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Abstract. Within this study we present a robust method for
generating precipitation time series for the Anas catchment
in North Western India. The method employs a multivari-
ate stochastic simulation model that is driven by a time se-
ries of objectively classified circulation patterns (CPs). In a
companion study (Zehe et al., 2006) it was already shown
that CPs classified from the 500 or 700 Hpa levels are suit-
able to explain space-time variability of precipitation in that
area. The model is calibrated using observed rainfall time
series for the period 1985–1992 for two different CP time
series, one from the 500 Hpa level and the over from the
700 Hpa level, and 200 realizations of daily rainfall are sim-
ulated for the period 85–94. Simulations using the CPs from
the 500 Hpa level as input yield a good match of the observed
averages and standard deviations of daily rainfall. They show
furthermore good performance at the monthly scale. When
used with the 700 Hpa level CPs as inputs the model clearly
underestimates the standard deviation and performs much
worse at the monthly scale, especially in the validation period
93–94. The presented results give evidence that CPs from the
500 Hpa, level in combination with a multivariate stochastic
model, make up a suitable tool for reducing the sparsity of
precipitation data in developing regions with sparse hydro-
meteorological data sets.

1 Introduction

The PUB initiative, launched by Sivapalan et al. (2003), has
identified a set of key targets for hydrological science. The
most important thereof are the quantification and reduction of
predictive model uncertainty. To our opinion, PUB shall not
only be a catalyst to advance our hydrological understand-
ing, but also can be a catalyst to reduce the number of poorly
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gauged basins. Of course building river gauges is expensive,
laborious and therefore often not feasible. However, for the
very important variable of rainfall we think it is possible to
reduce the number of poorly gauged basins by employing
downscaling methodologies. Especially in developing coun-
tries precipitation data sets are rare. If they are available, then
they are often not in digital form, as in the case of our study
of Monsoon rainfall in the Anas catchment, that is located
in North-Western India. The very first step of this study was
to collect data that were still on paper strips and turn them
into digital data sets (1 month digitizing). This resulted in
10 years daily rainfall data for ten stations in the catchment.
While this is already a major step forward, 10 years are not
long enough for a thorough analysis of the precipitation in
that area, because of the enormous seasonality and inter an-
nual variability of the monsoon driven climate (Webster and
Hoyos, 2004). The overall objective of the present study was
therefore to suggest and test a methodology for extrapolating
the available rainfall time series in a robust and reliable way,
e.g. as basis for long term water resources and agricultural
planning.

With robust we mean that the method is computationally
efficient and based on data that are globally freely available.
As re-analysis data of atmospheric and oceanic state vari-
ables and fluxes but also climate model runs are globally
available on resolutions ranging from 2.5◦ to 1◦, downscal-
ing methods (Wilby and Wilks, 1997) can help within this
context (for a review of downscaling methods please refer
to the companion paper Zehe et al., 2006). A major prob-
lem in the context of daily precipitation modelling is the
spatial and temporal intermittency of precipitation i.e. the
clustering of wet and dry days as well as the clustering of
dry and wet areas in the target catchment. Approaches for
stochastical modelling of daily precipitation range from mul-
tivariate regression models (Bürger, 2002; Huth, 1997; Huth
and Kyseĺy, 2000), to Markov models for simulation pre-
cipitation occurrence and duration (Foufoula-Georgiou and
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Lettenmaier, 1987) and finally to stochastical models based
on circulation patterns or weather types (Wilson et al., 1992;
Katz and Parlange, 1996; Wilby and Wigley, 2000).

In the present study we adopt an empirical downscal-
ing approach proposed by Stehlik and Bárdossy (2002) for
stochastic rainfall simulations in the Anas catchment. The
predictor variables are objectively classified circulation pat-
terns from a suitable pressure level that have to be optimised
for explaining the space-time variability in the target area.
The time series of the circulation patterns serve in a second
step as input variables to run a multivariate stochastic rain-
fall model. The link between daily rainfall and the CP is
established by conditional rainfall probabilities and amounts
respectively. In a companion study (Zehe et al., 2006) we al-
ready showed that pressure patterns are, despite the fact that
the Coriolis parameter is half as large as compared to the
middle latitudes, suitable and parsimoneous predictors for
explaining precipitation variability in the Anas catchment.
Within the present study we will shed light on the question of
whether the two different CP classification schemes, one for
the 500 HPa level and the other for the 700 Hpa level, yield
suitable inputs to the multivariate stochastic rainfall model
that shall reproduce the precipitation behaviour observed in
the Anas catchment.

This paper is organized as follows. In section two we
present the stochastic rainfall model, the statistical methods
to analyse precipitation in the Anas catchment as well as the
simulation strategy. Simulated and observed precipitation are
compared in Sect. 3, with emphasis on daily and monthly
scale rainfall properties, as well as the spatial structure and
the autocorrelation structure. The study closes with discus-
sion and conclusions in section 4. For details on the Anas
catchment and the precipitation data base the reader might
refer to the companion paper of Zehe et al. (2006).

2 Methodology

Stehlik and B́ardossy (2002) developed a methodology for
generating spatio-temporal variable precipitation data using
large scale daily pressure fields (simulated or observed) as
well as local scale precipitation. The method consists of two
main steps:

– An optimisation of fuzzy rules to classify pressure fields
into circulation patterns (CPs), to explain the basin scale
space-time variability of observed rainfall.

– A multivariate and stochastical generation of rainfall at
different locations in the area of interest. The model is
a conditional multivariate autoregressive rainfall model
based on a transformed multivariate normal distribu-
tion. Rainfall is linked to the individual CP using condi-
tional rainfall probability and amounts. The model ac-
counts for the spatial covariance of daily precipitation is
a function of the actual CP as well as of the day in the

year. The annual cycles of the spatial covariance func-
tion and of the one day lag autocorrelation are described
by means of a Fourier series.

The optimisation of two CP classification schemes for the
500 HPa and the 700 HPa level and their suitability for ex-
plaining the spatio-temporal variability of precipitation in the
Anas catchment is described in the companion study (Zehe et
al., 2006). Additional information on CP optimisation proce-
dure may be found in B́ardossy et al. (2001). In the following
we will briefly introduce the multivariate stochastical precip-
itation model.

2.1 Stochastic rainfall model

A major problem in the mathematical modelling of precipi-
tation is spatial and temporal intermittency. Dry days occur
with high probability, and on rainy days a continuous distri-
bution describes the rainfall amounts at a selected locationu.
Therefore, a multi-site approach based on random variables
with mixed distributions is required to describe the daily pre-
cipitation pattern. Within the time-space model suggested by
Stehlik and B́ardossy (2002) the persistence of wet or dry
days is a consequence of the persistence of the circulation
patterns and the CP specific meteorological conditions, thus
it is an input to the precipitation model.

Precipitation is linked to the individual CP through
a conditional probability for the occurrence of a
wet day p(CP(t))=(p(CP(t), u1), . . .p(CP(t), uM))

and a conditional average amount
z(CP(t))=(z(CP(t), u1), . . ., z(CP(t), uM)) which are
derived from a set of precipitation time series observed at
locationsu=(u1, . . .uM) by means of frequency analysis.
For a given CP the probability distribution,Z(t, u) of daily
rainfall amounts,z=(z(t, u1), . . .z(t, uM)) at a set of loca-
tions is of course multivariate skewed. Stehlik and Bárdossy
(2002) relateZ(t, u) to the positive branch of a multivariate
normal processN(t, u) by introducing a transformation
within two steps. First they define a new variablez′

=z−a,
z=(zu1, . . .zuM), a is a constant vector, such that

1 −

0∫
−∞

N(u, t)dz′
= 1 −

a∫
−∞

N(u, t)dz

= p(CP(t))= (p(CP(t), u1), ..., p(CP(t), uM))

dz = dzu1dzu2...dzuM (1)

This transformation assures that the integral of the positive
branch of the shifted multivariate normal yields the observed
conditional probabilityp(CP(t)) for a wet day at each loca-
tion u1,..,uM . Second a suitable exponentβ has to be se-
lected for each locationu1,..,uM such that:

z(CP(t), ui)

=

∞∫
0

zuiZ(ui, t)dzui
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=

∞∫
0

z′

ui (N(ui, t))
β dz′

ui

=

∞∫
aui

zui (N(ui, t))
β dzui

(2)

This assures that the positive branch of the power trans-
formed multivariate normal process yields the conditional
average daily rainfall amountz(CP(t)) observed at the lo-
cations. By repeating this procedure for each CP, the discrete
discrete-continuous distribution ofZ(t, u) is related to the
normal stochastic processN(t, u).

Z (t, u) =

{
Nβ (t, u) for N(t, u) > 0

0 for N(t, u) ≤ 0

}
(3)

Although in principle the conditional probability of a wet day
p(CP, (t), u) and the amount can be different for each day in
the year, available rainfall time series are usually too short to
evaluatep(CP, (t), u) for each day in the year by frequency
analysis. Stehlik and B́ardossy (2002) suggest the evalua-
tion of p(CP, (t), u) separately for each CP and location for
each month in the year. After transformation ofZ into the
multivariate normal process according to Eq. (1) and (2) the
negative values ofN are declared as dry days at locationsui ,
to reflect the intermittency of precipitation.

The stochastic rainfall model describes how the deviation
from the CP conditional daily average normal process on a
given Julian day of the year evolves from the corresponding
deviation at the previous day:

N(t + 1, u) − E(N(t + 1∗, u) |CPi ) = r(t ∗ +1) · (N(t, u)

−E(N(t ∗ u) |CPi )) + CCPi(t ∗ +1) · 9(t∗, u) (4)

whereE denotes the expectation value conditioned to the Ju-
lian day and the CPi , r is the 1 day lag autocorrelation func-
tion that is assumed to be constant in space but is a function
of the Julian day in the year (annual cycle). The matrixC is
related to the spatial covariance matrix and the one day lag
spatial covariance matrix of the multivariate normal process
as described in Stehlik and Bárdossy (2002) or in Brás and
Rodrigue-Iturbe (1985). It depends on the circulation pattern
and on the annual cycle. The vector9 denotes a random
vector of independent normally distributed random numbers
with zero mean and standard deviation 1. With Eq. (4) and
the link between the multivariate normal process and multi-
variate rainfall distributionZ in Eq. (3) the rainfall model is
totally described.

The autocorrelation function inr is defined independent
of the rainfall stations and is modelled by means of a Fourier
analysis. In the study of Stehlik and Bárdossy (2002)
that was conducted for two catchments in Germany in and
Greece, the first three harmonics were found to be sufficient
for explaining the annual cycle.

For computing the matricC in Eq. (6) as well as for char-
acterising the multivariate normal process it is necessary to

estimate the spatial covariance function, cov, from the rain
gauge data.Cov is a function of the month of the year and
the CP and we use an exponential spatial covariance func-
tion:

cov (Z(x), Z(y)) = C0 exp

(
−d(x, y)

λ

)
(5)

whered is the distance andC0 and the correlation lengthλ is
a functions of month in the year and the CP.

2.2 Statistical measures for model performance and model
calibration

2.2.1 Statistical measures for model performance

In order to check the models capability to reproduce the ob-
served monsoon precipitation in the Anas catchment we se-
lected at the daily scale the average and standard deviation
of the daily rainfall amounts. At the monthly scale we com-
pared the simulated and observed annual cycles as well as the
time series of simulated and observed rainfall. Furthermore,
we compared the long term average spatial covariance struc-
ture by estimating the variogram as follows. In the first step
we calculated the cross correlation for each pair of the ten
rain gauges for the simulation and the observations, respec-
tively. By plotting the cross correlation values against the
distance between the pairs we obtain a spatial correlogram.
Assuming stationarity of the increments one minus the cross
correlation values plotted against the distances gives an esti-
mate of the variogram, which sheds light on the average spa-
tial structure of the monsoon precipitation in this area. The
lag step for calculation the empirical variogram was set to
12 000 m. As theoretical estimator we selected an exponen-
tial variogram function. Finally, to shed light on the memory
of the monsoon rainfall process we calculated the autocorre-
lation of the simulated and observed rainfall time series.

2.3 Model calibration and simulation variants

To estimate the model parameters especially the matrixC,
that depends on the month and the CP, one needs a data set of
10 years or more especially when the inter-annual variability
of precipitation is as high as in the Anas catchment. Within
the 10 year observation period the annual precipitation sums
range from 350 to 1300 mm! On the other hand, it is neces-
sary to test the model using an independent period; hence we
selected an 8 year calibration period 85–92 and 2 year vali-
dation period 93–94. The model was calibrated using the CP
time series from both classification regimes for the 500 Hpa
and the 700 Hpa level (Zehe et al., 2006). Following Stehlik
and B́ardossy (2002) we used the first 3 harmonics for de-
scribing the annual cycles of the autocorrelation function.
However, the calibration and estimation of Fourier coeffi-
cients was only carried out for the period May–October. This
is because rainfall data in the Anas catchment were only col-
lected in this period. Hence, we assumed precipitation out-
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Table 1. Observed and simulated daily average daily rainfall amount in mm (upper three rows) as well as observed and simulated standard
deviation (stdev., in mm) of daily rainfall totals (lower three rows) for the ten rain gauges.

1 2 3 4 5 6 7 8 9 10

Mean obs. 5.14 5.09 5.34 5.57 6.10 4.76 5.75 5.20 5.02 6.64
Mean 700 Hpa 6.46 5.49 5.51 6.25 6.26 5.21 7.27 5.66 5.31 7.23
Mean 500 Hpa 5.50 5.34 5.15 6.21 6.09 5.06 5.56 5.90 5.39 7.00
Stdev. Obs. 15.9 16.3 14.7 16.7 19.6 14.9 17.6 14.7 14.8 18.9
Stdev. 700 Hpa 14.8 15.2 12.4 13.9 16.3 12.9 16.2 13.9 12.5 15.7
Stdev. 500 Hpa 15.6 15.8 14.4 16.5 19.0 15.2 16.1 15.1 14.3 18.3

1 = Jhabua, 2 = Ranapur, 3 = Udaigarh, 4 = Amba, 5 = Rama, 6 = Meghnagar, 7 = Thandla, 8 = Bhabra, 9 = Sardapur, 10 = Petlabad

Fig. 1. Annual cycles of monthly precipitation sums for 8 rain gauges for the simulation driven by the CPs from the 500 Hpa pressure level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
average plus/minus the standard deviation computed based on the 200 realisations.

side this period to be zero. Rainfall probabilities and Fourier
coefficients outside were therefore set to zero! In general we
performed a total number of 200 simulations for both classi-
fication schemes. Due to the short validation period all the
statistical properties employed for the model test were com-
puted for the whole observation period 1985–1994.

3 Results

Table 1 lists the averages and standard deviations of daily
rainfall amounts observed at the 10 stations compared to the
corresponding values derived from the simulations. In gen-
eral the values from the simulations for the 500 Hpa level CP
show a much better match with the observations. Deviations
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Fig. 2. Annual cycles of monthly precipitation sums for 8 rain gauges for the simulation driven by the CPs from the 700 Hpa pressure level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
average plus/minus the standard deviation computed based on the 200 realisations.

from the observed averages and standards deviation are en-
tirely within the 95% confidence limit. Consistently with the
findings of the companion paper (Zehe et al., 2006), the sim-
ulations driven by the CPs from the 700 Hpa level exhibit a
systematic underestimation of the variability of daily rainfall.
It leads furthermore to a clear systematic overestimation of
daily average rainfall rates with a maximum value of 1.7 mm
at the station Thandla.

Moving on to the monthly scale the simulations using the
500 Hpa classification scheme yields a good match with the
observed annual cycle at all stations, as shown for 8 stations
in Fig. 1. When compared to the annual cycle simulated us-
ing the 700 Hpa CPs one can see, that in this case the model
overestimated the average monthly rainfall sums in the pe-
riod from June to August and slightly underestimates precip-
itation in the beginning and the end of the monsoon period.
However, all the deviations fall within range of the standard
deviation derived from the 200 simulations.

As can be seen from Fig. 3 the model yields a good match
of the observed time series of monthly rainfall total in the
calibration period 85–92, when driven with the CPs from

the 500 Hpa pressure level. During the validation period
93–95 the model clearly under-predicts monthly rainfall in
June 1993 and August 1995, however, the deviations are still
within the 95% confidence limit. When the CPs from the
700 Hpa level are used as inputs the model performs much
worse, especially at stations Bhabra, Amba and Udaighar
(Fig. 4). The observed precipitation values fall outside the
95% confidence limit several times inside the calibration pe-
riod as well as in June 1993 and August 1995.

Consistently, when driven with the CP time series from the
500 Hpa level the model yields a much better estimate of the
average spatial correlation structure of the monsoon precipi-
tation. As can be seen in Fig. 5 the experimental variograms
are very similar and the fit of an exponential variogram func-
tion yields for observation and simulation identical values for
nugget (0), sill (0.6) and range (25 000 m). Please note that
the values for nugget and sill are normalised with the station
variance. When driven with CPs from the 700 Hpa level spa-
tial pattern of simulated rainfall shows a worse match: the
nugget (0.1) is overestimated and the sill (0.5) is underesti-
mated.

www.hydrol-earth-syst-sci.net/10/807/2006/ Hydrol. Earth Syst. Sci., 10, 807–815, 2006



812 E. Zehe et al.: Sstochastic rainfall simulations

Fig. 3. Time series of observed and simulated monthly totals for the period 1985–1994 for the classification scheme at the 500 Hpa level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
the 95% confidence intervals derived from the 200 realisations.

Figure 6 compares finally the autocorrelation function
from both simulations to the long term average autocorrela-
tion computed for the 10 stations (crosses). In general there
is no difference between the autocorrelation functions for
both classification schemes. Due to the assumption of an ex-
ponential autocorrelation, values are slightly overestimated
for lags between one to four days. In general the matching is
good. It can be seen furthermore that the spatial variability
between the autocorrelation functions is quite small. Inter-
estingly the autocorrelation at all stations shows a local max-
imum at a lag of 4–6 days.

4 Discussion and conclusions

The results presented in this and the companion study (Zehe
et al., 2006) give evidence that objectively classified circu-
lation patterns are a) suitable for explaining space-time vari-
ability of precipitation in the Anas catchment in North West-
ern India and b) allow reasonable stochastic rainfall simula-
tions which match the observed precipitation data well, espe-

cially at the monthly time scale. It is interesting to note that
the model when driven with CPs from the 700 Hpa level ex-
hibits a systematic underestimation of the daily rainfall vari-
ability when compared to the case when the model is driven
with CPs from the 500 Hpa. The results from the compan-
ion paper (Zehe et al., 2006) already indicated that the con-
ditional rainfall probabilities of the 700 Hpa classification
scheme allow a worse separation between wet and dry larges
scale meteorological conditions than the corresponding val-
ues from the classification scheme for the 500 Hpa level.
Consistently at the monthly time the model yields clearly
better results when used with CPs from the 500 Hpa pressure
level. Due to the weaker Coriolis force one might expect that
pressure patterns located closer to the ground have a stronger
influence on tropical circulation than pressure at the 500 Hpa
level. However, the Anas catchment is located at 24◦ N and
the Coriolis parameter is already half as large as compared to
the mid latitudes. This seems to be large enough to influence
circulation in this region.

One important goal of this study was to propose a ro-
bust method for reducing data shortage in developing areas
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Fig. 4. Time series of observed and simulated monthly totals for the period 1985–1994 for the classification scheme at the 700 Hpa level.
The solid line with the crosses is the observation the solid line the circles denote the average from the 200 realisations. The dashed lines are
the 95% confidence intervals derived from the 200 realisations.

with sparse hydrological datasets. The presented approach
yields a good estimate for precipitation at the monthly scale,
which is the first step towards water resources planning. The
method is robust as NCEP pressure data are globally avail-
able for CP optimisation and classification and since it is
computationally efficient. The stochastic model runs on a
PC, computation time for 100 realisations of 10 years length
is 30 min. As shown in Zehe et al. (2006) the CP time series
is a scalar predictor that embeds the information on the spa-
tial pressure pattern i.e. important locations of depressions
and heights with it. Thus, the proposed method is indeed
robust and suitable for generating precipitation time series
for the past periods where no observations are available. As
the model accounts for the spatial covariance structure of the
precipitation it may also be employed to interpolate precip-
itation data to locations inside the catchment e.g. by using
external drift Kriging (Stehlik and B́ardossy, 2002). Hence,
we may conclude that the model is suitable for the PUB is-
sue.

The proposed method may in principle be extended to
account for additional predictors for Monsoon rainfall such

as SST (sea surface temperature) as suggested by Harzallah
and Sadourny, 1999) or Clark et al. (1999) for example by
introducing rainfall probabilities and amounts conditional
upon the CP and SST anomalies. However, in case of
projections into the future one has to assume, as for all
empirical approaches, that the predictor-predictant relation
is invariant in the presence of climate change. This is a
very strong assumption should be carefully investigated
e.g. by combining dynamical and empirical downscaling
approaches.

Edited by: M. Sivapalan
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