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Abstract

In a recent contribution, Hall et al. (2004) examined the use of the Bootstrap resampling technique as a means of constructing confidence
limits for the quantiles of the (two-parameter) Gumbel and the (three-parameter) Weibull distributions. Particular emphasis was placed on the

behaviour of sample sizes of the order of 30, which are typical of those encountered in hydrological frequency analysis. The resampled

confidence limits obtained for the Gumbel distribution were found to be comparable with those based upon a well-known theoretical
approximation. However, those for samples of size 30 from the Weibull distribution were shown to be more problematical, with the results
dependent upon the skewnesses of the resampled distributional parameters. For a further and more quantitative assessment of the suitability of
Bootstrap resampling for constructing confidence intervals, so-called coverage rates were evaluated for the Weibull distribution in a
supplementary study. The results show a satisfactory performance when using the percentile method but do not really mitigate the conclusion

of the original study that resampled confidence limits should be employed with caution when sample sizes are of the order of 30.

Keywords: Bootstrap, Jack-knife, frequency analysis, maximum likelihood method, maximum product of spacings method, confidence intervals,

coverage rates.

Introduction

Resampling techniques such as the Bootstrap and the Jack-
knife (Efron and Tibshirani, 1993; Davison and Hinkley,
1997) are data-based simulation methods for statistical
inference. In effect, resampling creates an ensemble of data
sets, each of which is a replication from the original sample.
The Jack-knife algorithm generates the new samples by
deleting one (or more) specific data points, while the
Bootstrap algorithm creates the new data sets by sampling
with replacement. In the latter case, one or more data points
may be absent, and one or more may be repeated once or
more than once in any resampled data set. For each
resampled data set the actual statistic is evaluated and, from
this ensemble, an estimate of the statistic and its uncertainty
(spread, quantiles, or confidence interval) can be derived.
Despite their considerable attraction in providing estimates
of standard errors avoiding the need for theoretical
calculation and manipulation of complicated forms of
estimator, resampling techniques appear to have attracted
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only comparatively limited attention in hydrology and water
resources engineering (see Hall et al., 2004, and the
references therein). In a recent contribution (Hall e al.,
2004), the construction of confidence limits to quantile
estimates obtained from two- and three-parameter frequency
distributions was investigated using Bootstrap resampling
techniques. The Gumbel (Extreme Value type I) distribution
was adopted as an example of a typical two-parameter
distribution for which the standard errors of quantile
estimates can be derived using a well-known theoretical
approximation. Monte Carlo methods were applied to
generate different sample sizes from a Gumbel population
and their parameters were estimated using the Method of
Maximum Likelihood (MLH). The Bootstrap was then
employed to compute standard errors of quantile estimates
which could be compared with those generated from the
aforementioned theoretical approximation, particular
attention being paid to the number of resamples required
for different sample sizes. Confidence levels were computed
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using both the Gaussian method, assuming that the
resampled quantiles were normally distributed, and the
percentile method, for which the appropriate limiting values
were read from a ranked list of values provided by all
resamples. Similar results were achieved with both methods,
largely because the location and scale parameters of the
resamples were approximately normally distributed, and
were found to produce confidence limits that were
comparable with the theoretical approximation.

These results were sufficiently encouraging for the same
approach to be applied to the three-parameter Weibull
distribution, for which estimates for standard errors of
quantile estimates are difficult to determine by analytical
methods. In this case, three initial sample sizes were
generated by Monte Carlo methods for two distributions
with location parameter of zero and a scale parameter of
unity, but with shape parameters of 0.75 and 2 respectively.
The parameters of the resamples were estimated by the
Maximum product of spacings (MPS) method (Cheng and
Amin, 1983), which has been found to be superior to MLH
with distributions such as the Weibull with a shifted origin
as a location parameter. In such cases, and especially when
the distribution is J-shaped, MPS may provide consistent
estimates where MLH is bound to fail (Cheng and Amin,
1983). A comparison was made of the sample distribution
function (SDF), based on MPS estimates of the parameters
of the original sample, and the Bootstrap ensemble
distribution function (EnDF), obtained by averaging 1000
Bootstrap resamples, along with their 95% confidence limits.
For discussion purposes, the latter were computed with both
the Gaussian approximation and the percentile method.

For both values of the shape parameter and an initial
sample size of 30, the confidence limits displayed a marked
divergence as the probability of non-exceedance increased
from 0.99 to 0.9999. There was little agreement between
the limits given by the Gaussian method and the percentile
method, and the lower bound of the (for example 95%)
confidence interval limit of the Gaussian method may even
be decreasing for an increasing probability of non-
exceedance.

This discrepancy was explained partly by the distributional
properties of both the quantiles for a given plotting position
variate and the resampled parameters of the parent
distributions. For an initial sample size of 100 and both
values of the shape parameter, much better agreement was
discernable between the SDF and the EnDF, and the
confidence levels obtained with the Gaussian and percentile
methods. This agreement improved even further when the
initial sample size was increased to 400. Unfortunately, the
confidence limits obtained by Bootstrapping with the
Weibull distribution with sample sizes of 30, which are more

representative of the data sets generally available for
hydrological frequency analysis, must be subject to critical
evaluation. In any case, the percentile method is to be
preferred to the Gaussian approach.

During the review of the original paper, an anonymous
referee commented that the conclusions concerning the
behaviour of the confidence levels constructed by the
different procedures would be reinforced if consideration
were given to their coverage properties. Unfortunately, this
extra information could not be made available in time to
meet the deadline for publication of the paper. This
supplementary note is therefore offered by way of an
extension to the original discussion. The following sections
therefore describe the methodology adopted for the
generation of coverage rates, along with a summary of the
results and some concluding remarks.

Coverage properties

Coverage properties can be computed using the following
procedure (see, e.g. Stark, 2003). Firstly, a random sample
of size N, X® = (xi(l) X xP X(N”) is generated from a
parent distribution, F ( |®) . The chosen estimation
technique (e.g. MLH, MPS) is then applied to find estimates
O® and %§ = F’l(Q |(:)(1>) for the population parameters @

and quantiles X, = F - (Q | ®) for one or more probabilities
of non-exceedance Q e (O,l). In addition, the y~confidence
intervals are computed for one or more confidence levels y.
In the present case, these confidence intervals are based on
the standard Bootstrap resampling scheme using either the
percentile method or the Gaussian method. Confirmation is
then sought as to whether the true quantile X, (from the
parent distribution) is contained within the j~confidence
interval, Cg), , for the Oth quantile from sample X ® . This
procedure is repeated many times, i.e. for an ensemble of
independently-created samples, X D XD xO X (K),
each of the same (fixed) size N drawn from the same parent
distribution, F(. | G)) . In this way, an ensemble of
confidence intervals, C(Qk)/ 1 is obtained. From this
ensemble, a coverage rate, Pq, , is determined for every
combination of a quantile, O, and a confidence level y. This
coverage rate is defined as the fraction of the K experiments
for which the true quantile X, is (covered) in the computed
confidence interval according to:

K
ﬁoﬁ%Z'k where I, =1 if x,eC{,
k=1
andl, =0 if x,2CY¥ (1)

For large K, the rate ﬁQ'y should converge (or should at
least be close) to the true confidence level . The agreement
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between ﬁQv:, and y therefore provides a quantitative
validation of the accuracy of the procedures for the
computation of the confidence intervals.

In the present assessment of the coverage rates of the
confidence intervals of quantiles, a three parameter Weibull
distribution was chosen for the parent distribution F(-|®),
i.e.

F(x|®)=1—exp(—(x;*°)a) ;
0=(c,a,%), 0>0, a>0; x=2% (2)

An ensemble of K= 10,000 independent samples {X ) }::1
of size N = 30 was generated, and MPS was used as
estimation technique. For each sample X® B =1000
Bootstrap resamples were created to derive the confidence
intervals Cék; for five variations of the quantile O (0.5, 0.9,
0.99, 0.999, 0.9999) and five variations of the confidence
level y (50%, 80%, 90%, 95%, 99%), giving a set of 25
coverage rates ﬁQ”V. These experiments were done three
times, each with a different value of the Weibull shape
parameter (& = 0.75, 1, 2 ), but with the location and scale
parameters held at zero and one respectively
(X% =0,0=1).

With regard to the accuracy that is achieved in these
experiments for the coverage rates ﬁq,,, of Eqn. (1), for a
given confidence level 7 the estimator pq,, is based on K
independent Bernoulli trials. Under the hypothesis that the
procedure for the assessment of confidence intervals is
correct, the probabilities for ‘success’ and ‘failure’ for each
trial are ¥ and 1 — y respectively. In this way, the total
number of successful coverages (i.e. K -/3ny) follows a
binomial distribution. As a result, the expectation value for

the coverage rate /A?Q”,, will be y and its spread is given
by @ . For the present K=10000, these spreads are then
0.5% for y=50%, 0.4% for y=80%, 0.3% for y=90%, 0.2%
for y=95%, and 0.1% for y=99%. When the 2.5% and 97.5%
quantiles of the binomial distribution are taken as limits for
the range of likely values of pq, this would lead to the

rangesTy—l.%-\/M . }/+1.96-\/Ml when using a

Gaussian approximation, which for K=10000 is sufficiently
accurate, even for y=99% where the binomial distribution
may be highly non-symmetrical when K is small (and much
less than 10000). Indeed, for y=99% and K=10000, the exact
2.5%-97.5% quantile range is [98.79%, 99.19%] while the
Gaussian approximation yields [98.80%, 99.20%].

The results of the three experiments with different shape
parameter for the Weibull distribution are presented in Tables
1-3. The coverage rates (given in the form of a percentage)
using the percentile method are seen to provide a satisfactory
performance, particularly with the shape parameter of 0.75
which applies to a J-shaped distribution. However, for all
three distributions, the coverage rates for the Q =0.9
quantile tend to underestimate the confidence level. The
reason for this particular discrepancy is unclear, but may
well be related to the small sample size of the experiments.
Indeed, a further set of tests for a sample size of 100 (not
reported here) did not display the same discrepancy,
providing better coverage rates for the 0.9 quantile as well
as the other four.

Tables 1-3 also indicate that the coverage properties using
the percentile method are notably better than those of the
Gaussian approximation, particularly for the 80 and 90%
confidence levels and for the larger quantiles. Once again,

Table 1. Coverage rates for the confidence intervals of five quantiles of the Weibull distribution and five
confidence levels /., using both the percentile (P) and the Gaussian (G) methods. Results are presented

for values of the Weibull shape parameter o of 0.75.

Quantile Conf. level method Confidence level y (per cent)
50 80 90 95 99
0.5 P 50.4 80.2 89.9 94.8 98.8
G 51.1 81.5 90.5 94.6 97.9
0.9 P 455 74.7 855 91.1 96.7
G 44.4 75.4 86.4 91.6 96.2
0.99 P 46.2 77.3 88.0 93.7 98.5
G 46.0 81.0 91.0 94.6 97.1
0.999 P 47.4 79.2 89.2 94.6 99.1
G 48.2 85.0 93.2 95.7 97.5
0.9999 P 48.4 79.9 89.8 95.1 99.3
G 49.9 87.6 94.5 96.2 97.8
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Table 2. Coverage rates for the confidence intervals of five quantiles of the Weibull distribution and five
confidence levels )/, using both the percentile (P) and the Gaussian (G) methods. Results are presented

for values of the Weibull shape parameter o of 1.0.

Quantile  Conf. levelmethod Confidence level y (per cent)
50 80 90 95 99
0.5 P 51.1 80.9 90.5 95.2 98.9
G 51.7 80.9 90.0 94.4 98.1
0.9 P 45.4 74.5 85.4 91.1 96.8
G 4422 74.9 86.1 91.5 96.4
0.99 P 45.6 77.1 88.0 94.2 98.9
G 47.1 81.9 91.4 95.4 97.7
0.999 P 46.4 78.6 89.3 95.0 99.4
G 49.7 85.8 94.1 96.6 98.3
0.9999 P 47.1 79.4 89.9 95.3 99.5
G 51.6 88.6 95.4 97.1 98.6

Table 3. Coverage rates for the confidence intervals of five quantiles of the Weibull distribution and five
confidence levels y using both the percentile (P) and the Gaussian (G) methods. Results are presented

for values of the Weibull shape parameter o of 2.0.

Quantile Conf. levelmethod Confidence level y (per cent)
50 80 90 95 99
0.5 P 51.4 81.3 90.4 95.0 98.9
G 51.7 81.1 90.0 94.7 98.5
0.9 P 43.8 73.2 84.1 90.1 96.2
G 44.2 73.8 84.6 90.3 96.1
0.99 P 43.5 76.1 87.7 94.1 99.3
G 48.9 83.2 92.4 96.0 98.3
0.999 P 454 78.0 89.9 95.5 99.6
G 54.3 88.6 95.4 97.7 99.0
0.9999 P 46.8 79.3 90.8 96.2 99.7
G 57.9 91.3 96.8 98.3 99.3

increasing the sample size to 100 gave similar or better
coverage rates than those shown in Tables 1-3. However,
the differences between the percentile and Gaussian methods
were smaller, especially for the shape parameter o = 2
providing further agreement with the results presented in
Hall et al. (2004).

Concluding remarks

In general, the coverage rates summarised in Tables 1-3
provide corroboration for the confidence intervals for the
Weibull distribution constructed by Bootstrap resampling,

as shown in Hall ef al. (2004). As before, the confidence
limits developed by the percentile method were to be
preferred to those constructed by the Gaussian method.
Nevertheless, the problems encountered with the resampled
confidence limits for samples of size 30, particularly the
anomalous behaviour of the lower confidence limits at low
probabilities of exceedance, would appear to mitigate against
the use of Bootstrapping in these circumstances. Similar
problems were not evident, however, when the samples size
was increased to 100. Unfortunately, sample sizes of size
30 are typical of those to which hydrological frequency
analysis is generally applied. A more comprehensive
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investigation of Bootstrapping small samples should
therefore be undertaken before the technique is more widely
applied.
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