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Abstract. Within this study we present a robust method for gauged basins. Of course building river gauges is expensive,
generating precipitation time series for the Anas catchmentaborious and therefore often not feasible. However, for the
in North Western India. The method employs a multivari- very important variable of rainfall we think it is possible to
ate stochastic simulation model that is driven by a time sereduce the number of poorly gauged basins by employing
ries of objectively classified circulation patterns (CPs). In adownscaling methodologies. Especially in developing coun-
companion study (Zehe et al., 2006) it was already showrtries precipitation data sets are rare. If they are available, then
that CPs classified from the 500 or 700 Hpa levels are suitthey are often not in digital form, as in the case of our study
able to explain space-time variability of precipitation in that of Monsoon rainfall in the Anas catchment, that is located
area. The model is calibrated using observed rainfall timein North-Western India. The very first step of this study was
series for the period 1985-1992 for two different CP time to collect data that were still on paper strips and turn them
series, one from the 500 Hpa level and the over from theinto digital data sets (1 month digitizing). This resulted in
700 Hpa level, and 200 realizations of daily rainfall are sim- 10 years daily rainfall data for ten stations in the catchment.
ulated for the period 85-94. Simulations using the CPs fromWhile this is already a major step forward, 10 years are not
the 500 Hpa level as input yield a good match of the observedong enough for a thorough analysis of the precipitation in
averages and standard deviations of daily rainfall. They showhat area, because of the enormous seasonality and inter an-
furthermore good performance at the monthly scale. Whemual variability of the monsoon driven climate (Webster and
used with the 700 Hpa level CPs as inputs the model clearlyHoyos, 2004). The overall objective of the present study was
underestimates the standard deviation and performs muctherefore to suggest and test a methodology for extrapolating
worse at the monthly scale, especially in the validation periodthe available rainfall time series in a robust and reliable way,
93-94. The presented results give evidence that CPs from the.g. as basis for long term water resources and agricultural
500 Hpa, level in combination with a multivariate stochastic planning.

model, make up a suitable tool for reducing the sparsity of \jith robust we mean that the method is computationally
precipitation data in developing regions with sparse hydro-efficient and based on data that are globally freely available.
meteorological data sets. As re-analysis data of atmospheric and oceanic state vari-
ables and fluxes but also climate model runs are globally
available on resolutions ranging from 2.® 1°, downscal-

ing methods (Wilby and Wilks, 1997) can help within this
context (for a review of downscaling methods please refer

The PUB initiative, launched by Sivapalan et al. (2003), hast© the companion paper Zehe et al., 2006). A major prob-
identified a set of key targets for hydrological science. Thel€m in the context of daily precipitation modelling is the
most important thereof are the quantification and reduction ofSPatial and temporal intermittency of precipitation i.e. the
predictive model uncertainty. To our opinion, PUB shall not clustering of wet and dry days as well as the clustering of
only be a catalyst to advance our hydrological understanddry and wet areas in the target catchment. Approaches for

ing, but also can be a catalyst to reduce the number of poorlptochastical modeliing of daily precipitation range from mul-
tivariate regression models ®er, 2002; Huth, 1997; Huth

Correspondence tdE. Zehe and Kysey, 2000), to Markov models for simulation pre-
(ezehe@rz.uni-potsdam.de) cipitation occurrence and duration (Foufoula-Georgiou and

1 Introduction

Published by Copernicus GmbH on behalf of the European Geosciences Union.



808 E. Zehe et al.: Sstochastic rainfall simulations

Lettenmaier, 1987) and finally to stochastical models based  year. The annual cycles of the spatial covariance func-
on circulation patterns or weather types (Wilson et al., 1992; tion and of the one day lag autocorrelation are described
Katz and Parlange, 1996; Wilby and Wigley, 2000). by means of a Fourier series.

. In the prehsent StUdé' k\)/ve adr?lplf anéeBmpirical dowrf]scal--l-he optimisation of two CP classification schemes for the
9 SpPIoach proposed o Stehl ¢ ansrgossy (ﬁooz) °! 500HPa and the 700 HPa level and their suitabilty for ex-
stoc.astlc raintafl Simu atllonsf n the An.als caFc mept. T eplaining the spatio-temporal variability of precipitation in the
predictor variables are objectively classified circulation pat- , o< catchment is described in the companion study (Zehe et

terns fror_n a suitable pressure Ieve_zl th‘?‘t h_ave to be optimisegl_, 2006). Additional information on CP optimisation proce-
for explaining the space-time variability in the target area. ure may be found in &dossy et al. (2001). In the following
The time series of the circulation patterns serve in a seconé’v

; . o >>~=""Wwe will briefly introduce the multivariate stochastical precip-
step as input variables to run a multivariate stochastic rain

fall model. The link between daily rainfall and the CP is oion model
established by conditional rainfall probabilities and amounts2 1  Stochastic rainfall model
respectively. In a companion study (Zehe et al., 2006) we al-
ready showed that pressure patterns are, despite the fact thatmajor problem in the mathematical modelling of precipi-
the Coriolis parameter is half as large as compared to theation is spatial and temporal intermittency. Dry days occur
middle latitudes, suitable and parsimoneous predictors fomwith high probability, and on rainy days a continuous distri-
explaining precipitation variability in the Anas catchment. bution describes the rainfall amounts at a selected location
Within the present study we will shed light on the question of Therefore, a multi-site approach based on random variables
whether the two different CP classification schemes, one fowith mixed distributions is required to describe the daily pre-
the 500 HPa level and the other for the 700 Hpa level, yieldcipitation pattern. Within the time-space model suggested by
suitable inputs to the multivariate stochastic rainfall model Stehlik and Erdossy (2002) the persistence of wet or dry
that shall reproduce the precipitation behaviour observed irdays is a consequence of the persistence of the circulation
the Anas catchment. patterns and the CP specific meteorological conditions, thus
This paper is organized as follows. In section two we itis an input to the precipitation model.
present the stochastic rainfall model, the statistical methods Precipitation is linked to the individual CP through
to analyse precipitation in the Anas catchment as well as th@ conditional probability for the occurrence of a
simulation strategy. Simulated and observed precipitation arevet day p(CP#)=(p(CP(), u1),...p(CP{), uy))
compared in Sect. 3, with emphasis on daily and monthlyand a conditional average amount
scale rainfall properties, as well as the spatial structure and(CP(¢))=(z(CP(¢), u1), ..., z(CP(#),up)) which are
the autocorrelation structure. The study closes with discusderived from a set of precipitation time series observed at
sion and conclusions in section 4. For details on the Anadocationsu=(u1, ...us) by means of frequency analysis.
catchment and the precipitation data base the reader mightor a given CP the probability distributio#,(z, ) of daily
refer to the companion paper of Zehe et al. (2006). rainfall amountsz=(z(¢, u1), .. .z(t, up)) at a set of loca-
tions is of course multivariate skewed. Stehlik artdssy
(2002) relateZ (¢, u) to the positive branch of a multivariate
2 Methodology normal processN(t,u) by introducing a transformation

. within two steps. First they define a new variable-:z—a,
Stehlik and Erdossy (2002) developed a methodology for 2=(ZuL. . . .zum), @ iS @ CONStant vector, such that

generating spatio-temporal variable precipitation data using

large scale daily pressure fields (simulated or observed) as 0 y

well as local scale precipitation. The method consists of twol — / N(u,t)dz =1— / N(u,1)dz
main steps: o 0

— An optimisation of fuzzy rules to classify pressure fields = P(CR= (p(CPO), 1), ..., pCRD), ur))
into circulation patterns (CPs), to explain the basin scaled? = dzu1dzu2---dzum @)
space-time variability of observed rainfall. This transformation assures that the integral of the positive
branch of the shifted multivariate normal yields the observed
conditional probabilityp (CP(r)) for a wet day at each loca-
tion u1,..upy. Second a suitable exponefithas to be se-
lected for each locatioms,.. s such that:

— A multivariate and stochastical generation of rainfall at
different locations in the area of interest. The model is
a conditional multivariate autoregressive rainfall model
based on a transformed multivariate normal distribu-
tion. Rainfall is linked to the individual CP using condi- Z(CP(7), u;)
tional rainfall probability and amounts. The model ac- %
counts for the spatial covariance of daily precipitation is = / 2ui Z(ui, t)dzy,
a function of the actual CP as well as of the day in the

Hydrol. Earth Syst. Sci., 10, 80815 2006 www.hydrol-earth-syst-sci.net/10/807/2006/
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- , 6 1 estimate the spatial covariance function, cov, from the rain
= /Zui (N(ui, )" dz,, gauge dataCovis a function of the month of the year and
0 the CP and we use an exponential spatial covariance func-
00 tion:
= [ zui (N(ui, t))ﬂ dzy, ) —d(x,y)
/ cov (Z(x), Z(y)) = Co exp(Ty) (5)

This assures that the positive branch of the power transwhered is the distance anf and the correlation lengthis
formed multivariate normal process yields the conditional 3 functions of month in the year and the CP.

average daily rainfall amount(CP(¢)) observed at the lo-

cations. By repeating this procedure for each CP, the discret@.2 Statistical measures for model performance and model
discrete-continuous distribution o&f(z, u) is related to the calibration

normal stochastic proce®s(z, u).

NB (t,u) for N(t, u) > 0}

2.2.1 Statistical measures for model performance
Z(t’”):{ 0 forN(t,u)<0

©)

In order to check the models capability to reproduce the ob-
Although in principle the conditional probability of a wet day S€Tved monsoon precipitation in the Anas catchment we se-
p(CP, (1), u) and the amount can be different for each day in lected at the daily scale the average and standard deviation

the year, available rainfall time series are usually too short tof the daily rainfall amounts. At the monthly scale we com-
evaluatep(CP, (), u) for each day in the year by frequency pared the simulated and observed annual cycles as well as the

analysis. Stehlik and &dossy (2002) suggest the evalua- time series of simulated and observed rainfall. Furthermore,
tion of p(CP, (1), ) separately for each CP and location for we compar.ed the long term average spatial covarialjce struc-
each month in the year. After transformationfinto the ture by estimating the variogram as follows. In the first step

multivariate normal process according to Eq. (1) and (2) theVe calculated the cross correlation for each pair of the ten

negative values ol are declared as dry days at locatiens rain gauges for the simulation and the observations, respec-
to reflect the intermittency of precipitation. tively. By plotting the cross correlation values against the

The stochastic rainfall model describes how the deviationdiStance between the pairs we obtain a spatial correlogram.

from the CP conditional daily average normal process on £\ssuming stationarity of the increments one minus the cross

given Julian day of the year evolves from the Correspondmgcorrelation values plotted against the distances gives an esti-
deviation at the previous day: mate of the variogram, which sheds light on the average spa-

tial structure of the monsoon precipitation in this area. The
N+l u)— E(N@+1xu) |CP) =r(t*+1) - (N(1, u) lag step for calculation the empirical variogram was set to
—E(N({t*u)|CP)) 4+ Ccpi (¢ *+1) - W(t*,u) (4) 12000 m. As theoretical estimator we selected an exponen-

, . tial variogram function. Finally, to shed light on the memory
whereE denotes the expectation value conditioned t0 the Jux the monsoon rainfall process we calculated the autocorre-

I[an day "_’md the CPr is the 1 day Iag autocorrelayon func-_ lation of the simulated and observed rainfall time series.

tion that is assumed to be constant in space but is a function

of the Julian day in the year (annual cycle). The ma@tils 2.3 Model calibration and simulation variants

related to the spatial covariance matrix and the one day lag

spatial covariance matrix of the multivariate normal processTo estimate the model parameters especially the m@tyix

as described in Stehlik andaBlossy (2002) or in Bxs and  that depends on the month and the CP, one needs a data set of

Rodrigue-lturbe (1985). It depends on the circulation pattern10 years or more especially when the inter-annual variability

and on the annual cycle. The vectdr denotes a random of precipitation is as high as in the Anas catchment. Within

vector of independent normally distributed random numbersthe 10 year observation period the annual precipitation sums

with zero mean and standard deviation 1. With Eq. (4) andrange from 350 to 1300 mm! On the other hand, it is neces-

the link between the multivariate normal process and multi-sary to test the model using an independent period; hence we

variate rainfall distributiorZ in Eq. (3) the rainfall model is  selected an 8 year calibration period 85-92 and 2 year vali-

totally described. dation period 93-94. The model was calibrated using the CP
The autocorrelation function in is defined independent time series from both classification regimes for the 500 Hpa

of the rainfall stations and is modelled by means of a Fourierand the 700 Hpa level (Zehe et al., 2006). Following Stehlik

analysis. In the study of Stehlik andaRlossy (2002) and Bardossy (2002) we used the first 3 harmonics for de-

that was conducted for two catchments in Germany in andscribing the annual cycles of the autocorrelation function.

Greece, the first three harmonics were found to be sufficienHowever, the calibration and estimation of Fourier coeffi-

for explaining the annual cycle. cients was only carried out for the period May—October. This
For computing the matri€ in Eq. (6) as well as for char- is because rainfall data in the Anas catchment were only col-

acterising the multivariate normal process it is necessary tdected in this period. Hence, we assumed precipitation out-

www.hydrol-earth-syst-sci.net/10/807/2006/ Hydrol. Earth Syst. Sci., 10,8/2006
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Table 1. Observed and simulated daily average daily rainfall amount in mm (upper three rows) as well as observed and simulated standard
deviation (stdev., in mm) of daily rainfall totals (lower three rows) for the ten rain gauges.

1 2 3 4 5 6 7 8 9 10

Mean obs. 514 509 534 557 6.10 476 575 520 502 6.64
Mean 700Hpa 6.46 549 551 6.25 6.26 521 7.27 566 531 7.23
Mean 500Hpa 550 5.34 515 6.21 6.09 506 556 590 539 7.00
Stdev. Obs. 159 163 147 16.7 196 149 176 147 148 189
Stdev. 700Hpa 14.8 152 124 139 163 129 16.2 139 125 157
Stdev. 500Hpa 156 158 144 165 190 152 16.1 151 143 183

1 =Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad
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Fig. 1. Annual cycles of monthly precipitation sums for 8 rain gauges for the simulation driven by the CPs from the 500 Hpa pressure level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines ar
average plus/minus the standard deviation computed based on the 200 realisations.

side this period to be zero. Rainfall probabilities and Fourier3 Results

coefficients outside were therefore set to zero! In general we

performed a total number of 200 simulations for both classi- . . .
fication schemes. Due to the short validation period all theT"’}ble 1 lists the averages and standarq deviations of daily
statistical properties employed for the model test were com.ainfall amounts observed at the 10 stations compared to the

uted for the whole observation period 1985-1994. corresponding values de_rived f_rom the simulations. In gen-
P P eral the values from the simulations for the 500 Hpa level CP

show a much better match with the observations. Deviations

Hydrol. Earth Syst. Sci., 10, 80815 2006 www.hydrol-earth-syst-sci.net/10/807/2006/
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Fig. 2. Annual cycles of monthly precipitation sums for 8 rain gauges for the simulation driven by the CPs from the 700 Hpa pressure level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
average plus/minus the standard deviation computed based on the 200 realisations.

from the observed averages and standards deviation are etike 500 Hpa pressure level. During the validation period
tirely within the 95% confidence limit. Consistently with the 93-95 the model clearly under-predicts monthly rainfall in
findings of the companion paper (Zehe et al., 2006), the simJune 1993 and August 1995, however, the deviations are still
ulations driven by the CPs from the 700 Hpa level exhibit awithin the 95% confidence limit. When the CPs from the
systematic underestimation of the variability of daily rainfall. 700 Hpa level are used as inputs the model performs much
It leads furthermore to a clear systematic overestimation ofworse, especially at stations Bhabra, Amba and Udaighar
daily average rainfall rates with a maximum value of 1.7 mm (Fig. 4). The observed precipitation values fall outside the
at the station Thandla. 95% confidence limit several times inside the calibration pe-
Moving on to the monthly scale the simulations using the riod as well as in June 1993 and August 1995.
500 Hpa classification scheme yields a good match with the Consistently, when driven with the CP time series from the
observed annual cycle at all stations, as shown for 8 stations00 Hpa level the model yields a much better estimate of the
in Fig. 1. When compared to the annual cycle simulated us-average spatial correlation structure of the monsoon precipi-
ing the 700 Hpa CPs one can see, that in this case the modedtion. As can be seen in Fig. 5 the experimental variograms
overestimated the average monthly rainfall sums in the peare very similar and the fit of an exponential variogram func-
riod from June to August and slightly underestimates precip-tion yields for observation and simulation identical values for
itation in the beginning and the end of the monsoon period.nugget (0), sill (0.6) and range (25000 m). Please note that
However, all the deviations fall within range of the standard the values for nugget and sill are normalised with the station
deviation derived from the 200 simulations. variance. When driven with CPs from the 700 Hpa level spa-
As can be seen from Fig. 3 the model yields a good matchtial pattern of simulated rainfall shows a worse match: the
of the observed time series of monthly rainfall total in the nugget (0.1) is overestimated and the sill (0.5) is underesti-
calibration period 85-92, when driven with the CPs from mated.

www.hydrol-earth-syst-sci.net/10/807/2006/ Hydrol. Earth Syst. Sci., 10,8/2006
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Fig. 3. Time series of observed and simulated monthly totals for the period 1985-1994 for the classification scheme at the 500 Hpa level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
the 95% confidence intervals derived from the 200 realisations.

Figure 6 compares finally the autocorrelation function cially at the monthly time scale. It is interesting to note that
from both simulations to the long term average autocorrelathe model when driven with CPs from the 700 Hpa level ex-
tion computed for the 10 stations (crosses). In general therdibits a systematic underestimation of the daily rainfall vari-
is no difference between the autocorrelation functions forability when compared to the case when the model is driven
both classification schemes. Due to the assumption of an exwith CPs from the 500 Hpa. The results from the compan-
ponential autocorrelation, values are slightly overestimatedon paper (Zehe et al., 2006) already indicated that the con-
for lags between one to four days. In general the matching iglitional rainfall probabilities of the 700 Hpa classification
good. It can be seen furthermore that the spatial variabilityscheme allow a worse separation between wet and dry larges
between the autocorrelation functions is quite small. Inter-scale meteorological conditions than the corresponding val-
estingly the autocorrelation at all stations shows a local max-ues from the classification scheme for the 500 Hpa level.
imum at a lag of 4-6 days. Consistently at the monthly time the model yields clearly

better results when used with CPs from the 500 Hpa pressure
level. Due to the weaker Coriolis force one might expect that
4 Discussion and conclusions pressure patterns located closer to the ground have a stronger
influence on tropical circulation than pressure at the 500 Hpa
The results presented in this and the companion study (Zehevel. However, the Anas catchment is located &t!?4nd
et al., 2006) give evidence that objectively classified circu-the Coriolis parameter is already half as large as compared to
lation patterns are a) suitable for explaining space-time varithe mid latitudes. This seems to be large enough to influence
ability of precipitation in the Anas catchment in North West- circulation in this region.
ern India and b) allow reasonable stochastic rainfall simula- One important goal of this study was to propose a ro-
tions which match the observed precipitation data well, espebust method for reducing data shortage in developing areas

Hydrol. Earth Syst. Sci., 10, 80815 2006 www.hydrol-earth-syst-sci.net/10/807/2006/
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JHABUA RANAPUR
1000 1000

precipitation [mm]
precipitation [mm]

0 20 40 60 80 100 120 0 ) 20 40 60 80 100 120

month month
UDAIGARH AMBA
1000 1000

precipitation [mm]
precipitation [mm]

0 . 20 40 60 80 100 120
month

MEGHNAGAR

1000 1000

precipitation [mm]
precipitation [mm]

0 20 40 60 80 100 120 0 20 40 60 80 100 120
month month
BHABHRA

THANDLA

1000 1000

precipitation [mm]
precipitation [mm]

f R 5 § Y 0\ o |
0 20 40 60 80 100 120
month

Fig. 4. Time series of observed and simulated monthly totals for the period 1985-1994 for the classification scheme at the 700 Hpa level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
the 95% confidence intervals derived from the 200 realisations.

with sparse hydrological datasets. The presented approachs SST (sea surface temperature) as suggested by Harzallah
yields a good estimate for precipitation at the monthly scale,and Sadourny, 1999) or Clark et al. (1999) for example by
which is the first step towards water resources planning. Thentroducing rainfall probabilities and amounts conditional
method is robust as NCEP pressure data are globally availupon the CP and SST anomalies. However, in case of
able for CP optimisation and classification and since it isprojections into the future one has to assume, as for all
computationally efficient. The stochastic model runs on aempirical approaches, that the predictor-predictant relation
PC, computation time for 100 realisations of 10 years lengthis invariant in the presence of climate change. This is a
is 30 min. As shown in Zehe et al. (2006) the CP time seriesvery strong assumption should be carefully investigated
is a scalar predictor that embeds the information on the spae.g. by combining dynamical and empirical downscaling
tial pressure pattern i.e. important locations of depressiongpproaches.

and heights with it. Thus, the proposed method is indeed

robust and suit_able for generating pre_cipitation time series: yited by: M. Sivapalan

for the past periods where no observations are available. As

the model accounts for the spatial covariance structure of the

precipitation it may also be employed to interpolate precip-

itation data to locations inside the catchment e.g. by usingReferences

external drift Kriging (Stehlik and 8rdossy, 2002). Hence,
we may conclude that the model is suitable for the PUB is-
sue.

Bardossy, A., Stehlik, J., and Caspary, H.-J.: Generating of areal
precipitation series in the upper Neckar catchment, Phys. Chem.
Earth (B), 26, 9, 683-687, 2001.

The proposed method may in principle be extended toBirger, G.: Selected precipitation scenarios across Europe. J. Hy-

account for additional predictors for Monsoon rainfall such  drol., 262, 99-110, 2002.
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Fig. 5. Average variogram structures of the observed daily rainfall (upper panel), the simulation driven with the 500 Hpa level CPs (middle
panel) and the simulation driven with the 700 Hpa level CPs (lower panel). The crosses mark the experimental variogram cloud i.e. 1- the
cross correlation value between two stations, plotted against the distance separating the stations. The solid line with the circles marks the
experimental variogram computed by averaging the cloud values in the lag classes of 12 000 m width. The solid line is exponential variogram
fitted to the experimental variogram.

precipitation climatologies, Geophys. Res. Lett., 18, 1715-1718,
1991.

Huth, R.: Potential of continental scale circulation for the determi-
nation of local scale surface variables, Theor. Appl. Climatol.,

il 56, 165-186, 1997.

Huth, R. and Kysél, J.: Constructing site specific climate change
scenarios on a monthly scale using statistical downscaling,
Theor. Appl. Climatology, 66, 13—-27, 2000.

Katz, R. W. and Parlange, M. B.: Effects of an index of atmospheric
circulation on stochastic properties of precipitation, Water Re-

o sour. Res., 29, 2335-2344, 1993.
Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karam-

Fig. 6. Average daily autocorrelation of the simulated daily precipi-  biri, H., Lakshmi, V., Liang, X., McDonnell, J. J., Mendiondo,

tation for the 500 Hpa level (solid line with circles) and the 700 Hpa  E. M., O’Connel, P. E., Oki, T., Pomeroy, J. W., Schertzer, D.,

level (dashed). The crosses mark the autocorrelation values ob- Uhlenbrook, S., and Zehe, E.: IAHS decade on Predictions of

served at the 10 stations for time lags ranging from 1-10. Please Ungaged Basins (PUB): Shaping an exciting future for the hy-

note that the model per definition assumes a spatial uniform auto- drological sciences, Hydrol. Sci. J., 48(6), 857-879, 2003.
correlation. Stehlik, J. and Brdossy, A.: Multivariate stochastic downscaling

model for generating daily Rainfall series based on atmospheric

Clark, C. O, Cole, J. E., and Webster, P. J.: Indian ocean SST and In- Circulation, J. Hydrol., 256, 120-141, 2002. _
dian summer rainfall: Predictive relationships and their decadal\Vebster, P. J. and Hoyos, C.: Prediction of monsoon rainfall and
variability, J. Clim., 13, 2503-2519, 1999. river discharge on 15-30 day time scales, Bull. Amer. Meteor.

Foufoula-Georgiou, E. and Lettenmaier, D.: A markov renewal _Soc.,85, 1745_1767' 2004. o )
model for rainfall occurrences, Water Resour. Res., 23, 875-884Wilby, R. L. and Wigley, T. M. L. Precipitation predictors for
1987. downscaling — observed and general circulation model relation-
Harzallah, A. and Sadourny, R.: Observed lead lag relationships ShiPs, Int. J. Climatol,, 20, 641661, 2000.

between Indian summer monsoon and some meteorological variVilby. R. L. and Wigley_, T.M.L: Downscaling _ger_1era| circulation
ables, Clim. Dyn., 13, 635-648, 1999. model output: a review of methods and limitations, Prog. Phys.

Geogr., 21, 530-548, 1997.

autocorrelation [-]

Hulme, M.: An intercomparision of model and observed global

Hydrol. Earth Syst. Sci., 10, 80815 2006 www.hydrol-earth-syst-sci.net/10/807/2006/



E. Zehe et al.: Sstochastic rainfall simulations

815

Wilson, L. L., Lettenmaier, D. P., and Skyllingstaed, E.: A multiple Zehe, E., Singh A. K., and &dossy, A.: Modelling of monsoon

stochastic daily precipitation model conditional on large scale
circulation patterns, J. Geophys. Res., 97, 2791-2801, 1992.

www.hydrol-earth-syst-sci.net/10/807/2006/

rainfall for a mesoscale catchment in North-West India I: assess-
ment of objective circulation patterns, Hydrol. Earth Syst. Sci.,
10, 797-806, 2006,
http://www.hydrol-earth-syst-sci.net/10/797/2006/

Hydrol. Earth Syst. Sci., 10,8®/2006


http://www.hydrol-earth-syst-sci.net/10/797/2006/

