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Abstract. Artificial Neural Networks (ANNs) have proved
to be good modelling tools in hydrology for rainfall-runoff
modelling and hydraulic flow modelling. Representative
datasets are necessary for the training phase in which the
ANN learns the model’s input-output relations. Good and
representative training data is not always available. In this
publication Genetic Algorithms (GA) are used to optimise
training datasets. The approach is tested with an existing hy-
draulic model in The Netherlands. An initial trainnig dataset
is used for training the ANN. After optimisation with a GA of
the training dataset the ANN produced more accurate model
results.

1 Introduction

Artificial Neural Networks have the ability to be used as an
arbitrary function approximation mechanism which learns
from observed data. In hydrology ANNs prove to be good
alternatives for traditional modelling approaches. This is
particular the case for rainfall-runoff modelling (Minns and
Hall, 1996; Whigham and Crapper, 2001; Vos and Rientjes,
2005) and hydraulic flow modelling. The structure of ANNs
consists of neurons positioned in layers that are connected
through weights and transfer functions. In the training phase
the exact values for weights of the network are determined by
using one of the available training algorithms, for example
the Levenberg-Marquardt backpropagation training method.
In this training phase the model actually learns the behavior
of the process by adopting the input-output relations from
the datasets. There are several good descriptions on ANNs
(Hagan et al., 1996; Haykin, 1999). The dataset is usually
divided into a train and test set and a cross validation set to
prevent overfitting. To ensure proper modelling these three
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datasets have to be statistically similar. The training set must
be representative for the simulation period to improve inter-
polation of data. The extrapolation of model results beyond
the trained dataset is difficult however it is not impossible.
Therefore the test set must have examples to assess the per-
formance or generalization ability of the trained network. In
a flow model for example, the training data must contain high
and low flows and in a rainfall-runoff model the data should
contain sufficient extreme rainfall events to be representative.

Such data is not always available. Considerations for ex-
penditures on sensors, installation, calibration and validation
of the data play a role. Data is also limited due to legal, social
and technical constraints on its collection and distribution
(Shannon et al., 2005). Lack of data is especially the problem
for physically distributed hydrological models (Feyen et al.,
2000). Hydrological data can be available however the data
must be consistent with the project goals and fit with the sim-
ulation period, have the right quality and detail. One exam-
ple is the European project in Romania (Tisza River Project,
2004). Collecting new datasets seem a good alternative but is
at the same time an expensive and time consuming measuring
campaign. Using existing measuring locations, at the other
hand, not always match with the problem area. Additional
problems can occur with the quality of data or the availabil-
ity of data. In practice there can also be legal and strategic
aspects that give problems to obtain enough validated data or
good data without noise (Doan et al., 2005).

In this publication we assume there is not enough data
available from measurements and we chose to produce ar-
tificial datasets based on the physical boundaries of the par-
ticular flow model such as water depth and cross sectional
profile. Furthermore we assume that a good training set cov-
ers all physical situations. The problem of this approach is
that it results in long and probably redundant data. This is
also known as the problem to find a training set which is rep-
resentative. There has no systematic approach been devel-
oped for the optimal division of data for ANN models. The
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Fig. 1. Hydraulic flow model Baambrugge, The Netherlands (Wit-
teveen+Bos consulting engineers).

conventional approach to this problem involves an arbitrary
division of the data. Two other methodologies were success-
fully investigated byBowden et al.(2002). In this publication
the technique of Genetic Algorithms (GA) is used to reduce
the artificially created datasets to smaller, optimised training
datasets for the ANN.

2 Optimisation by Genetic Algorithms

Genetic Algorithm is a search technique to find approximate
solutions to optimisation problems. It is a global search tech-
nique and a particular class of evolutionary algorithms. From
biological sciences, evolutionary processes have been trans-
lated to efficient search and design strategies. Genetic Algo-
rithms use these strategies to find an optimum solution for
any multi-dimensional problem (Goldberg, 1989). An opti-
mal solution is however not guaranteed. Genetic Algorithms
are search algorithms that mimic the behavior of natural se-
lection. GAs attempt to find the best solution to a problem
by generating a collection (population) of potential solutions

(individuals) to the problem. The best solution is the max-
imum of a function. Through mutation and recombination
(crossover) operations, possibly better solutions are gener-
ated out of the current set of potential solutions. This process
continues until an acceptably good solution is found.

In this paper the GA is used in combination with an ANN
model. The ANN mimics a 1-D free surface flow drainage
system in The Netherlands. An artificial dataset was con-
structed with discharge levels and discharge variations such
that the discharges dataset overlap all flow conditions in the
hydraulic computer model. The GA selects randomly five
time periods from this initial dataset and puts them into a new
dataset. The number of five time periods is a compromise be-
tween calculation time and calculation error. The ANN runs
again with this new training set. This procedure is repeated
until an optimal training dataset configuration is reached.
The GA solves this problem in a reasonable time without
restricting itself to local minima. In this paper the GA con-
structs an effective training dataset for an ANN network-
based model emulating a hydraulic flow model. From the
available dataset usually a subset for training is carefully se-
lected resulting in a suboptimal training datasets. The GA is
used to change the training dataset where ranges of variables
correspond with physical dimensions of 1-D natural limits of
surface flow.

The question is how to select the initial training set, how to
construct a more optimal dataset and to improve the ANN’s
training procedure in combination with the GA. The opti-
misation consists of a procedure which selects areas in the
initial dataset that have a positive influence on the ANN’s
performance. The hypothesis in this paper is that the initial
training dataset contains sufficient input/output data for the
ANN because it covers the total input space. However it is
not known which part of the dataset contributes to adequate
results, how many data is needed and in which sequence they
should be placed. This is a complex optimisation problem.
GAs have global optimisation capabilities and have advan-
tages above other search techniques, including the ability to
deal with qualitatively different types of domains, such as
continuous variable domains and discrete variable domains.

The GA will search in the artificial dataset for data that
have positive influence on the training of the ANN.

3 Flow model and methodology

In this paper the ANN simulates an existing hydraulic model
of the drainage system of Baambrugge in The Netherlands
which was created by Witteveen+Bos consulting engineers,
Fig. 1. This model is built in Duflow which is software for
modelling 1-D-channel flow. In Duflow the Saint-Venant
equations are used for the free surface flow movements. Be-
cause of its open data structure Duflow is suitable for calcula-
tions in combination with other applications e.g. Matlab. The
datasets consist of simulated discharges up and downstream
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Fig. 2. Input with stepped delay line to simulate history.

of a channel section and is simulated in a one-dimensional
hydraulic network. ANN can simulate free surface flow (e.g.
Bobovic and Abbott, 1997; Price et al., 1998; Bobovic and
Keijzer, 2000; Minns, 2000; Dibike, 2002).

This model has several discharge points and boundaries;
there are also many rainfall-runoff areas connected. The in-
put for the ANN is a discharge at the upper boundary. From
that point the water disperses into the model. The output of
the ANN is the discharge at a point, in the center of the model
where boundary distortion is minimal. ANNs are capable to
generalise system behavior from the training data (Anctil and
Lauzon, 2004) and in a certain extent extrapolate (Shrestha
et al., 2005). From this initial training data the GA selects
five subsets with random start and endpoints. Consequently
one observation can be used more than one time. The GA is
free to choose the same start date for each subset. From some
experiments the number of five subsets are chosen on con-
siderations of calculation time and accuracy. Extra subsets
did not give smaller errors and slowed down the calculation.
Subsequently the ANN performs a run with this new training
set.

The error of the ANN is measured with the root mean
squared-error (RMSE) of the simulated and target values.
The target values are the simulated output of the numerical
flow model. The ANN error was used as a fitness function
value for the GA. The design parameters consist of start dates
of the subsets. The parameter domain therefore equals the
time period of the initial training dataset. No inequality con-
straints and equality constraints, nor a penalty function was
used (Houck et al., 1995). The training set, consisting of new
subsets, was used for the flow model to calculate new target
values. The simulated and target values are compared and
the GA generates, on the basis of the error, a new genera-
tion of training sets using selections, mutations, crossovers
and other evolutionary methods. A cross validation set was
used to prevent overfitting. The expectation is that the GA
constructs a training set based on the original dataset and en-
suring a minimum training error.

Fig. 3. Example of starting index for five subsets in training data.

4 Model experiment

The input for the ANN is the upstream discharge model
boundary which varies between 0.5 and 1.5 m3/s to cover the
input space. Within these limits the discharge model bound-
ary frequency increases from days to hours in order to en-
capsulate enough floods of different durations. It is a sin-
function with a decreasing time period resulting in a quick
oscillation at the end. The training target of the ANN is the
discharge in the central area of the model. The target val-
ues are calculated in the numerical flow model. The input
and output values will be used to design a data-driven model
apart from the physically-based flow model. ANN are used
because it is a widely used trend and proved to be an accurate
regression method. Alternative methods are for example lin-
ear regression methods or model trees (Solomatine and Du-
lal, 2003).

A stepped delay line is used to simulate stream flow dy-
namics. In a stepped delay line the input at timet until n

steps in historyQt−n form the ANN’s input layer (see Fig.2).
The target values are the flow model’s output at timet . For
the ANN we used two inputs; the 2nd and 7th time step of
the upstream discharge model boundary in a stepped delay
line. These steps were selected based on the cross-correlation
graph of input and output data (see Fig.7). The 2nd time step
corresponds with the average travel time of a wave along the
shortest route. In the cross-correlation graph there is plat-
form at the 7th time step which could correspond to alterna-
tive ways for the wave to travel through the flow model. The
ANN has two hidden layers with three neurons and five neu-
rons respectively and an output layer with one neuron with
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Fig. 4. Training set optimised by Genetic Algorithm.

Fig. 5. Distribution data points of optimised training sets in com-
parison to initial data set.

a linear transfer function. The neurons in the hidden layers
have logsig transfer functions.

The network structure, training algorithms, neuron func-
tions and other ANN parameters are chosen on the basis of
other hydraulic ANN model designs and experiences. It is a
general problem that ANN has many design parameters that
must be chosen and optimised. Therefore it is in general not
straightforward to design a good structure for an ANN; a few
rules of thumb for ANN in hydrinformatics were found by
Zijderveld(2003). Other hydraulic ANN model designs and
experiences were used as a first start. Another general prob-
lem of ANN is overfitting. Overfitting means that the training
algorithm adjustst the weights of the ANN to fit every single
data value in the dataset and at the same time decreases its ca-
pability to generelise future, new datasets. To prevent over-
fitting, a dataset from a situation for which the desired output

Table 1. Testresults of optimised training set vs standard training
(10 runs).

Testset optimised training (rmse) standard training (rmse)

Test 1 0.0085 0.0114
Test 2 0.0095 0.0134
Test 3 0.0043 0.0124

is known, is used in the training method. If the validation er-
ror increases while the training error steadily decreases then
a situation of overfitting may have occurred and the training
is stopped.

It is necessary to test the ANN on test sets that relate to
hydraulic situations. The method of randomization of test
sets was not used because it would not allow blocks of data.
For that reason the test set was created distinctly from the
training set. The test sets represent different hydrological sit-
uations with variations in the hydrograph. The trained ANN
will be used as an emulated flow model which, in concept,
can simulate every flow condition. For this reason the test-
ing was extended to three test sets, see Table1. Each test
set represents a situation with discharge variations with dif-
ferent time periods. These three test sets together cover most
discharge variations of the flow model.

In this paper the GA is used to optimise the training data
to get a better trained ANN. The GA is trained for 30 genera-
tions each with 10 off-spring which is a small number. Some
calculations with a higher number did not give lower errors.
From the initial training set five subsets of equal length (150
data points) are selected. Only the starting point or starting
index is chosen by the GA (see Fig.3). The five subsets to-
gether form a new training set with new input/output time
series and have a total length of 757 data points wich is half
the length of the original training set.

With the combined training set, the ANN makes a new
calculation, resulting in a better performing ANN model
(RMSE). Based on these results the GA starts the next run
and chooses five new samples.

5 Conclusions

For many reasons sufficient and representative data is not
always available. In this case we focused on a hydraulic
flow model and presumed there is not enough data to train
an ANN and decided to produce an artificial dataset. There-
fore a dataset was composed regarding the properties of the
flow network such as water depth, average discharge and
timescales. With this dataset the ANN simulated the target
model output which gave, as expected, poor results.

The GA was used to improve the results of the ANN by
optimising the original training set. The GA constructed a
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Fig. 6. Frequency spectrum of optimised training set.

new training set by selecting different subsets from the orig-
inal training set. The ANN was then trained again with this
new training set. This was repeated until the GA found an op-
timal training set that performed much better than the initial
training set. In this particular flow model it gave on average
39% better results when measured in RMSE. Figure4 shows
one of the resulting training sets. The sharp edges in the dis-
charge indicate the borders of the subsets and have no special
meaning.

To take a closer look to the resulting dataset, Fig.5 shows
the distribution of the data points in comparison with the
original, non optimised training set. A high density means
the training set constructed with the GA chose that particu-
lar data point frequently. It shows which part of the origi-
nal training set is represented by the optimised training set.
The GA used data from the entire, original dataset consist-
ing of 1489 data samples to find an optimised training set,
except for the first 77 and the last 372 samples. In the last
area the frequencies of the discharge is very high as shown
in Fig. 3. The explanation for this is that in the flow model
quick changes result in an almost constant discharge in the
center of the model. The effect is that the relation between
inputs and outputs is not ambiguous anymore. An ANN can-
not handle this. As a result the GA did not select this area in
the optimised training set. Slower changes were no problem
for the ANN except for the very first samples where noise,
induced by initial conditions, influenced the results.

It is also interesting to look at the frequency distribution
of the initial and the optimal frequency dataset as shown in
Fig.6. The initial dataset puts emphasis on waves with a time
period of half a day. The optimised dataset has corrected
this and put more emphasis on a broader spectrum with wave
periods from 2.7 days to 14 h. Wave periods longer than 2.7
days (left part of the graph) were excluded in the optimised

Fig. 7. Cross-correlation input and output discharge.

dataset. The GA created a more balanced training set. The
optimized training and test sets correspond to a specific flow
model and are not universal applicable for other flow models.
For each new flow model a new initial training and test set is
necessary.

In this paper a GA was used to optimise the training data
resulting in a better ANN simulating an existing hydraulic
flow model in Baambrugge, The Netherlands. The resulting
training data was built from five subsets selected by the
GAs optimisation technique and resulted in an ANN which
gives more accurate outputs. Further recommendation is to
compare this method to other splitting algorithm methods.

Edited by: D. Solomatine
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