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Abstract. Streambed temperatures can be easily, accurately

and inexpensively measured at many locations. To character-

ize patterns of groundwater-stream water interaction with a

high spatial resolution, we measured 140 vertical streambed

temperature profiles along a 220 m section of a small man-

made stream. Groundwater temperature at a sufficient depth

remains nearly constant while stream water temperatures

vary seasonally and diurnally. In summer, streambed temper-

atures of groundwater discharge zones are relatively colder

than downwelling zones of stream water. Assuming vertical

flow in the streambed, the observed temperatures are corre-

lated to the magnitude of water fluxes. The water fluxes are

then estimated by applying a simple analytical solution of

the heat conduction-advection equation to the observed verti-

cal temperature profiles. The calculated water fluxes through

the streambed ranged between 455 Lm−2 d−1 of groundwater

discharging to the stream and approximately 10 Lm−2 d−1 of

stream water entering the streambed. The investigated reach

was dominated by groundwater discharge with two distinct

high discharge locations accounting for 50% of the total flux

on 20% of the reach length.

1 Introduction

Understanding and quantifying physical processes and eco-

logical implications of groundwater surface water interac-

tion is becoming an important subject in hydrogeological and

river ecological studies. Stream water and groundwater can

interact on a wide variety of scales down to heterogeneities

within meters to centimetres (Brunke and Gonser, 1997;

Woessner, 2000). Investigation of groundwater-stream water

interactions (water fluxes through the streambed, hyporheic

flowpaths, subsurface flow velocities and travel times) can
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be classified according to “where-you-stand” as viewing in-

teractions from the stream or the subsurface (Packman and

Bencala, 2000). In studies where the point of view is from the

stream, the hyporheic exchange is often the focus. Hyporheic

exchange is the downwelling of stream water into shallow

sediments and the return to the stream after a certain distance.

These flow systems transport oxygenated stream water, nu-

trients and dissolved organic carbon into the hyporheic zone.

This leads to increased mibrobial activity and significantly

influences the nutrient and carbon cycling in stream sys-

tems. Nonetheless, the continuous hyporheic exchange also

affects the downstream transport and fate of contaminants.

Various studies incorporating different methods have ana-

lyzed hyporheic exchange. Deterministic approaches have

shown that stream morphologic features can induce advec-

tive flow from the surface to the subsurface. Theory, lab-

oratory experiments and field studies have investigated the

influence of scale (cm to tens of m) and shape of bedforms

and stream morphology on flowpathes, pore flow velocities

and residence times of surface water in the hyporheic zone

(Thibodeaux and Boyle, 1987; Elliott and Brooks, 1997a, b;

Cardenas et al., 2003; Storey et al., 2003; Salehin et al., 2004;

Saenger et al., 2005; Anderson et al., 2005; Gooseff, 2005).

In general, an increased bed form wavelength and amplitude

leads to increased depths and lengths of hyporheic flow paths

for vertical features like pool and riffle sequences. The pres-

ence of meanders, secondary streams and streamsplits induce

lateral near stream flow paths (Harvey and Bencala, 1993;

Wroblicky et al., 1998; Kasahara and Wondzell, 2003). In

this study, the interactions are viewed from the subsurface.

As Storey et al. (2003) suggested, groundwater discharge

can have a significant impact on the extent of the hyporheic

zone and can affect the distribution of benthic and hyporheic

fauna (Brunke and Gonser, 1997). In a modelling study Car-

denas et al. (2006) underlined the importance of groundwa-

ter discharge for the flow systems and the biogeochemistry

at the stream-groundwater interface. Temporal changes of
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Fig. 1. Overview of the Bitterfeld-Wolfen region, showing the loca-

tion of the Schachtgraben and illustrating the position of the inves-

tigated transects.

hydraulic gradients between an aquifer and a stream can alter

the near stream groundwater flow field and the magnitude of

both downwelling streamwater and upwelling groundwater

(Wroblicky et al., 1998). Furthermore, it becomes essential

to consider the spatial patterns and magnitude of groundwa-

ter discharge when the transport and the fate of contaminants

from the aquifer to the stream has to be assessed (Conant

et al., 2004; Conant, 2004). Independently from the point

of view of the investigation, whether from the stream or the

subsurface, it is crucial to consider the spatial distribution

and the magnitude of groundwater discharge to a stream. In

general, a variety of factors from the catchment scale to sin-

gle bedforms are controlling the interactions of groundwa-

ter and stream water. As a result of different mechanisms,

flow patterns within the streambed can vary on small spatial

scales. Investigations at the stream reach scale which con-

sider small-scale patterns of flow require a high density mon-

itoring network. Due to instrumentation and measurement

effort, such studies are often limited to a relatively small spa-

tial extent (Baxter and Hauer, 2000). Thus there is a need for

an inexpensive, quantitative method that has the capability to

characterize the spatial heterogeneity of groundwater-stream

water interactions. The characterization of spatial patterns

of flow at the groundwater surface water interface requires a

measurement concept that allows many measurements with

high spatial resolution during a relatively short period of

time. The horizontal and vertical temperature distribution

in the streambed is a result of heat transport by the flowing

water (advective heat flow) and by heat conduction through

the sediment grains and the pore water (conductive heat flow)

of the saturated sediments. While groundwater temperature

remains nearly constant at the mean annual air temperature

at a sufficient depth, stream water temperatures vary sea-

sonally and diurnally. For example, in summer, streambed

temperatures in groundwater discharge zones should be rel-

atively colder than in stream water downwelling zones. The

streambed temperature measurements coupled with an ap-

propriate model can be used as a surrogate for head and hy-

draulic conductivity measurements (Anderson, 2005). Ana-

lytical solutions to solve the heat transport equation for water

flux were developed in the 1960s (Suzuki, 1960; Stallman,

1965; Bredehoeft and Papadopolus, 1965). In recent years

there have been several applications of temperature profiles

for estimating magnitude and direction of water flow at the

groundwater surface water interface (e.g., Bartolino and Nis-

wonger, 1999; Constantz et al., 2003; Lapham, 1989; Silli-

man, 1995; Stonestrom and Constantz, 2003). Conant (2004)

was the first who showed that streambed temperatures mea-

sured in a short period of time at many locations can be re-

lated to spatial variations of groundwater discharge. In con-

trast to the work of Conant (2004) who correlated mapped

streambed temperatures with water fluxes estimated from

34 streambed piezometers and Darcy’s law calculations, we

used temperature measurements for direct estimation of wa-

ter fluxes across the streambed. In this study, we show that

streambed temperatures can be used to delineate patterns of

groundwater discharge to a stream in fine detail on the scale

of stream reaches with lengths of hundreds of meters. On

the basis of the observed streambed temperature profiles, the

vertical water fluxes through the streambed were quantified

by applying a simple one dimensional analytical model of the

heat advection-conduction equation.

2 Study site

The temperature measurements were carried out along a

220 m long reach of the Schachtgraben near the town of

Wolfen (Fig. 1). The Schachtgraben is a man-made chan-

nel with a regular width between 2.5 and 3 m. The mean

annual stream discharge is 0.2 m3 s−1 and the gradient is

0.0008 mm−1. For the past one hundred years, Wolfen has

been a major chemical industry site in Germany. In the

second half of the 20th century the spectrum of products

was extended to 5000 substances, including chlorinated sol-

vents, pesticides and plastics (Walkow, 1996; Chemie AG

Bitterfeld-Wolfen, 1993). The deposition of contaminated

waste products in abandoned lignite pit mines nearby the

production sites as well as inappropriate handling and trans-

port of chemicals and war damages led to a large scale

contamination (25 km2) of groundwater, soils, surface wa-

ter and floodplain sediments (Heidrich et al., 2004). For

decades, untreated process waste waters were discharged via

the Schachtgraben and the Spittelwasser into the Mulde River
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which is a tributary of the Elbe River. The Schachtgraben

channel is located in the Mulde River floodplain system. The

channel cuts the floodplain sediments and is located in the

sediments of the shallow Quaternary aquifer. The channel

bed itself is constructed of a homogeneous coarse gravel

layer of 0.4 m thickness. Groundwater levels in the adja-

cent unconfined aquifer are generally 0.1 to 0.2 m higher

than the water level in the stream. The shallow aquifer is

composed of Weichselian glacio-fluvial sandy gravels. To-

day streambed sediments and the groundwater in the adja-

cent aquifer and in the streambed sediments are contaminated

with a wide range of substances but mainly with chlorinated

benzenes and hexachlorocyclohexanes. Further downstream

in the Spittelwasser floodplain, sediments were found to be

contaminated with polychlorinated naphthalenes and dioxins

(Brack et al., 2003; Bunge et al., 2003; Walkow, 2000). The

investigated reach of the Schachtgraben and the Mulde River

floodplain are the subject of additional studies concerning

water flow as well as transport and fate of heavy metals and

organic contaminants at the interface between groundwater

and surface water.

3 Field methods

3.1 Temperature measurements

The streambed temperatures were measured along two lon-

gitudinal transects in a four day measuring programme from

30 August until 2 September 2005. The longitudinal tran-

sects were located at one third and two thirds of the total river

width. The programme consisted of 140 measurements with

70 for each transect. Streambed temperatures were measured

using a multilevel stainless steel temperature probe with at-

tached data logger (TP 62, Umwelt Elektronik GmbH; Geis-

lingen, Germany). The probe was temporarily inserted into

the streambed to a depth of 0.5 m. Along the probe five tem-

perature sensors are placed in a way that the temperatures are

simultaneously measured at 0.1 m, 0.15 m, 0.2 m, 0.3 m and

0.5 m below the streambed surface when the end of the probe

is positioned in the depth of 0.5 m (Fig. 2). The measure-

ments were generally taken with 3 m spacing but were refined

between locations with high temperature differences. During

the study, stream temperatures were measured hourly using a

self containing Stowaway TidbiT −5 to 37◦C range temper-

ature logger (Onset Computer Coporation, Pocasset, Mas-

sachusetts). Groundwater temperature was observed hourly

with temperature and pressure transducers placed directly

into the aquifer with a vertical spacing of 1 m between depths

below ground surface of 1 m to 5 m (Fig. 3). It was assumed

that groundwater and surface water temperatures were spa-

tially uniform and representative for the entire reach. Air

temperature data was provided from a meterological station

in Bitterfeld (Fig. 3).

Fig. 2. Concept of vertical temperature profiles, boundary condi-

tions and parameters used for the analytical model.

3.2 Piezometer installation and slug testing

To confirm the fluxes obtained from the streambed tem-

perature profiles with an independent method, streambed

piezometers were installed to gain information on hydraulic

gradients and hydraulic conductivity. Locations were cho-

sen according to high and low groundwater discharge zones

indicated by the observed temperatures (high discharge loca-

tions: P2, P4, P5, P7; low discharge locations: P1, P3, P6).

One pair of piezometers (P4, P5) was installed at a distinct

groundwater discharge location at Transect A with 1 m spac-

ing to obtain the small scale heterogeneities of streambed hy-

draulic properties and fluxes (Fig. 4).

The piezometers consist of 1.6 m long HDPE (high den-

sity polyethylene) pipes with 0.04 m outside diameter. The

0.2 m screened section of each piezometer was installed be-

tween 0.3 and 0.5 m below the streambed surface. The hy-

draulic head differences between the stream surface and the

piezometers were estimated following the method of Bax-

ter et al. (2003). To obtain the hydraulic head differences,

an additional open pipe was attached outside the piezometer

(“stilling well”) to minimize the influence of turbulence on

stream water elevation. The hydraulic head difference was

measured using parallel chalked wires connected at the top.

The chalked wires were inserted into a piezometer and the

www.hydrol-earth-syst-sci.net/10/849/2006/ Hydrol. Earth Syst. Sci., 10, 849–859, 2006
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Fig. 3. Surface water, air and groundwater temperatures during the four day measurement programme in August/September 2005.

attached stilling well and after removal the distance between

the water marks was measured.

Each piezometer was tested twice with a falling and rising

head slug test. Rising head slug tests were performed by re-

moving the water from the piezometer using an Eijkelkamp

12 V peristaltic pump (Eijkelkamp, Giesbeek, The Nether-

lands). Falling head slug tests were carried out by releasing

water from an attached reservoir at the top of the piezome-

ters. The rise and fall of the water level in the piezometers

was observed with an “HT 575 Kompakt” pressure trans-

ducer (Hydrotechnik GmbH, Obergünzburg, Germany).

4 Analytic procedure

Streambed temperatures have a highly transient character due

to seasonal and diurnal changes of stream water tempera-

tures. It is essential for the concept of streambed temperature

mapping that differences of temperature can be attributed to

spatial differences of water fluxes and are not a result of tem-

poral variations. Streambed temperatures measured at a suf-

ficient depth below the influence of diurnal variations repre-

sent the quasi-steady-state conditions of streambed tempera-

tures for the finite time of the mapping programme (Fig. 2).

With the assumption that water flow in the streambed

is essentially vertical, the governing equation for one-

dimensional conductive and advective heat transport is:

Kf s

ρc
∇

2T (z) −
ρf cf

ρc
∇ · (T (z)qz) =

∂T

∂t
(1)

where Tz [◦C] is the streambed temperature at depth z; t is

time [s]; qz is the vertical Darcy velocity [ms−1]; ρc is the

volumetric heat capacity of the solid – fluid system which

can be written as ρc=nρf cf +(1−n)ρscs where ρf cf is the

volumetric heat capacity of the fluid, ρscs is the volumetric

heat capacity of the solids [Jm−3 K−1] and n is the porosity

[–]. Kf s is the thermal conductivity of the saturated sediment

[Js−1 m−1K−1].

With boundary conditions T =T0 for z=0, and a fixed tem-

perature TL for z=L, where L [m] is the vertical extent of

the domain, the solution of Eq. (1) can be obtained as (Bre-

dehoeft and Papadopolus, 1965):

T (z) − T0

TL − T0
=

exp
(

qzρf cf

Kf s
z
)

− 1

exp
(

qzρf cf

Kf s
L

)

− 1
(2)

Equation (2) can be solved for qz for a given L. It is assumed

that the vertical temperature distribution at different locations

is only a function of qz, i.e. other parameters on the right-

hand side of Eq. (2) are considered to be homogeneous for

all observed temperature profiles. The objective function for

obtaining qz is given with:

Errork(L)=

5
∑

j=1



Tjk−





exp
(

qzk
ρf cf

Kf s
zj

)

−1

exp
(

qzk
ρf cf

Kf s
L

)

−1
(TL−T0)+T0









2

(3)

where qzk is the value of qz that minimizes Error k(L) for a

given L at each temperature profile consisting of j=5 tem-

perature observations.

It was tested if a change of L has an influence on the es-

timated qz and the quality of the fit. The objective function

to find one optimal L for all observed temperature profiles

implies the optimization of Error k(L). We computed an op-

timal qzk at each profile k for the overall L ranging between

Hydrol. Earth Syst. Sci., 10, 849–859, 2006 www.hydrol-earth-syst-sci.net/10/849/2006/
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Fig. 4. Temperature distribution, temperature based fluxes, the locations of streambed piezometers, and the fluxes from Darcy‘s law calcu-

lations at each piezometer for different anisotropy ratios along Transects A (a) and B (c). Note the vertical exaggeration of the longitudinal

profile by factor 50.

Mean and maximum differences between observed and simulated temperatures for each temperature profile for Transects A (b) and B (d)

The maximum difference is given with the respective depth. A bigger, coloured version of this figure can be found in the supplemental

material: http://www.hydrol-earth-syst-sci.net/10/849/2006/hess-10-849-2006-supplement.pdf.

0.6 and 10 m. For k=140 observed temperature profiles, the

objective function is given with:

f (L) =

140
∑

k=1

Errork(L) (4)

Once the optimal qz for a chosen L is obtained from Eq. (3),

qz can be substituted into Eq. (2) to obtain a simulated

streambed temperature distribution. To test the quality of fit

between observed and simulated temperatures, the difference

of temperatures 1T [◦C] can be obtained from Eq. (5):

1T = T (z) −

exp
(

qzρf cf

Kf s
z
)

− 1

exp
(

qzρf cf

Kf s
L

)

− 1
(TL − T0) + T0 (5)

5 Results and discussion

5.1 Stream water, groundwater and air temperatures

During the field programme, the stream water temperatures

showed variations with a low of 15.8 and a high of 23.0◦C

(Fig. 3). The dotted line in Fig. 3 illustrates the 24 h moving

average of stream water temperatures. It varies only between

17.6◦C and 18.6◦C around the overall average of 18.4◦C

during the field campaign. This indicates that the temper-

ature oscillations are of diurnal character. The temperature

regime is characterized by anthropogenic influences which

become apparent in temperature peaks in the early morning

(Fig. 3). The temperature anomalies are caused by warm

water regularly released from a reservoir for cooling sytems

at the industrial area between Wolfen and Greppin (Fig. 1).

Groundwater temperatures were observed in hourly intervals

www.hydrol-earth-syst-sci.net/10/849/2006/ Hydrol. Earth Syst. Sci., 10, 849–859, 2006
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Fig. 5. Sum of squared errors of all temperature profiles vs. the

thickness of the domain L. The results show that for the given

parameter set, the quality of fit and the derived vertical fluxes are

essentially constant for L>1.0 m.

at depths between 1 and 5 m below the streambed surface,

adjacent to the stream (Fig. 1). At depths of 4 and 5 m the

groundwater temperatures are 11◦C. Temperatures increase

to 15◦C at a depth of 1 m below the streambed surface. The

groundwater temperatures were measured at a location close

to a zone of relatively high streambed temperatures. Thus the

shallow groundwater temperatures correspond well with the

streambed temperatures being at 16.8◦C at a depth of 0.5 m.

The coldest streambed temperatures are nearly identical to

groundwater temperatures observed at a depth of 4 m. The

air temperatures were observed in a meteorological station in

Bitterfeld 6.5 km south of the study site. During the field pro-

gramme the air temperatures varied between 13.9 and 31.9◦C

with an average of 22.7◦C (Fig. 3).

5.2 Streambed temperatures

The observed streambed temperatures varied spatially be-

tween 11.5 and 17.5◦C at a depth of 0.5 m in the streambed.

At the shallow depth of 0.1 m, the temperatures showed a

wider range and a higher minimum and maximum of 12.2

and 19.9◦C. In summer, groundwater discharge is indicated

by relatively low streambed temperatures. Along the ob-

served 220 m reach, two major groundwater discharge zones

were identified. The first discharge zone is located between

20 and 50 m and the second between 125 and 170 m (Fig. 4).

The discharge zones are characterized by streambed temper-

atures at 0.5 m being less than 15◦C. Within the second dis-

charge zone, there are distinct locations showing tempera-

tures less than 13◦C at 0.5 m depth and even at 0.1 m depth,

temperatures are less than 15◦C (Fig. 4). These distinct lo-

cations of very low temperatures are restricted to a length of

3 to 5 m. Both major discharge zones have a very similar

spatial extent.
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Fig. 6. Percentage of flux vs. percentage of length of the Tran-

sects A and B. Approximately 50% of the total flux occur on 20%

of the total length.

Along both longitudinal transects, very similar patterns of

streambed temperature are visible. Variations of streambed

temperatures occur primarily along each reach while the dif-

ferences between the eastern and western bank are of minor

significance.

5.3 Fluxes obtained from temperature profiles

As temperature can be easily measured at hundreds of loca-

tions, the water fluxes in the streambed can be estimated with

a high spatial resolution. The water fluxes were obtained at

each location from Eq. (2) by minimizing the differences be-

tween observed and modelled temperature profiles (Eq. 3).

At each temperature profile, qz was estimated for L ranging

from 0.6 to 10 m. It was found that qz for L larger than 1.0

was essentially independent from L (Fig. 5). The resulting

fluxes are not influenced by the depth at which TL is obtained

as long as TL remains constant with the increasing depth.

This is basically the case when upward flow from ground-

water to surface water is present. The observed groundwater

temperature at a depth of 4 m below the streambed surface

was 11.0◦C and was constant during the measuring cam-

paign. Hence, the lower boundary condition TL was set to

11.0◦C. The upper boundary condition T0 was set to 18.4◦C

which is the average stream water temperature of the four-

day mapping period. Equation (2) requires the thermal con-

ductivity Kf s as an input parameter which was not measured

within this study. However, the range of thermal conductivi-

ties of water saturated sediments is small thus Kf s can be re-

liably estimated and was set to 2 Js−1 m−1 K−1 (Stonestrom

Hydrol. Earth Syst. Sci., 10, 849–859, 2006 www.hydrol-earth-syst-sci.net/10/849/2006/
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Fig. 7. Comparison of observed and simulated streambed temperatures for four example profiles. The illustrated profiles represent high (a),

medium (b), low (c) groundwater discharges and low recharge conditions (d). The profiles are located proximal to the positions of streambed

piezometers P5 (a), P4 (b), P1 (c) and P3 (d).

and Blasch, 2003). The parameter set used for estimating

qz from the observed temperature profiles is summarized in

Fig. 2.

The resulting water fluxes ranged between −10.0 and

455.0 Lm−2 d−1 (Figs. 4a and c). The average groundwa-

ter discharge is 58.2 Lm−2 d−1 and the average recharge is

2.3 Lm−2 d−1. Figures 4a and c illustrate the spatial dis-

tribution of fluxes in relation to the length of the observed

reach. Analogous to the temperatures, the flux distribution

is very similar in the two longitudinal transects. Recharge

occurs only along less than 1% of the reach. The zones with

discharges higher than 100 Lm−2 d−1 are present on 16% of

the total length of Transect A and on 19% of Transect B.

Approximately 20% of the total length contributes 50% of

the total discharge (Fig. 6). Around 85% of the total dis-

charge occurred at 50% of the total length (Fig. 6) Only

four profiles were observed to have discharges higher than

200 Lm−2 d−1 which contribute about 10% to the total dis-

charge (Figs. 4a and c). These relations as well as the or-

der of magnitude of fluxes are comparable to those observed

by Conant (2004). Spatially distinct high discharge zones

were also observed in other studies but with higher maxi-

mum discharges (Baxter and Hauer, 2000; Conant, 2004).

Yet the maximum discharges are more than 4 times higher

than the average discharge. The reduced spread of fluxes

compared to natural rivers can be explained with a reduced

streambed heterogeneity in terms of morphologic features

and hydraulic properties. According to the maximum fluxes

the homogeneous streambed might lead to less significant

preferential flowpaths and thus to lower maximum fluxes.

The observed heterogeneities are likely to be also controlled

by zones of preferential flow in the underlying aquifer. High-

est discharges will occur at locations where permeable zones

of the streambed are connected to high hydraulic conductiv-

ity zones in the aquifer (Conant, 2004). There are studies ad-

dressing the significant role of aquifer heterogeneity for the

magnitude and spatial distribution of flow from the stream

to the subsurface in loosing stream reaches (Fleckenstein et

al., 2006; Bruen and Osman, 2004). As the work of Conant

(2004) and Conant et al. (2004) indicates aquifer heterogene-

ity will have an analogous effect in gaining streams but it has

not been examined in a theoretical study to date.

Recharge occurs only at few locations and at low flow rates

(up to 10 Lm−2 d−1). Admittedly, in these cases the fit of

the analytical solution to the observed streambed tempera-

tures is rather poor (Fig. 7d). Thus the estimated recharges

are associated with high uncertainty, in particular with re-

gard to the observed vertical hydraulic gradients in the

streambed piezometers and the water table elevation adja-

cent to the Schachtgraben channel which indicate a gain-

ing reach. Moreover, Storey et al. (2003) reported that a

streambed hydraulic conductivity below 10−4 ms−1 will re-

sult in a restricted topographically induced downwelling of

water. Downward flow can occur at pool and riffle struc-

tures and at smaller spatial scales at streambed ripples (Thi-

bodeaux and Boyle, 1987) and obstructions (Hutchinson and

Webster, 1998). Because of the artificial origin of the homo-

geneous gravel streambed, natural pool and riffle sequences

are assumed not to be present at the Schachtgraben. Conse-

quently, the combination of a streambed with no apparent ge-

omorphological heterogeneity and low streambed hydraulic

conductivities leads to the observed low recharge fluxes. It

is likely that if downwelling of stream water occurs it will

be mainly due to streambed roughness induced by the single

www.hydrol-earth-syst-sci.net/10/849/2006/ Hydrol. Earth Syst. Sci., 10, 849–859, 2006



856 C. Schmidt et al.: Characterization of groundwater-stream water interactions

gravel grains. Since hyporheic flowpaths are related to the

vertical extent of the streambed morphologic features, hy-

porheic flow in the Schachtgraben can only occur in the up-

per few centimetres of the streambed. In conclusion, the in-

teractions of stream and groundwater at this site are domi-

nated by groundwater discharge at distinct locations. Mor-

phological features like pool and riffle structures or obstruc-

tions were not apparent at the investigated reach. Because

of the artificial origin the streambed appeared to be rela-

tively homogeneous in its hydraulic properties. Therefore, it

is likely that the observed spatial heterogeneities of ground-

water discharge are not solely controlled by the streambed.

High permeable zones of the underlying aquifer connected

to the streambed are expected to significantly influence the

observed discharge patterns.

5.4 Differences between observed and simulated tempera-

tures

The mean difference between all observed and simulated

temperatures is 0.023◦C at Transect A and 0.028◦C at Tran-

sect B. The highest calculated difference at Transect A was

2.1◦C, located at a depth of 0.1 m and at was −1.6◦C Tran-

sect B also at a depth of 0.1 m (Figs. 4b and d).

At both transects, although the observed patterns of tem-

peratures were very similar, the highest differences between

simulated and observed temperatures occured at different lo-

cations. The differences are clearly related to certain depths

but seemed to be randomly distributed along the transects

(Fig. 4). At 82 out of 140 temperature profiles (58.6%),

the maximum difference between observed and simulated

temperatures occurs at 0.1 m depth. At the other depths of

0.15 m, 0.2 m, 0.3 m and 0.5 m the maximum differences are

similarly distributed, respectively 13.6%, 5.9%, 11.4% and

11.4%. This distribution of differences indicates that there

is an influence of diurnal stream water temperature oscil-

lations at the shallow depth of 0.1 m, disturbing the quasi-

steady-state profile. As well it is possible that shallow, non-

vertical hyporheic flow paths could have influenced the up-

per 0.1 m of the streambed. Figure 7 illustrates examples

of simulated temperature profiles after qz was obtained from

observed temperatures using Eq. (3) and the related observed

temperatures at T (z). A recalculation of fluxes excluding the

temperature measurements at a depth of 0.1 m showed that

there is no significant influence for low and medium fluxes.

At high flux locations the resulting fluxes decrease when the

shallowest measurement is excluded. For example the cal-

culated maximum flux is reduced from 455 to 325 Lm−2 d−1

without the temperature at 0.1 m depth. Although there are

indications that temperatures within 0.1 m are influenced by

diurnal temperature oscillations in the surface water, there

is no evidence for an increased uncertainty in the result-

ing fluxes. In particular for groundwater discharge, where

streambed temperatures change from groundwater tempera-

ture to stream water temperature in the upper few centimetres

of the streambed, it is essential to have an observation point

at a shallow depth.

5.5 Verification of flux calculations with piezometer data

A total number of 7 streambed piezometers was installed and

tested to confirm the magnitude of water fluxes obtained from

the temperature profiles (Figs. 4a and c). The observed head

differences 1h between the streambed and the aquifer indi-

cated an upward flow direction at all streambed piezometers.

The maximum 1h occurred at piezometer P2 with 0.118 m,

the minimum 1h at piezometer P7 with 0.017 m. The ver-

tical hydraulic gradient was obtained by dividing 1h with

1l which is the length between the centre of the piezometer

screen and the top of the streambed. All piezometers were

installed at the same depth in the streambed and thus 1l is

0.4 m at all piezometer locations. The resulting vertical hy-

draulic gradients are between 0.043 and 0.295.

Streambed hydraulic conductivities were estimated from

rising and falling head slug tests using the Hvorslev

(1951) case G, basic time lag equation. Horizontal hy-

draulic conductivities Kh varied within a relatively small

range of one order of magnitude between 1.39×10−4 and

1.26×10−5 ms−1. As the cobbely streambed makes it impos-

sible to install permeameters to obtain the vertical hydraulic

conductivity Kv in the field, the anisotropy ratio has to be

estimated. Freeze and Cherry (1979) gave an anisotropy ra-

tio of core samples Kh/Kv between 3 and 10. The resulting

hydraulic conductivities are within the range given by Calver

(2001) and lower than the vertical hydraulic conductivities

observed by Chen (2004).

Employing both an anisotropy ratio of 3 and 10, the re-

sulting fluxes based on the piezometer data are within one

order of magnitude of the fluxes obtained from the tempera-

ture data (Table 1 and Fig. 5). In general, the fluxes obtained

from Eq. (2) correspond reasonably well with the fluxes ob-

tained from Darcy’s law calculations. At piezometer loca-

tions P3 and P5, fluxes calculated with an anisotropy ratio

of 3 overestimate the temperature based fluxes while fluxes

based on an anisotropy ratio of 10 underestimate them.

5.6 Applicability and limitations

Using streambed temperatures to quantify groundwater-

stream water interactions is limited to locations and time pe-

riods where groundwater and stream water have sufficient

temperature differences which is normally the case in sum-

mer or winter. The best conditions to perform the temper-

ature measurements are given if during the measurements

the surface water temperatures vary solely diurnal (no ambi-

ent trend), the surface water temperature maximum (winter)

or minimum (summer) does not reach groundwater temper-

ature. In this approach the conceptualization of water fluxes

in the streambed is based on the assumption of vertical flow.

In streams with intense non-vertical hyporheic flow in the
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Table 1. Hydraulic conductivities, hydraulic gradients and vertical fluxes obtained from slug-tests using streambed piezometers.

Name
Horizontal Vertical Vertical Hydraulic Vertical Flux Vertical Hydraulic Vertical Flux

Hydraulic Hydraulic Conductivity qz Lm−2 d−1 Conductivity qz Lm−2 d−1

Conductivity Gradient Kv ms−1 for for Kh/Kv=3 Kv ms−1 for Kh/Kv=10

Kh ms−1 Kh/Kv=3 for Kh/Kv=10

P1 2.38 E–05 0.070 7.92 E–06 47.9 2.88 E–06 17.4

P2 5.82 E–05 0.295 1.94 E–05 494.6 7.04 E–06 179.5

P3 1.99 E–05 0.113 6.63 E–06 64.4 2.41 E–06 23.4

P4 1.20 E–05 0.113 4.01 E–06 39.0 1.46 E–06 14.1

P5 6.87 E–05 0.245 2.29 E–05 484.6 8.31 E–06 175.9

P6 1.36 E–05 0.063 4.52 E–06 24.4 1.64 E–06 8.9

P7 5.82 E–05 0.043 1.94 E–05 71.9 7.04 E–06 26.1

streambed, the presented approach may not be valid. At lo-

cations with a very high groundwater discharge, streambed

temperatures can be nearly equal to groundwater tempera-

ture. If the flux is doubled or tripled, the temperature will re-

main the same (Conant, 2004). Lapham (1989) states if up-

ward fluxes exceed 305 Lm−2 d−1) (1 ft/d) the temperature

in the streambed would be equal the groundwater temper-

ature and remain unaffected by fluctuations in stream tem-

perature. We observed higher magnitudes of fluxes (up to

455 Lm−2 d−1)). The constraints depend strongly on the

depths in which the measurements were taken. We observed

in depths of 0.3 m and 0.5 m below the streambed surface

that streambed temperatures can be nearly equal to ground-

water temperatures. This never occurred in depth of 0.15 m

or 0.1 m. With a decreased measurement depth the magni-

tude of fluxes that can be accurately quantified can be in-

creased. A similar behaviour occurs for high downward

fluxes. In these cases, the observed streambed temperatures

can be essentially equal to stream water temperatures. At

these particular locations the calculated fluxes would repre-

sent the minimum flux but the true fluxes could be higher.

Streambed temperatures cannot be used for a reliable quan-

tification of the water fluxes at these locations. The presented

method focuses on spatial patterns of groundwater-stream

water interactions. Temporal changes of flow conditions in

the streambed are beyond the scope of this approach.

6 Conclusions

We measured streambed temperatures at depths of 0.1 m,

0.15 m, 0.2 m, 0.3 m and 0.5 m along a 220 m long reach

of an artificial stream. Based on the observed tempera-

tures, the vertical water fluxes were estimated by applying

a one-dimensional analytical solution of the heat-advection-

diffusion-equation. As temperature can be inexpensively and

easily measured, hundreds of measurements can be taken to

draw a high resolution picture of groundwater-stream water

interactions on the scale of stream reaches. The simple con-

cept of relating streambed temperatures to spatial differences

of vertical water flux might be subject to several limitations

and uncertainties but provides a reasonable agreement be-

tween simulated and observed temperatures. Furthermore,

the independent results of Darcy’s law calculations based on

streambed piezometer data confirmed the fluxes derived from

the temperature profiles.

Although the artificial streambed at our study site ap-

pears to be relatively homogeneous in comparison to

natural streams, a considerable spatial heterogeneity of

groundwater-stream water interactions was observed. Only

20% of the total length contributes to 50% of the total

groundwater discharge to the stream. A significant down-

welling of streamwater was not observed.

Investigations aiming at characterization of groundwater

surface water interaction can benefit from using multiple

methods and techniques. The quantification of water fluxes

through the streambed is of particular importance when mass

fluxes of solutes and contaminants at the interface between

groundwater and surface water are of interest. In cases of

groundwater contamination, high groundwater discharge lo-

cations will contribute a great extent to the contaminant input

into the stream. It is essential that these locations are iden-

tified precisely on river segments to 1 km length to assess,

for instance, the potential impact of large scale groundwater

contamination on the stream. We consider streambed tem-

perature measurements to be a useful tool to gain insight into

the spatial heterogeneity of fluxes along a stream reach. Be-

cause of its proven effectiveness, this method can be applied

on a field site before other methods are used for choosing the

locations of additional instrumentation.
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