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Abstract

A stochastic rainfall model, obtained as the superposition of independent Neyman-Scott Rectangular Pulses (NSRP), is proposed to provide
a flexible parameterisation and general procedure for modelling rainfall. The methodology is illustrated using hourly data from Auckland,
New Zealand, where the model is fitted to data collected for each calendar month over the period: 1966—-1998. For data taken over the months
April to August, two independent superposed NSRP processes are fitted, which may correspond to the existence of mixtures of convective
and stratiform storm types for these months. The special case of the superposition of an independent NSRP process and a Poisson rectangular
pulses process fits the data for January to March, whilst the original NSRP model (i.e. without superposition) fits the data for September to
November. A simulation study verifies that the model performs well with respect to the distribution of annual totals, the proportion of dry

periods, and extreme values.

Keywords: stochastic processes, point processes;, rainfall time series, Poisson cluster models

Introduction

Considerable research has been undertaken in developing
mathematical models for rainfall based on stochastic point
processes. In particular, statistical properties for models
based on a Poisson cluster process, such as the Bartlett-
Lewis or Neyman-Scott process, have been derived to enable
these models to be fitted to historical data (Rodriguez-Iturbe
et al., 1987; Rodriguez-Iturbe ef al., 1988; Cowpertwait,
1998). Spatial-temporal extensions of these models have
also been developed (Northrop, 1998; Cowpertwait, 1995);
in particular, a fitting procedure for a spatial-temporal model
based on a Neyman-Scott point process was developed and
used to fit the model to multisite data extracted from the
Arno Basin, Italy (Cowpertwait et al., 2002).

The work described here improves the fitting procedure
developed in Cowpertwait et al., 2002 and develops a more
flexible and general model parameterisation. It is focused
on fitting a temporal model, based on superposed Neyman-
Scott processes, for which spatial parameters can be fitted
in a secondary procedure (see Section 3 in Cowpertwait et
al. 2002).

In summary, the objectives are:

To propose the use of the superposition of more than
one independent NSRP process (or a mixture of
independent NSRP and Poisson rectangular pulses
processes (PRP)) to provide a flexible model
parameterisation and fitting procedure.

To further develop the fitting procedure of the temporal
process developed further in Cowpertwait et al., 2002 by:
(a) including the NSRP third moment function in the
fitting procedure at time scales greater than 1h;

(b) including sample properties taken at the 6h level of
aggregation (i.e. using a greater range of time scales
for model fitting);

(c) using harmonic curves to smooth the sample
estimates over the calendar months (to reduce ‘between
month’ sampling error);

(d) using bootstrap standard errors as weights in the
optimisation algorithm to allow for the sampling error
in the estimated coefficient of variation at different
sampling intervals.

To illustrate the fitting of the extended model and
provide empirical support for the methodology.
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Mixed NSRP process

Suppose n temporal Neyman-Scott Rectangular Pulses
(NSRP) processes are denoted NSRP, i =1, ..., n. For a
stationary period, each process is summarised by the
following random variables and model parameters: (i) the
time between adjacent storm origins is an independent
exponential random variable with parameter 4, (so storm
origins arrive in a Poisson process); (ii) the waiting time for
a cell origin after a storm origin is an independent
exponential random variable with parameter S (iii) the
lifetime of a cell is an independent exponential random
variable with parameter 7; (iv) the number of cells per storm
C, is an independent random variable, which is taken here
to be geometric with mean /i ; (v) the intensity X of a cell
is an independent random variable that remains constant
throughout the cell lifetime, and is taken here to be a
Weibull random variable with survivor function
P(X >x)=e ™",

An NSRP process is equivalent to a Poisson rectangular
pulses processes if the number of cells C per storm is always
one. The cell dispersion parameter Sthen becomes redundant
and the single cell can be attached to the storm origin without
affecting the properties of the Poisson process. Further
details of the Poisson rectangular pulses model and
mathematical properties are given in Rodriguez-Iturbe et
al. (1987).

Let {Yij(h) :J=12,..} be the resultant rainfall time
series over a sampling interval of width / due to the NSRP,
process, so that the total rainfall in the j-th time interval,
due to the superposition of the » independent NSRP
processes, is the sum Yj(h) = Z?:oYij(h) .

The following statistical properties of the rainfall series
of the aggregated NSRP, process are known from previous
work (e.g. see Rodriguez-Iturbe ef al., 1987; Cowpertwait,
1998):

4 (h) = DY = g p1, e 17, (1)

7 (1) = CovY P Y 1= A Alh, D[ 24, E(XT)
+ iy BPECT = COUB — 1))
— Az, BWE(CE -C)/ BB -nf) @

where A(h,0) = (hy, +e™" ~1), B(h,0) = (hg +e”" -1),
and, for / a positive integer,

A(hl)=3(1- e ")2g D ,
B(h,1)=3(1- g /iM)2g AnD .

& (h) = EIY, — 44 (M}°] = 644 E(X)
(mh-2+n, he " + 267'7ih)/77i4
+ Sﬂ1ﬂxi E(Xiz) E(Ci2 -C)p@r. L. A 277i4ﬂi (ﬂ.z - 77i2)2}
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+ }muf(‘ E{C(C -1(C -2)}
xq(m;, B, h) Zni4ﬁi (’7i2 - ﬁiz)(ni - B)2B +m)(B +2m,)}
(3)

where p and ¢ are functions containing high-order powers
in 77.and A3 and are given in Cowpertwait (1998). In the
above equations, for X, is a Weibull random variable,
E(X,")=6T@+r/e,) forr=0,1,2, ..., and, for C, a
geometric random variable, E(C*—C) = 21, (14, —1)
and E{C(C, -1)(C, -2)} = 6 (,UcI -0

Thus, each NSRP, process is summarised by a parameter
set P ={4 VMo Bt ,6}, and statistical properties
{i (h), a(h), i (h)} for i =1, ..., n. Hence, the superposition
of n independent NSRP processes, denoted as SNSRP(n), is
summarised by a parameter set: P" :Uin:ll:’i . Note that
SNSRP(1) is equivalent to the original NSRP process. For a
general discussion on the superposition of point processes
refer to Cox and Isham (1980).

As the NSRP, process is independent, the statistical
properties of the superposed process SNSRP(n) (abbreviated
below to S ) are the sum of the equivalent properties for
each NSRP process, i.e.

ps, = () + ...+ 11, (D) ©)
7s, =7(h)+..+ 7, (h1) (5)
s, =G +...+ &, (h) (6)

For notational convenience, for a sampling interval of width
h, let o7(h) = 7(h,0) be the variance and 7, (h) = y;(h,)
be the lag 1 autocovariance. Following Cowpertwait et al.
(2002), dimensionless functions are preferred when fitting
the model. For the superposed process, these are given by:

Coefficient of variation, v (h) = o (h)/ us (h) @)
Autocorrelation (lag 1), ps (h) =75 (h)/ oﬁn h) ¥
Coefficient of skewness, &5 (h) =& (h)/od (h)  (9)

The set of dimensionless model functions for an SNSRP(n)
process is S, :{VS« (h),p& (h),K% (h)}. The set
Ui[S, U{ 4s}], with equivalent sample estimates, can be
used to estimate the parameters in P".

Fitting Procedure

The fitting procedure is illustrated using a 33-year record
(1966—1998) of hourly data taken from the North Shore of
Auckland, New Zealand. The fitting procedure proceeds in



stages as follows.

A subset 51 c Sl of dimensionless model functions for
the NSRP| process is selected to represent the rainfall
process over a range of time scales. The choice made
when fitting to the Auckland data was the coefficient
of variation, lag 1 autocorrelation, and coefficient of
skewness, eac}i sampled over 1-, 6-, and 24-hour time

intervals, i.e. S1 :{V(h), p(h), K(h) :h=16, 24} .

For each calendar month 7, sample properties (denoted
as f '(i), using the notation ‘prime’ to mean ‘estimate’),
which are the ensemble sample equivalents to the
functions in §1 given in step 1, are estimated by pooling
all available data taken over the month. This also
assumes that the ensemble properties are approximately
stationary over the period of a calendar month. Further
details on the evaluation of the sample properties are
given in Cowpertwait et al. (2002).

Harmonic curves are fitted through the pooled sample
estimates obtained in step 2 using least squares
regression, i.e. if / “ (i) is the estimate for the ith calendar
month (i = 1, ..., 12), and g, is random error, then the
harmonic model:

f'(i)=c, + Zj’:l{ C; cos(27) /12) + s; sin(27] /12)} + ¢,

is fitted using stepwise regression to ensure only those
terms (cj, s;) of significance are included in the final
model. (The S ‘step’ function discussed by Venables
and Ripley (2002) on p175 was used for this purpose.)
This procedure assumes that the ensemble properties
should have a seasonal variation that varies smoothly
over the calendar months, and, therefore, reduces
‘between month’ sampling error. The fitted harmonic
value for the ith month is denoted as /" '(7) to distinguish
it from the pooled sample estimate /” (/). The final
estimate, i.e. that predicted by the fitted stochastic model
is then denoted /" (7).

For each calendar month (i =1, ..., 12), A, i , B, 1,
a, for the original NSRP process (SNSRP(1) = NSRP,)
are estimated by minimising the following sum of
squares (with n = 1):

_ Vi)
= h:%:,zAWh 1 vs, ()
Lvam) (o eam)
M) e

Mixed rectangular pulses models of rainfall

s [ O [ x
pm) e m) R m) [ a0

SS(1) is not a function of &, so the above minimisation
routine is used to provide the estimates:
{4 a/‘é:ly, Blmwon} for i =1, ..., 12. Bounded
optimisation is used to reduce the parameter space in
the search routine. In particular, z >1 so a lower
bound of 1 is needed on this parameter when minimising
SS.

Non-parametric bootstrap standard errors can be used
for the weights w, in equation 10.

For the Auckland data, the weights w , w, and w,, were
taken as: 0.30"', 0.20, and 0.13"" respectively, which
corresponded to the reciprocals of the bootstrap standard
errors for the coefficient of variation (CV) sampled at
1-, 6-, and 24-hour time intervals (a median value was
used to obtain one value for all the months). This
indicates that properties sampled at 24-hour time
intervals are likely to be more accurate than those
sampled at smaller time intervals and therefore should
receive a higher weight in the minimisation routine.
For the Auckland data the minimum was SS(1) = 3.26.

The parameters for a superposed NSRP, process are
estimated, by minimising SS(2), i.e. equation 10 with »
=2, and taking 6 = 6,, ensuring that 6, and &, do not
appear in SS(2). Thus, partly for convenience, the scale
factor is taken to be the same in both processes. A further
possibility, which would also ensure that & and 6, do
not appear in SS(2), would be to take 6, = k6, for some
constant £, but this would introduce a further parameter,
and so was not investigated further. The parameter
estimates obtained for the NSRP| process in step 4 are
retained with the exception of A which is re-estimated.
(4, and A, are both given small lower bounds to allow
the possibility of the special cases 4, > 0 or 4, = 0
arising in the estimation procedure.)

Care is needed to avoid over-parameterisation and
over-fitting because the superposition of several NSRP
processes could lead to large numbers of parameters.
Some of the estimates obtained for NSRP, in step 4 could
be used in the superposed process NSRP,. Hence, it is
judicious to consider a range of subsets of P, for
inclusion in P, to avoid over-parameterisation.

For the Auckland data, the following parameter set
was selected for the SNSRP(2) model: {4,, L , B, 1,
a, 0,4, Mc,,n,},whichhas 8=, a,=«,and 0, =
0, With the exception of & which is estimated last (see
step 6), these parameters were estimated for each month
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by minimising SS(2) in equation 10. An improved fit to
the sample properties was obtained, as the minimum
SS(2) = 1.24 <3.26 = SS(1) in step 4. This is over a
50% reduction in the minimum, though currently there
is no formal procedure to assess this against the increase
in model parameters.

6. Finally, the scale parameter 6, for the ith month (i =1,
..., 12) is estimated directly from the sample mean taken
over lh time intervals.

Thus, for the Auckland data and the parameterisation
given in step 5, 6, |, was estimated from:

77£,i 77;,i
(11)

where X was the estimated mean rainfall for the ith
month. This procedure gives an exact fit to the sample
mean for each month.

Fitted model

The parameter estimates for the Auckland data are given in
Table 1. Discussion is focused on January and July as
representative of summer and winter respectively.

For January, there are two storm types, one represented
by an NSRP process and the other by a Poisson Rectangular
Pulses (PRP) process which is the special case of p. = 1 in
an NSRP process. The PRP process is the more frequent of
the two (0.017 = 4, > /,{1,,1 = 0.0041), and represents
isolated convective cells, whilst the NSRP process represents
clusters of convective cells. When compared with the PRP
process, the NSRP process has a slightly smaller value of 7

Table 1. Fitted Model: Parameter Estimates for Auckland Data

- {ﬂ;iﬂeﬂr(ul/a;,i) A;,iﬂ'cﬂr(ul/a;,i)}l
i =% ' + ‘

indicating that the clusters of cells tend to have longer
lifetimes, which might correspond to stratiform rain.

For July (winter), there are two storm types both with
clustering, i.e. there are two superposed NSRP processes
(Table 1). The more frequent (type 2) has shorter expected
cell lifetimes (1/77;, ~0.4h) compared with the less
frequent (type 1) storms (1/77;; = 1h) occurring in July.
These estimates may reflect the mixture of stratiform and
convective storm types that occur in July.

Comparing the estimates for January with those for July,
in January there are fewer but more intense cells, because
Aj e, < A ape, and 6T+ o) < 6T (1+1 o),
which characterises summer convective rainfall compared
with winter stratiform rainfall.

The additional parameterisation, i.e. the superposed mixed
model, was not needed from September to November.
(Possibly a single NSRP model would also suffice for
December, which had a small estimate of 4,) Consequently,
the fitting procedure and model parameterisation provide
additional flexibility without forcing in additional para-
meters when they are not needed.

The fitted and sample properties are plotted in Figs. 1-4.
There is some slight underestimation of 1 h skewness and
overestimation of 6 h skewness over the summer months
(see Fig. 3), which may have some effect on summer extreme
values. However, overall, the model fits the data well and
the results support the use of the superposed process.

Validation of fitted model

For validation, it is appropriate to simulate data using the
fitted model and to compare simulated and historical
properties that were not used in the fitting procedure but
which are likely to be important in hydrological applications.

Month i A ,uéh B 773(_,i oy Ay e, T o

1 0.00409 14.4 0.0721 1.98 0.645 0.0173 1.0 2.43 1.86
2 0.00367 20.4 0.081 1.94 0.617 0.0185 1.0 2.01 1.65
3 0.00660 15.3 0.107 1.64 0.626 0.00608 1.0 1.24 1.24
4 0.00704 13.9 0.109 1.33 0.57 0.00457 13.2 2.42 0.954
5 0.00523 30.8 0.0947 1.13 0.433 0.0133 20.7 2.78 0.222
6 0.00485 32.2 0.104 0.755 0.391 0.0156 37.0 2.22 0.114
7 0.0125 15.2 0.163 0.837 0.457 0.0142 26.2 2.63 0.219
8 0.0229 6.24 0.145 1.09 0.65 0.00507 11.7 2.98 0.871
9 0.0197 7.56 0.0956 1.3 0.667 0.0 . . 1.09
10 0.0158 10.1 0.0954 1.41 0.617 0.0 . . 0.711
11 0.0151 8.14 0.109 1.54 0.641 0.0 . . 1.12
12 0.00977 7.84 0.0889 1.75 0.659 0.000682 7.84 1.75 2.0
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Fig. 1. Mean rainfall for 1-hour data: o Sample estimate ,U'SZ Sfrom

" %
historical data; — harmonic estimate Hs, x fitted value ,USZ (an

exact fit is obtained to the harmonic estimate).

Hence, five records of length equal to the historical record
(33-years) were simulated using the fitted model (Table 1).
(Five records were used so that an informal assessment of
sampling variability in the extreme values could be made.)

Neither the proportion of dry intervals or the extreme
values were used to fit the model. Consequently, as both of
these may be important in hydrological applications, they
were selected for model validation. In addition, the
distribution of annual totals can be important for planning
purposes. As this aggregation level is much greater than
any used to fit the model, a comparison of historical and
simulated distributions of annual totals also seemed
appropriate for model validation.

Hence, the annual totals were found for each year in the
simulated and historical data, and a quantile-quantile plot
was used to compare the distributions (Fig. 5). The
proportion of dry intervals for 12- and 24-hour time scales
were evaluated for each month in both the historical and
simulated series (Figs. 6 and 7). A bound of Imm was used
to define a ‘dry’ period to avoid potential discrepancies in
trace values which are not likely to be of practical
importance (see Cowpertwait 1998, for a further discussion
on dry bounds in a similar context). In addition, the ordered
maximum rainfalls for each year over 1-, 6-, 12-, and 24-
hour sampling intervals were calculated and plotted against
the reduced Gumbel variate (the return period 7 was also
plotted; Figs. 8-9).

The distribution of simulated annual totals follows closely

Mixed rectangular pulses models of rainfall
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Quantile plot of annual rainfalls
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Kolmogorov-Smirnov test: D = 0.087; p-value = 0.987

Fig. 5. Comparison of distribution of historical and simulated
annual totals (mm); Kolmogorov-Smirnov test has D = 0.15 and p-
value 0.52 showing there is insufficient statistical evidence to reject
the null hypothesis that the distributions are the same.
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Fig. 6. Proportion of dry rainfall (< 1mm) over 12-hour sampling
intervals: o Sample estimate from historical data (33-years);
* Sample estimate from simulated data (5 % 33 years).

the distribution of annual totals in the historical data (Fig.
5). In particular, the Kolmogorov-Smirnov test showed there
was no significant difference between the historical and
simulated values (Fig. 5).

In general, the simulated data also show a good agreement

Mixed rectangular pulses models of rainfall
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Fig. 7. Proportion of dry rainfall (< 1mm) over 24-hour sampling
intervals: o Sample estimate from historical data (33-years);
* Sample estimate from simulated data (5 % 33 years).

with the proportion of dry intervals (Figs. 6 and 7). Some
over-estimation was noted for April and September.
However, as the simulated values follow the seasonal pattern
in the historical values closely, and the model was fitted to
harmonic estimates, these were not regarded as significant
discrepancies.

The model simulates representative extreme values,
especially in the upper part of the distribution tail, because
the historical extreme values tend to fall between the five
simulated values; the figures suggest that the historical
extremes are a possible realisation of the model (Figs. 8
and 9).

Conclusions

A stochastic model and fitting procedure based on the
superposition of independent NSRP processes was
developed to provide additional parameterisation, flexibility,
and generality when fitting rectangular pulses models to
rainfall data. In particular, the procedure can be applied to
the spatial-temporal model in Cowpertwait et al., 2002
before fitting cell radii parameters.

Overall, the fit to sample properties up to third order over
a range of time scales was satisfactory. Furthermore, the
simulated data showed good agreement with the distribution
of annual totals, the proportion of dry intervals, and extreme
values.

Consequently, the results support the use of the
methodology in hydrological applications.
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