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Abstract

Since the 1990s, neural networks have been applied to many studies in hydrology and water resources. Extensive reviews on neural network
modelling have identified the major issues affecting modelling performance; one of the most important is generalisation, which refers to
building models that can infer the behaviour of the system under study for conditions represented not only in the data employed for training
and testing but also for those conditions not present in the data sets but inherent to the system. This work compares five generalisation
approaches: stop training, Bayesian regularisation, stacking, bagging and boosting. All have been tested with neural networks in various
scientific domains; stop training and stacking having been applied regularly in hydrology and water resources for some years, while Bayesian
regularisation, bagging and boosting have been less common. The comparison is applied to streamflow modelling with multi-layer perceptron
neural networks and the Levenberg-Marquardt algorithm as training procedure. Six catchments, with diverse hydrological behaviours, are
employed as test cases to draw general conclusions and guidelines on the use of the generalisation techniques for practitioners in hydrology
and water resources. All generalisation approaches provide improved performance compared with standard neural networks without
generalisation. Stacking, bagging and boosting, which affect the construction of training sets, provide the best improvement from standard
models, compared with stop-training and Bayesian regularisation, which regulate the training algorithm. Stacking performs better than the
others although the benefit in performance is slight compared with bagging and boosting; furthermore, it is not consistent from one catchment
to another. For a good combination of improvement and stability in modelling performance, the joint use of stop training or Bayesian
regularisation with either bagging or boosting is recommended.

Keywords: neural networks, generalisation, stacking, bagging, boosting, stop-training, Bayesian regularisation, streamflow modelling

Introduction and literature review

Neural networks have become accepted tools for fast
efficient modelling for a large range of scientific domains.
In hydrology and water resources, the issues that have been
assessed traditionally are the proper selection and pre-
processing of the inputs and outputs, and the choice of the
architecture of the neural networks (Coulibaly ef al., 1999;
Dawson and Wilby, 2001). The necessity of determining
representative training and test data sets is also highlighted
by ASCE (2000a) and Maier and Dandy (2000) as critical
for the construction of optimal neural network models. All
these issues are part of the difficult-to-resolve problem of
generalisation (ASCE, 200b), which refers to building
models (i.e. any kind of models) that can infer the behaviour
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of the system under study for conditions represented in the
data used for training and testing as well as for conditions
absent from the data sets but inherent to the system.
Generalisation is a standard issue for all types of models
and aims at reducing modelling errors, which can be
decomposed into three parts, bias, variance and noise
(Geman et al., 1992; Wolpert and Macready, 1999; Zhou et
al.,2002). Bias is a measure of how much a function deviates
from the desired function over the data set. Variance
indicates the extent to which the model is sensitive to the
choice of the data set. Noise is intrinsic to the system under
study and is expected under any circumstances. Reducing
bias and variance is the goal of generalisation. Here, the
primary focus is on the gain in modelling performance
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through the use of generalisation techniques; this, implicitly,
relates to reducing bias and variance errors. This paper
explores some approaches to generalisation so as to promote
them for applications of neural networks to hydrology and
water resources and, more particularly in this work, to
streamflow modelling.

GENERALISATION THROUGH TRAINING
PROCEDURES

A first group of approaches (i.e. stop training and Bayesian
regularisation) relates to the training procedures, and they
have been used to some extent in hydrology and water
resources. Stop training is a long standing practice by which
a training set is used simultaneously with a validation set.
The weights of the networks are optimised with the training
set while the progression of the optimisation process is
regulated by the performance of the resulting network on
the validation set. The process is stopped when an optimum
(e.g. minimisation of the sum of squared errors) is reached
on the performance of the network with this validation set.
Also known as cross-validation (ASCE, 2000a), this concept
aims at stopping the optimisation process before over-fitting
occurs; then, the weights of the networks become too fixed
to accommodate system conditions present in the training
data set, likely reducing the validity of the weights for other
possible system conditions (Amari ef al., 1997; Gengai and
Qi, 2001; Vlassides et al., 2001; Drucker, 2002; Chan et
al.,2003). Examples of application of early stopping to water
resources and hydrology can be found in Lopez-Sabater et
al. (2002), for hydraulic parameters; Coulibaly ez al. (2001),
for groundwater modelling; Maier and Dandy (1997) and
Yabunaka et al. (1997), for algae concentration; Xiao and
Chandrasekar (1997), Kuligowski and Barros (1998) and
Luk et al. (2000), for rainfall; and Raman and Sunilkumar
(1995), Golob et al. (1998) and Coulibaly et al. (2000) for
streamflow modelling.

Bayesian regularisation is a more recent approach, and
consists in reducing the impacts of the network weights.
Bayesian regularisation involves a multiple objective
optimisation in which both the sum of squared errors and
the sum of the squared weights must be minimised (MacKay,
1992; Foresee and Hagan 1997; Anctil et al., 2004).
Bayesian regularisation often leads to more parsimonious
networks than stop training (Medeiros et al., 2001). This
approach is particularly suited to reduce variance errors,
because the minimisation constrains the weight to small
values, making less likely the possibility of large fluctuations
in the response of the network given large inputs. Examples
of application of this approach to water resources and
hydrology can be found in Anctil et al. (2004), for

streamflow modelling, or Morse et al. (2003), for estimating
ice parameters.

GENERALISATION THROUGH DATA SAMPLING

A second group of generalisation approaches (i.e. bagging
and boosting) relates to techniques used for constructing
training data sets, and they have not really been used
extensively in hydrology and water resources. One available
application of bagging in water resources is the work of
Cannon and Whitfield (2002) on streamflow modelling.
Bagging, which is also known as bootstrap aggregating
(Breiman, 1996), is a procedure where several training data
sets are created from an original training data set by bootstrap
(i.e. random pick with replacement). Each of these training
sets is employed to train a neural network, or any other types
of models for that matter. Hence, a pool of models is created,
and a global estimate can be obtained by the aggregation
(e.g. the mean) of their estimates for a given input vector. It
has been demonstrated that bagging can reduce variance
errors (Breiman, 1996, 2001), since aggregation has the
effect of smoothing fluctuations from the estimates of all
the models. The distribution of the estimates also allows
the construction of confidence intervals (Lajbcygier and
Connor, 1997; Papadopoulos ef al., 2001), hence giving a
margin of errors in addition to the global estimate. Many
applications of bagging have implicated synthetically
generated data or simple real-application cases for basic
analyses of the approach (Breiman, 1996, 2000, 2001;
Wolpert and Macready, 1999; Zhou ef al., 2002). Examples
of the use of bagging with more complex real-application
cases can be found in Raviv and Intrator (1996), with
medical data; Lajbcygier and Connor (1997) and Gengai
and Qi (2001), with economic data; Papadopoulos et al.
(2001), with industrial process data (paper curl); Sohn and
Lee (2003), with an application to road traffic accidents;
and Agrafiotis er al. (2002), with a case in chemistry.
Boosting also demands the construction of several models,
but usually involves a step-by-step procedure. In the first
step, all the training input vectors have equal impact on the
optimisation of the weights or parameters of the models.
This impact is updated in the subsequent steps so as to focus
on the input vectors for which the previous models have
been less efficient in terms of performance. The subsequent
models are, thus, calibrated based on these disadvantaged
input vectors, providing more specific responses that
compensate for the weaknesses of the previous models.
Quite often, the impact of the input vectors is determined
by weights given to them in the creation of a set of vectors
for the training set (Pal and Mather, 2003). At other times,
the weights for each input vectors are imposed on the
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objective function that regulate the training procedure
(Schwenk and Bengio, 2000). Global estimates can be
obtained from the aggregation of the estimates of models
built in this step by step process. Adaboost (Freund and
Schapire, 1997) is a very common computational tool that
offers several boosting procedures, for it is mentioned in
many applications, including simple and theoretical cases
(Drucker, 2002; Zhou et al., 2002), as well as some more
complex examples such as classification processes
(Schwenk and Bengio, 2000), pharmaceutical drug
dissolution (Goh et al., 2003) and application to road traffic
accidents (Sohn and Lee, 2003). Most of the time,
with boosting, the impact (weights) of the input vectors is
set automatically, although nothing would forbid a more
manual determination. Such is the case of stratified sampling
(MacNamee ef al., 2002; Chawla et al., 2003), where input
vectors are classified according to specific patterns, and then
the construction of a sample of vectors for the training set
is accomplished by sampling equally from each of the classes
of vectors. It implies that less frequent patterns would have
a greater representation than if a totally random sampling
where performed on the set of input vectors put all together.
Stratified sampling could have a significant impact on cases
of streamflow modelling, where extreme, but rare, high
flows would have a larger representation.

The last approach mentioned in this work is called stacking
(or ensemble), and implies the use of a pool of models
(Wolpert, 1992). In a first version, several different models
are used in parallel and a global estimate is obtained from
the aggregation of the estimates of the models (e.g. the mean
of the results of the models). In a second version, several
models are used in series, each model using outputs from
the previous model as inputs. This approach has been applied
on many occasions in hydrology and water resources, and
not only with neural networks. Refining a streamflow model
by using another model to estimate its errors is a common
and long-standing practice, as attested by WMO (1992),
which describes several deterministic streamflow models
for the purpose of a comparison, many of them using
autoregressive functions to model their errors so as to
improve streamflow predictions. Using neural networks
instead of autoregressive functions has also been attempted
by Babovic et al. (2001) with a hydrodynamic model and
by Anctil ef al. (2003) with several rainfall-runoff models.
Similarly, the aggregation of the estimates of several
streamflow models is a long-standing practice. The work of
Cavadias and Morin (1986) is an early example of the
aggregation of several deterministic streamflow models.
More recently, several versions of model aggregation
involving neural networks have been performed by Abrahart
and See (2000, 2002), Hu et al. (2001), Kim and Barros
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(2001), See and Abrahart (2001), and Shamseldin et al.
(2002). Model aggregation is the version of stacking
employed in this work.

GENERALISATION APPLIED TO STREAMFLOW
MODELLING WITH NEURAL NETWORKS

Stop training, Bayesian regularisation, bagging and
particular forms of boosting (stratified sampling) and
stacking (aggregation of models) are the generalisation
approaches compared in this paper in the context of
streamflow modelling. Multi-layer perceptron neural
networks, calibrated with the Levendberg Marquardt
algorithm, are employed as streamflow models. The
Levendberg Marquardt algorithm is chosen as the
optimisation tool because of its proven efficiency, as
demonstrated in Tan and Van Cauwenberghe (1999).
Systematic comparison and analysis of several
generalisation approaches have been accomplished on some
occasions (see for example Yang et al., 1998; Bauer and
Kohavi, 1999; Cunningham et al., 2000; Zhou et al., 2002;
Sohn and Lee, 2003). Shu and Burn (2004) are arguably
the first to offer a systematic comparison of generalisation
techniques for neural networks in hydrology, with an
application to flood frequency analysis using stacking,
bagging and boosting. In this paper, the intent is to explore
a wider range of generalisation techniques with a very
common application with neural networks: streamflow
modelling. The first two approaches control the training
process, and generalisation is achieved by avoiding extreme
situations, that is, over-fitting in the case of stop training
and exceedingly large weights in the case of Bayesian
regularisation. In the last three approaches, generalisation
is established based on the sampling process employed to
build training sets. A diversity of training sets ensures that
models are trained to respond to a larger number of
behaviours, in the expectation that the aggregation of the
models covers all the possible behaviours of the system
under study. Bagging involves that all input vectors have
an equal chance at all time to be selected for the training
sets. Boosting, in this work, is a constrained form of
sampling, where classes of input vectors have an equal
chance to be represented in the training sets. The
determination of the classes is performed with self organised
maps (i.e. Kohonen neural networks), as explained later in
the paper. Stacking, here, employs the same original training
set for all models. Generalisation is achieved only through
the aggregation of the models, and consequently serves as
reference when compared with bagging and boosting. These
approaches are tested with the data from six different
catchments, for one-step ahead predictions of daily
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streamflow. The context of application is presented in the
next section and includes details on the Kohonen networks
for the classification of the input vectors and a description
ofthe protocol of experiment for comparing the approaches.
The analysis of the results from the application of stop
training, Bayesian regularisation, bagging, boosting and
stacking is detailed in the following section. This analysis
leads to the formulation of guidelines that may orient
practitioners in the use of these approaches.

Context of application

RIVERS UNDER STUDY

The selection of the rivers is driven by the necessity to
encompass a large array of hydrological behaviours so as
to ensure that the results from the approaches tested here
are as general as possible. The rivers listed in Table 1 come
from different hydro-climatic regions, which respectively
generate different hydrological behaviours in terms of
streamflow production. Figure 1 illustrates the daily mean,
max and min streamflow for all six rivers. At the low extreme
is the catchment of the Salt Fork River in the semi-arid region
of the U.S. Midwest. Streamflow on this river is generally
low, even intermittent, presenting a very weak seasonal
cycle. Heavy precipitations do not imply the occurrence of
high streamflow peaks, on account of likely long periods of
low soil moisture in the catchment. The annual period of
high flow is intermittent on this catchment, with some years
showing no significant high flows. At the high extreme is
the catchment of the San Juan River, which is very humid,
has a very obvious seasonal cycle, and possesses the highest
daily streamflow mean and standard deviation of all the
catchments under study (see Table 1). Located on the
Canadian Pacific Coast, this catchment is fed by sustained
heavy precipitations, particularly between November and
April. Soil moisture is likely to be high for most of the year,

ensuring a high streamflow production from this catchment.
In terms of hydrological conditions, the other four
catchments (i.e. Kavi, Leaf, Serein and Volpajola) lie
between these two extremes with respect to streamflow
production. A seasonal cycle is quite apparent for Kavi and
Serein, while this cycle is less pronounced for Leaf and
Volpajola. The high flow period for Kavi occurs in summer
and it is usually very dry in winter. Winter is the period of
high flow for Leaf, Serein and Volpajola, while summer is
relatively dry. Very high streamflows compared with the
average follow heavy precipitations on Leaf, while
moderately high streamflows are common in Serein and
Volpajola in winter. On some occasions, Volpajola generates
relatively high streamflow in summer. The common feature
of all six catchments is the almost entire absence of snow.
Actually, snow falls briefly almost every year in San Juan
and occasionally in Serein but is assumed to have a
negligible effect on the rainfall-runoff relationship. For all
catchments, rainfall is virtually the sole generator of
streamflow. Daily streamflow and rainfall observations are
available for all of these six catchments over a period of
from 18 to 43 years (see Table 1).

DETERMINATION OF THE TRAINING AND TEST
DATA SETS

Although it is secondary to the main objective of this work,
that is, generalisation, careful attention must be given to
the construction of the training and test data sets. For most
applications in general and for those in hydrology and water
resources in particular, it must be ensured that all of these
sets contain an adequate proportion of all the system
behaviours available in the database (Coulibaly et al., 1999;
ASCE, 2000b; Maier and Dandy, 2000). Here a classification
algorithm, the Kohonen neural network, is employed for an
objective identification of the patterns present in each
database. The Kohonen neural network is a clustering

Table 1. Basic characteristics of the catchments under study.

Catchment Area Daily streamflow (mm) Location Database length
(km?) Mean St. dev. (vear)
Kavi 975 0.39 0.85 Ivory Coast 32
Leaf 1949 1.37 2.90 United States 40
Salt Fork 2217 0.10 0.45 United States, Midwest 29
San Juan 580 7.10 11.23 Canada, Pacific coast 34
Serein 1120 0.61 0.86 France 43
Volpajola 930 2.40 2.42 France, Corsica 18

Note: St. dev. stands for standard deviation.
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Fig. 1. Daily mean, maximum and minimum streamflows for the (a) Kavi, (b) Leaf, (c) Salt Fork, (d) San Juan, (e) Serein and (f) Volpajola rivers.

technique that is used increasingly in hydrology and water
resources, such as for the classification of catchment
conditions (Liong et al., 2000); the determination of
hydrological homogeneous regions (Hall and Minns, 1999);
the identification of river pollutant sources (Gots et al.,
1998); and the study of algae bloom (Bowden et al., 2002).
The network is made of an input layer of neurons that receive
the data and of an output layer often structured in a planar
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surface. The weight vector of each output neuron is of the
same scale as the inputs, and consequently can be considered
as the mass centre of a class. Each output neuron is, thus,
the equivalent of a class, and it is said to be activated when
its weight vector is the closest in distance to the input vector
given to the network. The elements of all the weight vectors
must be calibrated so as to cover the whole data domain.
The calibration process ensures that all the patterns present
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in the data are defined in a meaningful coordinate system,
and this is why the Kohonen network is often called a self-
organised map. The Kohonen network reduces the
dimension of a problem, from an »-dimension input vector
to 2-dimension solution, so as to produce a clearer view of
the data patterns (Kohonen, 1990 and 1997).

The classification strategy used here is similar to that of
Abrahart and See (2000), where the classification is
performed on the input vectors. A few output layer
configurations have been tested (3x3, 3x4 and 4x4), and
the smallest one has been kept because: (1) it ensures that a
large number of input vectors is associated with each class
of behaviour (i.e. output neuron); and (2) it provides
information on the behaviour of the system that is as
meaningful as that provided by the larger configuration.
Once the classification is complete, the input vectors in each
class are divided randomly into three equal subsets. The
first subset represents the original training set prior to the
use of bagging and boosting. The second one is another
training set used for validation when stop training is
employed. The first and second subsets are put together
when stop training is not employed. The third subset is the
test set on which the performance of the streamflow models
is evaluated after training. A global test subset is obtained
from the combination of the test subset of each class, and is
performed with both types of training sets (first and second)
as well. This construction process ensures that each class is
equally represented in all data sets. This increases the
likelihood that an equal proportion of all the system
behaviours available in the database is present in all the
data sets.

The classification made with the Kohonen neural network
is also useful when boosting is applied. Here, boosting
implies stratified sampling of the original training set with
respect to the classes of input vectors. The sampling requires
that a training set be composed of an equal number of input
vectors from each class. Hence, classes with a smaller
number of input vectors would have a larger representation
in the resulting training set than as would be the case with a
purely random selection of input vectors, regardless of the
classes. Bagging employs this purely random selection of
input vectors for the construction of training sets. For this
work, the effect of boosting is that extreme flood events are
more frequently available for the training of neural networks
than as is the case with bagging and stacking.

PROTOCOL OF EXPERIMENT

Multi-layer perceptron neural networks, calibrated with the
Levendberg Marquardt algorithm, are employed as
streamflow models to perform one-step ahead predictions

(i.e. daily streamflow at time #+1). For all six catchments,
the input vectors are a daily streamflow at time 7 and daily
rainfall at times ¢, #-1 and #-2. Such inputs are relatively
standard for neural network streamflow models and for the
size of the catchments. While one would expect a distinct
input vector structure for each catchment, an identical
structure has been applied to all so as to create an efficient
automated process to evaluate the models. In the input
vectors, there are enough precipitation and streamflow inputs
to accommodate the catchment with the slowest response
time, and it is assumed that the calibration process is efficient
enough to generate parsimonious models in spite of the
potentially large number of inputs. One hidden layer is
included in the network architecture, and tests are made to
determine the effect of the number of neurons in that layer.
The number of neurons in the hidden layer has been allowed
to vary between 2 and 15, making a total of 14 possible
hidden layer configurations. Once the input vectors are
classified and the training and test sets are built, neural
network streamflow models are developed for all the
catchments, using bagging (i.e. random sampling of the
original training set), boosting (i.e. stratified sampling of
the original training set), and stacking (i.e. training of several
neural networks with the original training sets). Fifty
structurally identical, neural networks are created each time
one of these approaches is used. These networks differ only
by virtue of their distinct training set with bagging and
boosting, and by the initial seeds employed in their training
in all cases. Bagging, boosting and stacking are also used
in conjunction with stop training or Bayesian regularisation.
Thus, a total of 9 modelling configurations (e.g. bagging
with stop training, boosting alone, and so on) are tested for
each of the six catchments so that 6300 neural network
models are trained for this work (i.e. 9 modelling
configurations, by 14 hidden layer configurations, by 50
replications).

With the test data sets, the prediction performance of the
streamflow models is evaluated with the persistence index,
which is expressed as follows (Kitanidis and Bras, 1980):

SSE

PERS=1- = 0
where:

SSE = Zt:(Qt,obs Q) @)
and:

SE e = 2 (Qupe Qi) 3)

t

in which the SSE terms are the sum of square errors, and
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Q,,, and O, are the observed and estimated streamflows,
respectively. Persistence consists of a comparison between
the model under study, and the naive model where the
estimate of the observed streamflow at time 7(Q, , ) is simply
the streamflow at time 7-1 (Q,, ). A value of PERS smaller
or equal to 0 indicates that the model under study performs
worse or no better than the easy to implement naive model.
A PERS value of 1 is obtained when the model under study
provides exact estimates of observed streamflows.

Numerous models are tested in this application and the
results may spawn a large number of analyses. Only one
performance measure (i.e. PERS) is employed here so as to
provide a concise account of the results obtained from the
models. However the persistence index on any given model
provides an indication of bias error, while the values of
persistence index obtained from a pool of models may
provide indication of variance error.

Results
CLASSIFICATION OF INPUT VECTORS

Classification of input vectors is performed with the
Kohonen neural network for all rivers so as to allow an
objective division of the database into three sets (i.e. two as
training sets and one as the test set). Nine classes are
determined for each river; this small number of classes
ensures that a large number of input vectors is associated
with each class of behaviour. The division is accomplished
so that each class of input vectors is represented equally in
all data sets. Table 2 shows an example of the results
obtained from the classification of the Leaf River database.

For each of the classes, from 1 to 9, the averages of the
elements of the input vectors (i.e. streamflow at time 7 and
rainfall at times ¢, -1 and #-2) as well as the average of the
corresponding output (i.e. streamflow at time #+1) are given
in Table 2. The averages for the whole database for Leaf are
shown for comparison (i.e. Total in Table 2). The
classification highlights the different patterns present in the
database, where each class exhibits distinct input vectors.
The common feature of the classification for all rivers is
the presence of a large class (e.g. class 7 in Table 2), which
contains the numerous cases of low to medium flows with
low to moderate rainfall. These cases can be considered as
relatively uniform, with low variability. The other classes
are dedicated to the discrimination of the various patterns
of streamflows and rainfalls present in the database. For all
rivers, there is always a class of high flows with relatively
high rainfall (e.g. class 3 in Table 2).

The effect of the classification is determinant in
streamflow modelling configurations that involve the use
of boosting which, in this work, comes down to a stratified
sampling for the construction of data sets for training
models. Stratified sampling implies that each class is
represented by an equal number of input vectors, which
means that classes with a small number of input vectors in
the original training set are over represented in the data sets
constructed for training. Extreme events such as high floods
occur more often and are more likely to influence to their
advantage the determination of the weights of the models,
even though the increase in their presence is made through
replication of the same events (i.e. sampling with
replacement).

Table 2. Characteristics of the classes of input vectors for Leaf.

Class Mean (in mm) for Number of input vectors for

0., Input vector 11 12 V Total

Ql Pl Pl-] P/-2

1 2.68 1.32 30.15 4.69 1.79 429 396 361 1186
2 2.53 2.39 12.50 2.97 14.66 75 82 82 239
3 8.15 8.64 3.22 8.21 39.23 200 220 208 628
4 0.62 0.57 7.05 1.03 0.67 404 438 377 1219
5 1.47 1.97 0.69 0.97 6.91 487 492 571 1550
6 2.87 3.87 0.79 4.95 15.66 169 182 166 517
7 0.41 0.48 0.19 0.16 0.35 2428 2293 2421 7142
8 0.61 0.64 1.02 6.95 1.17 360 350 341 1051
9 2.82 2.44 3.70 29.84 3.37 343 340 392 1075
Total 1.37 1.37 3.92 3.92 3.92 4895 4793 4919 14607

Note: T1 is the first training set, T2 is the second training set, and V is the test set.
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Once the classification is established, the database is approach is employed. This improvement is compared with
divided randomly to ensure that about one third of the input the performance obtained in the traditional situation where
vectors of any class is allocated to each of the three data only one model is developed (i.e. without replications). Here,

sets, that is, two for training and one for testing, respectively these single models are called stand-alone models and are
T1,T2 and V in Table 2. As areminder, T1 and T2 are merged trained using the Levendberg-Marquardt algorithm only (i.e.
when stop training is not employed. no stop training and no Bayesian regularisation). Note that
these stand-alone models are also used in the stacking
modelling configuration. Figure 2 shows the performance

STAND-ALONE MODELS of these reference models. The results are classified in terms

This study is concerned primarily by improvement in the of the number of hidden neurons, and persistence is
performance of streamflow models when a generalisation  established with the test data set. The number of hidden
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neurons is assumed to have little effect on modelling
performance overall and this is confirmed by the results in
Fig. 2, as the median performance for any given river is
relatively constant with respect to the number of hidden
neurons.

However, the performance varies considerably from one
replicate to the other, exemplifying the risk of stand-alone
models, as mentioned by Iyer and Rhinehart (1999). If
exception is made of models with isolated extremely low
performance, this variability tends to increase with the
number of hidden neurons for most rivers in Fig. 2. The
complexity of the model, as expressed by the number of
hidden neurons, affects the search of a global optimum by
the training algorithm. The greater the number of hidden
neurons, the more difficult it is to find the global optimum.
Ideally, all models for a river should exhibit the same
performance, the limitation on the global optimum being
regulated only by the capacity of the input vectors to explain
the outputs. It is obvious that the input vectors do not explain
the outputs for Kavi or Salt Fork (Fig. 2a and c) as clearly
as do those for Leaf, Serein, San Juan and even Volpajola
(Fig. 2b, e, d and f, respectively).

For the rest of this study, because stand-alone model
performance is highly sensitive to the initialisation of the
weights of the networks during optimisation, the median
performance of the stand-alone models is compared with
the performance of the streamflow models based on a
generalisation approach.

EFFECT OF GENERALISATION ON MODELLING
PERFORMANCE

Stacking, bagging and boosting have a beneficial effect on
the performance of streamflow models. All three cases
involve the aggregation of the estimates of several
streamflow models (i.e. 50 in this work) into one global
estimate. The mean and the median of the model streamflow
estimates are considered here as global estimates. Also, the
estimates of the stand-alone model that produces the best
individual performance in the modelling configuration for
stacking are also considered global estimates. Figure 3 shows
the performance of these three estimates (Mean, Median,
Max) for all six rivers, when stacking is employed and with
respect to the number of hidden neurons. In Fig. 3, the
median performance of the stand-alone models is also
illustrated for comparison. Clearly, streamflow estimates
from the use of stacking (Mean, Median) lead to better
performances than estimates from most stand-alone models,
particularly as the number of hidden neurons increases. This
conclusion also applies to bagging and boosting, as
confirmed by Figs. 4 and 5, respectively. The performance
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ofthe best individual models (Max) is not presented in Figs.
4 and 5 because the results are not consistently as good as
with the mean and median estimates. A generalisation
approach helps to reduce the uncertainties related to the
difficulty of the training algorithm to find the global
optimum as the complexity (i.e. the number of hidden
neurons) of the streamflow models increases.

Stacking, bagging and boosting perform equally well, as
shown in Figs. 3, 4 and 5. Either method could be used with
favourable results, although stacking may be a preferred
choice where the models perform poorly, such as Salt Fork
River (item c in Figs. 3 to 5). Kavi and Salt Fork are cases
for which neural networks are less convincing in terms of
performance. Salt Fork is an intermittent system, dependent
largely on detailed soil moisture conditions to explain
streamflows. These soil moisture conditions are not available
in the data given to the models. There is very little
dependence between the input vectors and the outputs, and
no sampling method can possibly correct that shortfall.

On a global scale, Table 3 summarises the performance
results for all modelling configuration, thus exhibiting the
behaviour of all generalisation approaches considered in
this work. Each element of Table 3 is the average persistence
with respect to the number of hidden neurons. For example,
the value of the third column, third row for the Kavi River
(0.147) is the average of the performance values shown in
Fig. 3a, with the median employed as estimator (square
symbols). Table 3 demonstrates that stacking, bagging and
boosting provide consistent improvements over stand-alone
models, and this confirms the results in Figs. 3 to 5. Stand-
alone models benefiting from stop-training or Bayesian
regularisation show some improvement from stand-alone
models where neither of these two generalisation approaches
is used (i.e. column 6 or 9 compared with column 3 in Table
3). However, the improvement may sometimes be only
marginal. The best estimator with stacking is the stand-alone
model having the maximum performance (Max), while the
mean is a better estimator for bagging and boosting than
the median. The combination of stop-training or Bayesian
regularisation with either one of stacking, bagging or
boosting always improves performance from the median of
stand-alone models (i.e. Alone versus the Mean or Median
in Table 3). Of course, there might be instances of stand-
alone models that outperform any form of generalisation
(see Max versus the Mean or Median in Table 3). However,
to find such instances, a very large number of stand-alone
models would have to be produced, and this adds an element
of uncertainty in the strategy of using stand-alone models
versus a generalisation technique.
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VARIABILITY OF THE STREAMFLOW ESTIMATES

AND OF MODEL PERFORMANCE

The results from Figs. 3 to 5 and Table 3 provide good trends
about model performance, but do not provide much
information on the variability of the performance and none
about the variability of streamflow estimates. As a measure
of performance variability, a ratio similar to the coefficient

of variation is employed, in which the difference between
the 75th and 25th persistence percentiles is divided by the
median persistence (50th percentile). Percentiles are applied
because they are usually less influenced by extreme values
than the mean and the standard deviation. This ratio is the
equivalent of the standardised measure of the range between
confidence intervals, and is applied to all modelling
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configurations, with respect to the number of hidden
neurons. By this ratio, the results of Fig. 2 can be summarised
and compared with other modelling configuration, as in
Fig. 6. The terms LM, LS and BR in the legend of Fig. 6
refer to the training procedures employed, respectively
Levenberg-Marquardt alone, Levenberg-Marquardt with
stop training and Levenberg-Marquardt with Bayesian
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regularisation. The terms 0, 1 and 2 in the legend refer to
stacking (no sampling of the original training sets), bagging
(purely random sampling) and boosting (stratified
sampling).

The modelling configurations with the largest variability
are those that use the Levenberg-Marquardt algorithm alone,
the worst cases being consistently those that use a sampling
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process for the construction of the training sets (i.e. LM1
an LM2). Bagging and boosting can produce stand-alone
models that perform somewhat poorly as a result of the
sampling process, which may duplicate input vectors (i.e. it
is a random selection with replacement) and consequently
reduce the diversity of the training sets. This shortfall is,
however, compensated afterwards by the aggregation of the

~

stand-alone models, as demonstrated in Table 3.
Performance variability is particularly large with Kavi, Salt
Fork and Volpajola. In the case of Kavi, the ratio is even
greater than 1 when the number of hidden neurons is large
(see Fig. 6a). For the first two rivers, the poor performance
ofthe model originating from the reduced explaining power
of the inputs vector can be blamed for the resultant large
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Table 3. Average persistence for all modeling configurations, estimators and rivers.

Rivers  Estim. Levenberg-Marquardt Stop training Bayesian regularisation
Stack. Bag. Boost. Stack. Bag. Boost. Stack. Bag. Boost.
Kavi Alone 0.114 - - 0.115 - - 0.137 - -
Max 0.148 - - 0.143 - - 0.154 - -
Mean 0.144 0.142 0.141 0.135 0.129 0.129 0.145 0.143 0.141
Median  0.147 0.144 0.143 0.135 0.129 0.128 0.147 0.144 0.142
Leaf Alone 0.691 - - 0.700 - - 0.692 - -
Max 0.734 - - 0.735 - - 0.741 - -
Mean 0.726 0.719 0.716 0.725 0.707 0.722 0.713 0.703 0.723
Median  0.722 0.719 0.717 0.723 0.708 0.721 0.709 0.699 0.717
Salt Fork Alone 0.200 - - 0.195 - - 0.207 - -
Max 0.226 - - 0.213 - - 0.222 - -
Mean 0.214 0.217 0.199 0.203 0.201 0.201 0.213 0.215 0.214
Median  0.211 0.210 0.199 0.203 0.200 0.200 0.212 0.211 0.212
San Juan Alone 0.591 - - 0.601 - - 0.604 - -
Max 0.614 - - 0.617 - - 0.617 - -
Mean 0.608 0.609 0.606 0.611 0.612 0.608 0.610 0.610 0.607
Median  0.607 0.609 0.607 0.610 0.612 0.608 0.610 0.610 0.606
Serein  Alone 0.603 - - 0.643 - - 0.639 - -
Max 0.643 - - 0.665 - - 0.663 - -
Mean 0.628 0.642 0.633 0.665 0.663 0.665 0.654 0.659 0.650
Median  0.627 0.637 0.633 0.665 0.663 0.665 0.651 0.657 0.648
Volpajola Alone 0.463 - - 0.485 - - 0.504 - -
Max 0.510 - - 0.510 - - 0.520 - -
Mean 0.519 0.519 0.515 0.509 0.505 0.509 0.516 0.515 0.515
Median  0.518 0.517 0.517 0.506 0.503 0.507 0.515 0.514 0.515

Note: Estim. for estimators, Stack. for stacking, Bag. for bagging, Boost. for boosting, and Alone for the median of stand-alone models.

variability. In the case of Volpajola, the short duration of
the database can be a factor. Particularly when a sampling
procedure is employed (i.e. LM 1 and LM2), a short database
increases the risk of duplication of input vectors, leading to
less diverse training sets and larger variability in
performance. .

Stop training (LS) and Bayesian regularisation (BR) lead
to reduced performance variability for stand-alone models,
even where a sampling procedure is in place. Not only can
these generalisation approaches related to the training
process produce stand-alone models that perform better than
stand-alone models using only the Levenberg-Marquardt
algorithm in the majority of the rivers, but they also lead to
a more stable performance. Stop training or Bayesian
regularisation with either bagging or boosting can, thus,
produces better and more stable performances. Such a
combination would be optimal with a small number of
hidden neurons in the models, for variability in performance
tends to increases as the number of hidden neurons increases
(see Fig. 6).

The ratio used in Fig. 6 with the persistence index has
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also been applied to streamflow estimates for all the rivers.
Indeed, the variability of the streamflow estimates can be
as indicative as performance variability for checking the
validity of stacking, bagging and boosting. The ratio is
calculated from the daily estimates of all the 50 stand-alone
models, per modelling configuration and with respect to the
number of hidden neurons. The medians of the ratios
obtained are illustrated in Fig. 7, the legend of which is the
same as that of Fig. 6. Even though it is not consistent from
one river to another, the cases that involve the use of stacking
show the smallest variability of the streamflow estimates,
followed by the cases of bagging, then boosting. As with
performance variability, the sampling processes, with the
possibility of duplications that reduce the diversity of the
inputs vectors, affect the models. With boosting, duplication
is more prevalent, particularly for extreme streamflow
events, which is why the variability of streamflow estimates
is often greatest with this generalisation approach.

Large variability in streamflow estimates is related to poor
modelling performance. Figure 8 shows streamflow estimate
variability with respect to persistence. The cases of Kavi
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Fig. 6. Variability of persistence for all modelling configurations for the (a) Kavi, (b) Leaf, (c) Salt Fork, (d) San Juan, (e) Serein and
(f) Volpajola rivers.

and Salt Fork are a combination of poor performance with
large streamflow estimate variability, while the cases of Leaf,
San Juan, Serein and Volpajola combine relatively good
performances with smaller streamflow estimate variability.
This indicates the limitation of generalisation approaches,
which cannot perform fully if the input data to the models
cannot well explain the outputs.

STOP-TRAINING

To complete the presentation of the results, Fig. 9 and Table 4
show the effect of stop-training on the number of epochs
needed to perform the optimisation of the weights of the
models. Figure 9 shows the number of epochs needed to
complete the optimisation process for the modelling
configuration where stacking is employed (i.e. always the
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Fig. 7. Variability of streamflow predictions for all modelling configurations for the (a) Kavi, (b) Leaf, (c) Salt Fork, (d) San Juan,
(e) Serein and (f) Volpajola rivers.

original training sets used). The maximum number of epochs
has been set at one hundred and Fig. 9 shows that the limit
is reached only on a reduced number of occasions. Table 4
gives the median of the number of epochs needed for the
completion of the optimisation as well as the number of
times the 100-limit is reached, for all rivers, with respect to
the use of stacking, bagging and boosting. Sampling the
training sets has little effect on the number of epochs needed,
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for the cases of bagging and boosting require as many epochs
as the cases of stacking. There is a relation between
modelling performance and the number of epoch needed in
the optimisation process. Indeed, the poorer the modelling
performance, the smaller is the number of epochs employed
prior to stop-training, and the less frequent are the instances
that reach the 100-limit.

Model complexity and the explaining power of the input
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vectors regulate when the optimisation of the weights halts
with stop-training. A complex model (i.e. a large number of
hidden neurons) with inputs vectors that have little
explaining power lead to a rapid end of the optimisation
process to ensure the generality of the model. Stop-training
does not necessarily produce enhanced performance, as can
be seen from Table 3 with the stand-alone models for Kavi
and Salt Fork. Stop-training does improve modelling
performance for all the other rivers, and this helps to
legitimise this generalisation approach. Stop-training seems
much less critical for the rivers where models perform well
(e.g. Leaf and Serein), although it may simply mean that a
larger number of epochs must be set as a limit.

Discussion and conclusion

Five generalisation approaches, stop-training, Bayesian
regularisation, stacking, bagging and boosting have been
tested with multi-layer perceptron neural networks for the
prediction one-day ahead of streamflows on six
hydrologically different catchments. Stop training and
Bayesian regularisation affect the training procedure and
ensure that the models do not become too specific for the
training data. Stacking, bagging and boosting consist of the
aggregation of the results of several models to obtain global
estimates, and are distinguished from each other by the
process employed to construct the training data set used in
the calibration of these models.

While relatively extensive, this work does not yet provide
strict guidelines on the use of generalisation approaches for
neural network applications to streamflow modelling. The
ultimate aim of this paper is to generate interest in
generalisation approaches and encourage others to pursue
their own comparisons so as to improve the knowledge base
of these approaches. Admittedly, the efficacy of each of these

Table 4. Number of epochs employed with stop training.

Case Kavi Leaf  Salt San
Fork  Juan jola

Serein  Volpa-

MEDIAN NUMBER OF EPOCHS

stacking 16 31 12 17 28 16
bagging 15 27 12 16 24 15
boosting 15 22 12 16 23 15

NUMBER OF TIMES THE 100-LIMIT IS REACHED

stacking 7 14 3 1 42 26
bagging 2 21 3 2 34 6
boosting 2 7 5 4 22 13

approaches may vary from one application to another and
may depend on which variant of the approach is employed.
Nevertheless, the results obtained from the specific
applications in this study lead to the following conclusions.
All generalisation approaches improve modelling
performance when compared with stand-alone models.
Stacking, bagging and boosting provide the largest
improvement from standard models, compared with stop-
training and Bayesian regularisation. Stacking performs best
although the benefit in performance is only slight compared
with bagging and boosting, and is not consistent from one
catchment to another.

Bagging and boosting have often been the main
approaches selected in comparisons between generalisation
approaches accomplished over the years (see for example
Yang et al., 1998; Bauer and Kohavi, 1999; Cunningham et
al., 2000; Zhou et al., 2002; Sohn and Lee, 2003). Both
approaches should be considered equivalent in terms of
performance, as mentioned by Bauer and Kohavi (1999);
the present work confirms this conclusion for bagging,
boosting, and stacking. One must be careful with boosting,
as this approach can be sensitive to aberrant inputs, such as
outliers (Bauer and Kohavi, 1999; Zhou et al., 2002), which
may affect performance negatively. The particular form of
boosting employed here (stratified sampling) is less affected
by outliers, because the sampling process ensures an equal
representation of all classes of inputs, thus reducing the
effect of aberrant data. This might not necessarily occur with
more traditional forms of boosting. Aberrant inputs can be
very important in hydrology and water resources, where it
is sometimes difficult to determine whether extremely large
streamflow values are legitimate or erroneous.

Each type of generalisation approach must be analysed
separately if one is concerned about performance variability
or streamflow estimates. The improvement in performance
with bagging and boosting comes from the aggregation of
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Fig. 9. Number of epochs needed for stop training for the (a) Kavi, (b) Leaf, (c) Salt Fork, (d) San Juan, (e) Serein and (f) Volpajola rivers.

the models. When considered alone, these models usually
exhibit larger variability in performance and streamflow
estimates than is the case with the models for stacking. This
variability is due to the process employed in constructing
the training sets. The original training set is employed for
the calibration of all the models with stacking. Sampling
with replacement from the original training set is used in
constructing one training set for each model with bagging
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and boosting; allowing replacement duplicates input vectors,
which consequently reduce the diversity of the training sets.
Even though they do not perform as well as stacking,
bagging and boosting, stop training and Bayesian
regularisation reduce the variability of model performance
and streamflow estimates. As a rule, variability increases
with the number of hidden neurons for the models and this
compels the use of simple models with a small number of
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hidden neurons. Variability is also greater for cases where
models are not performing well, as with the Kavi and Salt
Fork rivers; this indicates the limitations of generalisation,
which cannot help much if the data input to the models do
not explain the outputs well..

Generalisation approaches are a necessity for modelling,
including streamflow modelling. The benefit of
generalisation in terms of modelling performance is
demonstrated by the results of this study. The necessity for
generalisation is also indicated by the additional results for
stop training, that is, by how regularly training is stopped
well before the limit is reached for the number of epochs,
particularly for catchments where models do not perform
well. Any generalisation approach tested in this work has
improved performance. However, for a good combination
of improvement and stability in modelling performance, the
joint use of stop training or Bayesian regularisation with
either bagging or boosting is recommended.

Acknowledgments

The authors acknowledge the Natural Science and
Engineering Research Council of Canada, and the Fond
québecois de la recherche sur la nature et les technologies,
for providing funding for this work in the form of research
grants. The authors are also grateful of the insights of the
reviewers who evaluated this paper.

References

Abrahart, R.J. and See, L., 2000. Comparing neural network and
autoregressive moving average techniques for the provision of
continuous river flow forecasts in two contrasting catchments.
Hydrol. Process., 14, 2157-2172.

Abrahart, R.J. and See, L., 2002. Multi-model data fusion for river
flow forecasting: An evaluation of six alternative methods based
on two contrasting catchments. Hydrol. Earth Syst. Sci., 6, 655—
670.

Agrafiotis, D.K., Cedeno, W. and Lobanov, V., 2002. On the use
of neural network ensembles in QSAR and QSPR. J. Chem.
Inform. Comput. Sci., 42, 903-911.

Amari, S.I., Murata, N., Muller, K.R., Finke, M. and Yang, H.H.,
1997. Asymptotic statistical theory of over training and cross-
validation. /EEE Trans. Neural Networks, 8, 985-995.

Anctil, F., Perrin, P. and Andréassian, V., 2003. ANN output
updating of lumped conceptual rainfall/runoff forecasting
models. J. Amer. Water Resour. Assoc., 39, 1269—1279.

Anctil, F., Perrin, P. and Andréassian, V., 2004. Impact of the length
of observed records on the performance of ANN and of
conceptual parsimonious rainfall-runoff forecasting models.
Environ. Model. Software, 19, 357-368.

ASCE, 2000a. Artificial neural networks in hydrology, I:
Preliminary concepts. J. Hydrol. Eng. - ASCE, 5, 115-123.
ASCE, 2000b. Artificial neural networks in hydrology, II:

Hydrologic applications. J. Hydrol. Eng. - ASCE, 5, 124—137.

Babovic, V., CaHisares, R., Jensen, H.R. and A. Klinting, 2001.
Neural networks as routine for error updating of numerical
models. J. Hydraul. Eng. - ASCE, 127, 181-193.

Bauer, E. and Kohavi, R., 1999. An empirical comparison of voting
classification algorithms: bagging, boosting, and variants. Mach.
Learn., 36, 105-139.

Bowden, G.J., Maier, H.R. and Dandy, G.C., 2002. Optimal
division of data for neural network models in water resources
applications. Water Resour. Res., 38, 2.1-2.11.

Breiman, L., 1996. Bagging predictors. Mach. Learn., 24, 123—
140.

Breiman, L., 2000. Randomising outputs to increase prediction
accuracy. Mach. Learn., 40, 229-242.

Breiman, L., 2001. Using iterated bagging to debias regressions.
Mach. Learn., 45, 262-277.

Cannon, A.J. and Whitfield, P.H., 2002. Downscaling recent
streamflow conditions in British Columbia, Canada using
ensemble neural network models. J. Hydrol., 259, 136—151.

Cavadias, G. and Morin, G., 1986. The combination of simulated
discharges of hydrological models: Application to the WMO
intercomparison of conceptual models of snowmelt runoff. Nord.
Hydrol., 17, 21-32.

Chan, S.S.H., Ngan, H.W. and Rad, A.B., 2003. Improving
Bayesian regularisation of ANN via pre-training with early-
stopping. Neural Process. Lett., 18, 29-34.

Chawla, N.V., Moore, T.E., Hall, L.O., Bowyer, K.W.,
Kegelmeyer, W.P. and Springer, C., 2003. Distributed learning
with bagging-like performance. Pattern Recognition Lett., 24,
455-471.

Coulibaly, P., Anctil, F. and Bobée, B., 1999. Prévision
hydrologique par réseaux de neurones artificiels: etats de I’art.
Can. J. Civil Eng., 26, 293-304.

Coulibaly, P., Anctil, F. and Bobée, B., 2000. Daily reservoir inflow
forecasting using artificial neural networks with stopped training
approach. J. Hydrol., 230, 244-257.

Coulibaly, P., Anctil, F., Aravena, R. and Bobée, B, 2001. Artificial
neural network modeling of water table depth fluctuations. Water
Resour. Res., 37, 885-896.

Cunningham, P., Carney, J. and Jacob, S., 2000. Stability problems
with artificial neural networks and the ensemble solution. 4rtif.
Intell. Med., 20, 217-225.

Dawson, C.W. and Wilby, R.L., 2001. Hydrological modelling
using artificial neural networks. Progr. Phys. Geogr., 25, 80—
108.

Drucker, H., 2002. Effect of pruning and early stopping on
performance of a boosting ensemble. Comput. Statist. Data
Analysis, 38, 393-406.

Foresee, F.D. and Hagan, M.T., 1997. Gauss-Newton
approximation to Bayesian learning. Proceedings, 1997 IEEE
International Conference on Neural Networks, Houston, TX, 3,
1930-1935.

Freund, Y. and Schapire, R.E., 1997. A decision-theoretic
generalisation of on-line learning and an application to boosting.
J. Comput. Syst. Sci., 55, 119—-139.

Geman, S., Bienenstock, E. and Doursat, R., 1992. Neural
networks and the bias/variance dilemma. Neural Comput., 4,
1-58.

Gengai, R. and Qi, M., 2001. Pricing and hedging derivative
securities with neural networks: Bayesian regularisation, early
stopping, and bagging. /EEE Trans. Neural Networks, 12, 726—
734.

Goh, W.Y., Lim, C.P. and Peh, K.K., 2003. Predicting drug
dissolution profiles with and ensemble of boosted neural
networks: a time series approach. [EEE Trans. Neural Networks,
14, 459-463.

Golob, R., Stokelj, T. and Grgic, D., 1998. Neural-network-based
water inflow forecasting. Control engineering practice, 6, 593—
600.

957



Francois Anctil and Nicolas Lauzon

Gots, R., Steiner, B., Sievers, S., Friesel, P., Roch, K., Schworer,
R. and Haag, F., 1998. Dioxin, Dioxin-like PCBS and organic
compounds in the River Elbe and the Hamburg Harbour:
Identification of sources. Water Sci. Technol., 37, 207-215.

Hall, M.J. and Minns, A.W., 1999. The classification of
hydrologically homogeneous regions. Hydrolog. Sci. J., 44,
693-704.

Hu, T.S., Lam, K.C. and Ng, S.T., 2001. River flow time series
prediction with a range-dependent neural network. Hydrolog.
Sci. J., 46, 729-745.

Iyer, M.S. and Rhinehart, R.R., 1999. A method to determine the
required number of neural-network training repetitions. /EEE
Trans. Neural Networks, 10, 427-432.

Kim, G. and Barros, A.P., 2001. Quantitative flood forecasting
using multisensor data and neural networks. J. Hydrol., 246,
45-62.

Kitanidis, P.K. and Bras, R.L., 1980. Real-time forecasting with a
conceptual hydrologic model: 2. Applications and results. Water
Resour. Res., 16, 1034—-1044.

Kohonen, T., 1990. The self-organising map. Proc. IEEE, 79,
1464-1480.

Kohonen, T., 1997. Self-Organising Maps, Second Edition.
Springer, Berlin, Germany.

Kuligowski, R.J. and Barros, A.P., 1998. Using artificial neural
networks to estimate missing rainfall data. J. Amer. Water
Resour. Assoc., 34, 1437-1447.

Lajbceygier, P.R. and Connor, J.T., 1997. Improved option pricing
using artificial neural networks and bootstrap methods. /nt. J.
Neural Systems, 8, 457-471.

Liong, S.Y., Lim, W.H., Kojiri, T. and Hori, T., 2000. Advance
flood forecasting for flood stricken Bangladesh with a fussy
reasoning method. Hydrolog. Process., 14, 431-448.

Lopes-Sabater, C.J., Renard, K.G. and Lopes, V.L., 2002. Neural-
network-based algorithms of hydraulic roughness for overland
flow. Trans. Amer. Soc. Agr. Eng., 45, 661-667.

Luk, K.C., Ball, J.E. and Sharma, A., 2000. A study of optimal
lag and spatial inputs to artificial neural network for rainfall
forecasting. J. Hydrol., 227, 56—65.

MacKay, D.J.C., 1992. Bayesian interpolation. Neural Comput.,
4, 415-447.

MacNamee, B., Cunningham, P., Byrne, S. and Corrigan, O.I.,
2002. The problem of bias in training data in regression problems
in medical decision support. Artif. Intell. Med., 24, 51-70.

Maier, H.R. and Dandy, G.C., 1997. Modelling cyanobacteria
(blue-green algae) in the River Murray using artificial neural
networks. Math. Comput. Simulat., 43, 377-386.

Maier, H.R. and Dandy, G.C., 2000. Neural networks for prediction
and forecasting of water resources variables; Review of
modelling issues and applications. Environ. Model. Software,
15, 101-124.

Medeiros, M.C., Veiga, A. and Pedreira, C.E., 2001. Modeling
exchange rates: Smooth transitions, neural networks, and linear
models. /[EEE Trans. Neural Networks, 12, 755-764.

Morse, B., Hessami, M. and Bourel, C., 2003. Mapping
environmental conditions in the St. Lawrence River onto ice
parameters using artificial neural networks to predict ice jams.
Can. J. Civil Eng., 30, 758-765.

958

Pal, M. and Mather, P.M., 2003. An assessment of the effectiveness
of decision tree methods for land cover classification. Remote
Sens. Environ., 86, 554-565.

Papadopoulos, G., Edwards, P.J. and Murray, A.F., 2000.
Confidence estimation methods for neural networks: A practical
comparison. /EEE Trans.Neural Networks, 12, 1278—1287.

Raman, H. and Sunilkumar, N., 1995. Multivariate modelling of
water resources time series using artificial neural networks.
Hydrolog. Sci. J., 40, 145—163.

Raviv, Y. and Intrator, N., 1996. Bootstrapping with noise: An
effective regularisation technique. Connection Sci., 8, 355-372.

Schwenk, H. and Bengio, Y., 2000. Boosting neural networks.
Neural Comput., 12, 1869—1887.

See, L. and Abrahart, R.J., 2001. Multi-model data fusion for
hydrological forecasting. Comput. Geosci., 27, 987-994.

Shamseldin, A.Y., Nasr, A.E. and O’Connor, K.M., 2002.
Comparison of different forms of the multi-layer feed-forward
neural network method used for river flow forecasting. Hydrol.
Earth Syst. Sci., 6, 671-884.

Shou, S.H., Wu, J. and Tang, W., 2002. Ensembling neural
networks: Many could be better than all. Artif. Intell., 137, 239—
263.

Shu, C. and Burn, D.H., 2004. Artificial neural network ensembles
and their application in pooled flood frequency analysis. Water
Resour. Res., 40, W09301, doi: 10.1029/2003WR002816.

Sohn, S.Y. and Lee, S.H., 2003. Data fusion, ensemble and
clustering to improve the classification accuracy for the severity
of road traffic accidents in Korea. Safety Sci., 41, 1-14.

Tan, Y. and Van Cauwenberghe, A., 1999. Neural-network-based
d-step-ahead predictors for nonlinear systems with time delay.
Eng. Appl. Artif. Intell., 12, 21-35.

Vlassides, S., Ferrier, J.G. and Block, D.E., 2001. Using historical
data for bioprocess optimisation: Modeling wine characteristics
using artificial neural networks and archived process
information. Biotechnol. Bioeng., 73, 55-68.

WMO (World Meteorological Organisation), 1992. Simulated real-
time intercomparison of hydrological models. Operational
Hydrology report no 38, WMO report no 779. 241pp.

Wolpert, D.H., 1992. Stacked generalisation. Neural Networks,
5, 241-259.

Wolpert, D.H. and Macready, W.G., 1999. An efticient method to
estimate bagging’s generalisation error. Mach. Learn., 35, 41—
55.

Xiao, R.R. and Chandrasekar, V., 1997. Development of a neural
network based algorithm for rainfall estimation from radar
observation. /EEE Trans. Geosci. Remote Sens., 35, 160—-171.

Yabunaka, K.I., Hosomi, M. and Murakami, A., 1997. Novel
application of back-propagation artificial neural network model
formulated to predict algal bloom. Water Sci. Technol., 36, 89—
97.

Yang, H.H., Murata, N. and Amari, S.1I., 1998. Statistical inference:
Learning in artificial neural networks. Trends Cognitive Sci., 2,
4-10.



