n is the soil porosity, Zr is the soil rooting depth (ac-

tive layer), s is the vertically averaged relative soil-moisture

content, φ is an infiltration function, Rt represents a stochas-

tic rainfall process, ET is the rate of evapotranspiration, and

L represents the losses to deep percolation. Runoff (and in-

filtration) mechanisms are contained in φ which may be a

nonlinear function including thresholds (e.g., at s=1).

In this section we describe two models that may be ex-

pressed in the manner of Eq. (1): the IEM, which models

rainfall as a marked Poisson process, and the FDEM, which

models rainfall using random rectangular pulses. As the

models differ primarily in the processes at work during a

rainfall event, we will divide the description of the models

into “during storm” and “between storm” components.

Between storm events both models evolve according to the

same equation representing losses due to evapotranspiration

and percolation, following Kim et al. (1996),

nZr
ds

dt
= −(kss

c+1 + Emaxs), (2)

where ks is the saturated hydraulic conductivity,

c=2(1+m)/m where m is the exponent in the Brooks

and Corey (1966) water retention relation, and Emax is the

potential evapotranspiration. Here percolation is modelled

after the Brooks and Corey (1966) relation for unsaturated

conductivity. Evapotranspiration is assumed to decrease

linearly with soil moisture from a maximum at saturation,

Emax, following Kim et al. (1996). While in general the

evapotranspiration tends to be a nonlinear function of

soil moisture (Rodriguez-Iturbe et al., 1999), the linear

evapotranspiration losses have been found to be reasonable

for a broad range of soil-moisture values (see Porporato et

al., 2004, and references therein). For the purposes of this

paper, the loss function given in Eq. (2) is adopted for both

the instantaneous and finite duration models.

While the models are identical in their representation of

soil moisture between storms, the models differ significantly

in their treatments during a rainfall event. In the following

sections we describe the particulars of the stochastic rainfall

process and soil-moisture accounting in each model.

2.1 Instantaneous Event Model (IEM)

2.1.1 Rainfall

Since both the occurrence and amount of rainfall can be con-

sidered to be stochastic, the occurrence of rainfall is here

idealized as a series of point events in continuous time, aris-

ing according to a Poisson process of rate λ, each carrying

a random amount of rainfall extracted from a given distribu-

tion. The temporal structure within each rain event is ignored
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Fig. 1. Summary of the stochastic rainfall model used by Eagleson (1978c). The frequency, λ, for the corresponding marked Poisson process,

used in the IEM, is also shown. The mean rainfall depth α represents the mean area of the rectangular pulses.

and the marked Poisson process representing precipitation is

physically interpreted at a daily time-scale, where the pulses

of rainfall corresponding to daily precipitation are assumed

to be concentrated at an instant in time.

With these assumptions, the distribution of the times be-

tween precipitation events is exponential with mean 1/λ

(e.g., Cox and Miller, 1965). Furthermore, the depth of rain-

fall events is assumed to be an independent random vari-

able D, described by an exponential probability distribution

where α is the mean depth of rainfall events.

Both the Poisson process and the exponential distribution

are of common use in simplified models of rainfall at the

daily time scale. The exponential distribution fits well daily

rainfall data and, at the same time, allows analytical tractabil-

ity (Benjamin and Cornell, 1970; Eagleson, 1978a,c). The

values of α and λ are assumed to be time-invariant quanti-

ties, representative of a typical growing season.

2.1.2 Infiltration

In the IEM the Poisson rainfall process creates an instanta-

neous jump in soil moisture such that the infiltration depth,

ID , is assumed equal to the minimum value between the soil

saturation deficit and the depth of the rainfall event, i.e.,

ID = min [nZr(1 − s0),D] , (3)

where s0 is the relative soil moisture at the beginning of the

event and D represents the total depth of the rainfall event

(Rodriguez-Iturbe et al., 1999; Rodriguez-Iturbe and Porpo-

rato, 2004). For later comparison with the FDEM a nor-

malized infiltration function, y(D̃, s0)=ID/nZr , represent-

ing the net increase in relative soil moisture due to a rainfall

event of dimensionless depth, D̃=D/nZr , can be defined as

y(D̃, s0) =

{
D̃, 0 ≤ D̃ ≤ (1 − s0)

1 − s0, D̃ > (1 − s0).
(4)

Any rainfall in excess of 1−s0 is attributed to cumulative

losses (i.e., the combined effect of runoff and percolation).

2.1.3 Model summary

The IEM is a vertically averaged model of soil moisture in-

terpreted at the daily time-scale, driven by a marked Pois-

son rainfall process of rate λ with exponentially distributed

depths of mean α. The instantaneous jump in soil-moisture

state for a particular event is determined completely by the

subsurface state, or saturation deficit, and the depth of the

rainfall event. Losses between storms are assumed due only

to evapotranspiration and percolation. This may be expressed

by the stochastic differential equation,

nZr
ds

dt
= ID(Rt , s0)− (kss

c+1 + Emaxs). (5)

The stochastic soil-moisture process described by Eq. (5)

may be solved analytically under steady state conditions

(Rodriguez-Iturbe and Porporato, 2004). The resulting prob-

ability distribution is, in this case,

p(s) = Cs
λ
η
−1
e−γ s(Emax + kss

c)
− λ
cη

−1
, (6)

where η=Emax/nZr and C is a normalization constant that

must be evaluated numerically.

2.2 Finite Duration Event Model (FDEM)

2.2.1 Rainfall

Eagleson (1978c) offered an alternative to the Poisson rain-

fall process to allow for surface-controlled runoff by mod-

elling rainfall with non-zero storm durations. In contrast to

the marked Poisson process, each rainfall event is a rectan-

gular pulse occupying a finite time, with the time between

storms distributed exponentially with mean τ . A probability

distribution is also assigned to the storm durations as well as

to either the intensity or the total depth of rainfall. The re-

maining distribution may then be derived from the other two.

Drawing on data from Massachusetts and California, Eagle-

son (1978b) found that the durations were fit reasonably well

by the exponential distribution (with mean δ, see Fig. 1) and

that the event depths fit a two parameter gamma distribution.

Eagleson (1978b) then employed a model based on assumed
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distributions for the depth and duration of rainfall events.

Given that the exponential distribution is a special case of the

two parameter gamma distribution, we will use the simpler

exponential form in this paper so that the two rainfall mod-

els (IEM and FDEM) agree with respect to the distribution

of depths. Thus, for our finite duration model, each rainfall

event is determined by three random variables (depth, dura-

tion, and inter-arrival time), each of which is drawn from an

exponential distribution.

Assuming statistical independence between rainfall depth

and duration, one may now derive the distribution of rainfall

intensities dictated by fixing the distribution of depths and

durations as an exponential. The resulting probability density

function is

fP (P ) =
αδ

(α + δP )2
(7)

which is the positive part (P>0) of a Cauchy distribution.

As Eagleson (1978b) found that measured rainfall intensi-

ties were modelled well as an exponential distribution, the

Cauchy distribution, with power law tails, should overesti-

mate the frequency of intense rain events and the correspond-

ing runoff. Furthermore, while depth and duration are as-

sumed independent variables, sampling from these two dis-

tributions for each rainfall event leads to a statistically depen-

dent intensity. The conditional distribution of intensity, P ,

given the event duration, w, is then, fP |w(P |w)=w
α
e−

w
α
P ,

which shows the negative correlation between intensity and

duration. Such negative correlation is consistent with ob-

served rainfall frequency-duration patterns, though the nega-

tive correlation here is probably exaggerated due to the sim-

ple rainfall model.

2.2.2 Infiltration

To treat infiltration, the FDEM follows Eagleson (1978c) and

the improvements of Kim et al. (1996) by employing Philip’s

(1957) approximate solution (hereafter Philip solution) to

Richards’ equation combined with the time compression ap-

proximation.

Assuming a constant hydraulic head at the soil surface

with an initially uniform (semi-infinite) vertical soil-moisture

profile, Philip (1957) obtained a series solution to Richards’

equation. In its truncated form, the approximate solution

states that the infiltration rate, i(t), decreases in time as

i(t) = 1/2S(s0)t
−1/2 + aks (8)

where t is the time since the inception of the rainfall event,

and S(s0) represents the soil sorptivity and may be expressed

as

S(s0) =

(
2n(1 − s0)ψs

1 + 3m
(s
(1+3m)/m
0 − 1)

)1/2

k
1/2
s (9)

where ψs is the Brooks and Corey (1966) air entry pressure

(Smith and Parlange, 1978). The constant a in Eq. (8) which

depends on unsaturated hydraulic conductivity near satura-

tion (see Parlange et al., 1982) is here taken to be unity for

consistency with percolation losses at very long event dura-

tions (see Sect. 2.2.3).

For small t , according to the Philip solution, the potential

rate of infiltration of the soil will exceed the precipitation

rate. With these assumptions the infiltration rate curve would

then be equal to the precipitation rate, P , up to time te when

the Philip potential infiltration rate equals the precipitation

rate, after which ponding should begin. Thus,

i(t) =

{
P, 0 ≤ t ≤ te
1/2S(s0)t

−1/2 + ks, t > te
(10)

(see Fig. 1). Setting Eq. (8) equal to P and solving for time

yields,

te =
S(s0)

2

4(P − ks)2
, P > ks . (11)

However, initially, the boundary condition is that of constant

flux (equal to P ) rather than the constant head assumed in

the Philip solution. The result is that the time to ponding,

tp, is not generally equal to te and is found to be somewhat

larger. Liu et al. (1998) provide a nice description of the ex-

act solution for one dimensional linearized infiltration. As

an approximate correction for the difference between the ex-

act infiltration solution and the Philip solution, according to

the time-compression approximation (TCA) (also termed the

Infiltrability-Depth Approximation, see Smith, 2002, for de-

tailed discussion), cumulative infiltration may be used as a

surrogate for time (Sherman, 1943; Liu et al., 1998). Accord-

ingly, one assumes that at time tp the cumulative infiltration

under the constant flux is equal to the cumulative infiltration

under the Philip curve up to time te. The time to ponding,

tp=te+tc where tc is the time of compression representing

the difference between ponding in the Philip solution and the

actual time to ponding, is then defined by

∫ tp

0

Pdt =

∫ te

0

i(t)dt (12)

where i(t) is the Philip solution from Eq. (8). From this def-

inition it follows that

tp =

{
S(s0)

2(2P−ks )

4P(P−ks )2
, P > ks

∞, P ≤ ks .
(13)

Making the added assumption that for t≥tp the infiltra-

tion rate follows the Philip curve, the infiltration rate from

Eq. (10) becomes

i(t) =

{
P, 0 ≤ t ≤ tp
1/2S(s0)(t − tc)

−1/2 + ks, t > tp.
(14)

Furthermore, we can express the cumulative infiltration

depth (i.e., the cumulative depth of infiltrated rainfall)

Hydrol. Earth Syst. Sci., 10, 861–871, 2006 www.hydrol-earth-syst-sci.net/10/861/2006/
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analytically by integrating Eq. (14)

ID(t) =





P t, 0 ≤ t ≤ tp

P tp + S(s0)

(
(t − tc)

1/2 − t
1/2
e

)

+ks(t − tp). t > tp

(15)

From Eq. (15) one may now derive the normalized cu-

mulative infiltration y(D̃, s0) in analogy with that for the

IEM, Eq. (4), as a function of the non-dimensional rainfall

depth by dividing Eq. (15) by nZr , substituting D/P for

t , and then non-dimensionalizing the precipitation rate by

P̃=P/ks . The result is the somewhat complicated expres-

sion,

y(D̃, P̃ , s0) =





D̃, 0 ≤ D̃ ≤
ks
nZr
P̃ tp

ks
nZr
P̃ tp+

S(s0)
nZr

(
(nZr D̃
ks P̃

− tc)
1/2 − t

1/2
e

)
+

ks(
nZr D̃

ks P̃
− tp), D̃ > ks

nZr
P̃ tp

(16)

where tp, te, and tc are all functions of both s0 and P̃ . Notice

that since Philip’s solution assumes a semi-infinite domain,

the cumulative infiltration is potentially infinite.

2.2.3 Losses during rainfall

The model of infiltration described in the previous section

only accounts for the cumulative infiltration across the soil

surface and does not provide explicitly a method for deter-

mining the soil-moisture content of an active layer of soil. In

order to model the change in mean soil moisture content in

the upper soil layer (of depth Zr ) it is necessary to keep an

account of the flux of water across the lower bound of this

layer (i.e., percolation) during the rainfall event.

In the Kim et al. (1996) model, however, losses were only

included during the inter-storm periods. One consequence is

shown clearly by comparing the time to soil saturation (given

the linear increase in relative soil moisture during the pe-

riod prior to ponding) with the calculated time to ponding

derived from the time compression approximation. Combin-

ing Eqs. (9) and (13),

tp=

(
nZr(1−s0)

P

)(
ψsks(s

(1+3m)/m
0 −1)(2P−ks)

2Zr(1+3m)(P−ks)2

)
, (17)

from which it is clear that the first bracketed term represents

the time to saturation if ponding does not occur, and thus that

the second bracketed term must be less than or equal to unity

in order for ponding to occur before the soil is saturated (a

reasonable physical requirement). This condition is, in fact,

not met identically.

Figure 2 illustrates the domain in which ponding occurs

before saturation. Kim et al. (1996) account for this possibil-

ity by including it as part of “infiltration excess.” So, while

the time to ponding may in some cases violate physical sense,

Fig. 2. Plot showing the domain in which the Kim et al.

(1996) model by ignoring percolation during storm events pro-

duces the unphysical result that the time to ponding is greater than

the time to saturation. Shown for n=0.4, Zr=300 mm, s0=0.5,

ks=200 mm day−1, ψs=−500 mm, m=0.5.

it presents no problem for simulation due to the bound im-

posed at s=1.

In order to avoid this unphysical result, the FDEM first in-

corporates percolation during storm events in the same form

as Eq. (2). Following Kim et al. (1996) we assume that evap-

otranspiration is negligible during storm events. One then

has −kss
c+1, which is simply the loss for periods between

storms, Eq. (2), without the evapotranspiration term. How-

ever, taking into account leakage during the storm in this

manner does not solve the problem satisfactorily. While the

percolation losses will strictly balance with Eq. (14) for very

long durations, for finite times the infiltration term involv-

ing the sorptivity will still produce a supersaturation. This

is due to the approximate nature of both the infiltration and

the loss equations. In reality, soil moisture should asymptot-

ically, and monotonically, approach saturation during a pre-

cipitation event of constant intensity. Thus, to prevent the

supersaturation we further impose a bound at s=1 which,

however, produces a discontinuity in the s(t) curve which is

strictly an artifact of the model. The difference between the

soil-moisture curve without the bound at s=1 and that with

the bound represents the model’s error in properly allocating

moisture to runoff, storage, or leakage. Under our distinc-

tions between runoff mechanisms it is therefore attributed to

subsurface-controlled runoff. In the FDEM this term is typi-

cally small compared with the other losses.

2.2.4 Model summary

Following Eagleson (1978b,c) and Kim et al. (1996) the

FDEM is a physically-based model of vertically aver-

aged soil moisture at the daily time scale which incorpo-

rates Philip’s (1957) infiltration solution coupled with the

www.hydrol-earth-syst-sci.net/10/861/2006/ Hydrol. Earth Syst. Sci., 10, 861–871, 2006
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Table 1. Table of parameter values used in simulation of soil-

moisture and rainfall processes.

Name Units Value

ψs mm −500

ks mm day−1 50, 200, 2000

m − 0.5

Zr mm 300, 600

τ h 74

δ h 4, 6

λ day−1 0.15, 0.3

α mm 12

Emax mm day−1 3

time compression approximation and the Brooks and Corey

(1966) model for percolation. The FDEM uses a non-

overlapping, rectangular pulse model for rainfall for which

the depths and durations are drawn from corresponding ex-

ponential distributions with means α and δ. The mean inter-

arrival time, τ , is then chosen to be consistent with that of

the IEM, λ=(τ+δ)−1.

The evolution of soil moisture during storm events is de-

scribed by the equation

nZr
ds

dt
=

{
i(P , s0, t)− kss

c+1, s < 1

0, s = 1
(18)

where i(P , s0, t) is the time dependent infiltration rate (given

by Eq. 14 for a single rainfall event) and P is the rainfall in-

tensity. In the FDEM, as with the IEM, a bound is imposed

at s=1. Between storm events the model evolves accord-

ing to Eq. (2). The steady-state probabilistic structure of this

process is not known analytically and is thus determined by

numerical simulation.

3 Model comparisons

A combination of numerical simulations and analytic solu-

tions were used to compare the two models. Analytic so-

lutions exist for Philip’s infiltration with time compression

approximation, as well as for the probability density of the

full soil-moisture process defined in the IEM, Eq. (6).

Figure 4 illustrates the correspondence between the IEM

and the FDEM for a simulation period of 100 days. The

traces are almost identical with a notable exception near the

beginning of the series where an extremely intense storm oc-

curred. As seen to the right of the time series, the simu-

lated probability distribution of relative soil moisture gener-

ated with the FDEM agrees well with the analytical solution

to the IEM.

The net effect of the differences in infiltration modelling

between the IEM and FDEM is illustrated in Figs. 5 and 6

which show the probability distributions of soil moisture for

the two models. The four plots in Fig. 5 represent indepen-

dent simulations between which the soil depth, mean rain-

fall frequency, and mean rainfall duration were varied. As

one would expect, the FDEM simulation shows the great-

est departure from the IEM when the soil is deep and rain-

fall is infrequent. Under these conditions the mean soil-

moisture state is relatively dry leading to a high mean satura-

tion deficit, while rainfall intensities are also high, leading to

significant losses to runoff for the FDEM. However, even in

these cases the correspondence between the two is very good.

Figure 6 shows similar results for two different saturated con-

ductivity values representing two orders of magnitude differ-

ence. Unsurprisingly, the deep clay soil shows the greatest

discrepancy. Still the difference appears to be primarily in

the position and less in the shape of the distribution.

Given the correspondence between the two models evident

from Figs. 4 and 5, it is worth taking a closer look at the rela-

tive importance of runoff and percolation in determining the

change in soil moisture state due to a single event. Figure 7

illustrates the relationships between the models as they ac-

count for the partitioning of a rainfall event into constituent

depths. The plot on the left shows the simple partitioning of

the IEM into the depth contributing to a change in soil mois-

ture and cumulative losses for a storm event as a function

of rainfall depth for a given rainfall intensity and initial soil

moisture state. The plot on the right of Fig. 7 gives a de-

tailed account of the partitioning in the FDEM: The diagonal

line of unit slope represents the dimensionless depth of wa-

ter input to the system (equal to the event depth normalized

by nZr ). The curve just below this represents the infiltration

model of Kim et al. (1996) comprising the Philip (1957) in-

filtration solution and the time compression approximation.

The difference between the two upper curves is that portion

of the total depth which is lost to surface-controlled runoff.

The next lowest curve in the diagram is that of the FDEM

without the bound at s=1. The difference between the Kim

et al. (1996) and FDEM curves is the effective portion of

rainfall contributing to percolation. The bold curve repre-

sents the FDEM taking into account the bound at at s=1 and

represents the portion of a rainfall event that is stored in the

rooting zone (i.e., the change in soil-moisture state). The dif-

ference between the FDEM curve without the bound at s=1

and this bold curve is then a loss associated with the model

error due to the approximation of infiltration and percolation

functions and is here termed subsurface-controlled runoff.

From the point of view of simplified soil-moisture models

one should notice that for all event depths the dominant loss

during rainfall events is percolation (Fig. 7, shown for P̃=2).

The character changes significantly for P̃>2.5 (not shown)

as runoff plays a strongly increasing role. Secondly, the di-

agram in Fig. 7 may be somewhat misleading with respect

to the values of D̃ one may expect to encounter. A typi-

cal mean event depth, α=12 mm (used for the simulations in

this paper), yields a mean value of D̃ between 0.1 and 0.2

(depending on Zr ). In fact, D̃<0.3 for 95% of the rainfall
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Fig. 3. Summary of the FDEM incorporating Philip’s infiltration solution with the time compression approximation for a rectangular rainfall

pulse. The differential equations governing the soil-moisture process are shown above the corresponding time periods.

events drawn from this exponential distribution. From the di-

agram, at D̃=0.3 the losses are almost entirely due to perco-

lation. For larger rainfall intensities the proportion of losses

due to runoff will increase, though for sites with moderate

clay content the average rainfall intensity is unlikely to be

much greater than that shown, particularly for longer dura-

tions. Figure 8 shows the fraction of total losses (runoff and

percolation) due to surface-controlled runoff in the FDEM.

The multiple curves can be interpreted as either increasing

clay content for a given intensity or increasing precipitation

intensity for a given soil. For large depth events (long dura-

tion) the fraction of losses due to runoff approach (approx-

imately) LR/Ltot=1−1/P̃ . The relation is only approxi-

mate because of the model error which produces the small

subsurface-controlled runoff term. Notice that for ponding

to occur at such small event depths (D≈25 mm) for s0 near

the mode of the distribution, the intensity must be at least 3.5

times the saturated hydraulic conductivity.

While Fig. 7 illustrates the deterministic partitioning of a

rainfall event into infiltration, runoff and percolation, this re-

veals little of the behavior of the two models as the parame-

ters s0 and P̃ vary (stochastically) during a growing season.

Figure 9 shows how the change in relative soil-moisture state,

y, due to a single rainfall event varies with rainfall intensity

and initial soil-moisture state in the two models. Notice that

the change in soil moisture, especially for small values of D̃,

is strongly controlled by s0.

Given the one-to-one relation between event depth and

change in soil-moisture state (for given values of s0 and P )

represented by these curves along with the distribution of

event depths, we may derive the probability distribution of

change in soil-moisture state simply by transformation of
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Fig. 4. Comparison of FDEM (solid line) and IEM (dotted line)

soil-moisture models over one hundred days. The stochastic rainfall

series of rectangular pulses is shown above. To the right is shown

the simulated p.d.f. of the FDEM model (bars) with the analytic

p.d.f. of the IEM model.

variables. The result of the transformation, performed nu-

merically, is shown in Fig. 10. Comparison of the two plots

in Fig. 10 again supports the observation that the change in

soil moisture due to a storm event is significantly more sen-

sitive to initial soil-moisture state than to rainfall intensity.

For s0=0.8 the IEM significantly overestimates the probabil-

ity of saturation (represented by the Dirac delta function at

D̃=1−s0). The shape of the distributions from the FDEM as

s0 increases may be somewhat counterintuitive. Taking the

s0=0.8 case as an example, the shape can be understood by
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Fig. 5. Comparison of simulated FDEM (lines) and analytic IEM (shaded area) probability distributions for soil moisture. The four plots

show varying soil depth and rainfall arrival rates. The two lines on each plot are for mean rainfall durations of 4 (solid) and 6 (dotted) hours.

The plots on the left correspond to an index of dryness (λα/Emax) of 1.2 while those on the right have an index of 0.6.

Fig. 6. Comparison of simulated FDEM (lines) and analytic IEM (shaded area) probability distributions for soil moisture. The two plots

show the effect of soil saturated hydraulic conductivity on the correspondence between pdf’s of soil moisture according to the IEM and

FDEM. The two lines on each plot are for mean rainfall durations of 4 (solid) and 6 (dotted) hours.

referring back to the diagram in Fig. 3. For t<tp the change

of variables is just a re-scaling of the exponential curve. For

durations (where storm duration and time are used here in-

terchangeably) longer than tp the duration necessary to sat-

urate the soil is significantly longer for the FDEM. In ef-

fect, a larger domain of event depths contributes to a smaller

range of changes in soil moisture, which results in a redistri-

bution of probability from the atom at saturation for the IEM

to values of y<1−s0. For s0=0.8 the IEM has an atom of

probability (exceedence probability for D̃=1−s0) of approx-

imately 0.14, while that for the FDEM model has an atom of

only about 0.02.

Examination of the distribution of net infiltration, y, as s0
and P̃ vary suggests no particularly straightforward method

to improve the IEM with respect to losses during rainfall

events. One possible correction is introduce another element

of state dependence into the jump distribution. Whereas the

IEM currently uses a jump distribution that is an exponential

truncated at y=1−s0 with mean γ=α/nZr , one might define

a state dependent mean which maps an exponential probabil-

ity distribution with the same atom of probability at 1−s0 as

the FDEM distribution onto each value of s0. Such an ap-

proach is the subject of future research and may still yield

to analytical solution. This sort of correction is most likely
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Fig. 7. Rainfall partitioning during a storm event for the IEM (left) and the FDEM (right). The vertical axis represents the rainfall depth

transformed by processes of infiltration and percolation. The normalized curves in the FDEM plot are, from highest to lowest: depth of

rainfall event (slope = unity), infiltrated depth according to Kim et al. (1996), infiltrated depth minus percolation according to FDEM without

bound at s=1, and the bold line represents the actual change in soil-moisture state as a function of rainfall depth according to the FDEM

with the bound at s=1.

Fig. 8. Fraction of losses attributed to runoff as a function of total rainfall depth for both (a) very large depths and (b) typical rainfall depths.

The curves represent different precipitation intensities increasing from the right: 3.5, 4, 4.5, 5, 6, 8, and 10, respectively.

to be of use in wetter climates where the probability of high

soil-moisture values is significant. Otherwise, as can be seen

in Fig. 10, the effect of corrections will probably be of little

value.

4 Conclusions

We have presented two models to compare the importance

of resolving variable infiltration during storm events in cap-

turing the dominant characteristics of soil-moisture dynam-

ics. The first is a model of vertically averaged soil mois-

ture forced by a marked Poisson arrival process. The second

model is rooted in the treatment by Eagleson (1978c) and

Kim et al. (1996) with a physically based description of in-

filtration which was further modified in this paper to include

percolation losses.

In resolving both runoff and percolation, we have shown

evidence that accounting for fractional loss to leakage during

a storm event is probably of equal or more concern for im-

proving the accuracy of simplified models than is runoff, par-

ticularly for events of lower intensity and longer duration. It

is worth noting once more the significant difference between

the IEM and the model of Kim et al. (1996) in which losses

during the storm event were neglected. The latter model is

similar to the IEM except that it accounts for variable in-

filtration during the rainfall event. However, neglecting the

losses to percolation (particularly for long durations) is a sig-

nificant weakness for the Kim et al. (1996) model. Since

in the IEM events are instantaneous, percolation continues

essentially uninterrupted. The IEM error is thus concen-

trated at an instant in time and is then damped quickly by the

strongly nonlinear character of percolation, while the Kim et

al. (1996) model spreads the error over the duration of the
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Fig. 9. Change in soil moisture, y=1s, representing normalized net infiltration, for different values of P̃ (left) and s0 (right) for both the

IEM and FDEM models. The dotted lines represent the IEM model.

Fig. 10. Derived distributions of the normalized net infiltration for both the IEM and FDEM. Note that the IEM distribution (bold) is a

truncated exponential with an atom of probability at D̃=1−s0 represented by the corresponding Dirac delta functions.

event. For longer rainfall durations, therefore, the Kim et al.

(1996) model may be expected to overestimate infiltration to

a greater extent than the IEM. In such cases the gains of rep-

resenting temporally extended rainfall events with variable

infiltration are outweighed by the error of neglecting perco-

lation.

The highly simplified IEM performs well against more

complex, physically-based models such as the FDEM

(Fig. 4) in reproducing the probabilistic structure of soil-

moisture dynamics (Fig. 5). As expected, the most signifi-

cant difference between the models occurs under conditions

of intense rainfall over short duration, in which case the IEM

will consistently overestimate infiltration. However, Fig. 6

suggests that the primary difference in the probability den-

sity is one of location and not shape. Our analysis has been

conservative with respect to the frequency of intense rain-

fall, as the use of Eq. (7) likely overestimates its frequency,

thus likely exaggerating the importance of runoff in simu-

lations. Also, while the IEM used here incorporates a very

simple mechanism for losses during storm events, the model

described by Eq. (5) retains a significant amount of flexibility

through the definition of the ID function. We find, however,

that even in this conservative analysis the IEM reproduces

well the probabilistic structure of soil-moisture dynamics.
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