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Abstract

The value of nitrogen (N) field measurements for the calibration of parameters of the INCA nitrogen in catchment model is explored and
quantified. A virtual catchment was designed by running INCA with a known set of parameters, and field ‘measurements’ were selected from
the model run output. Then, using these measurements and the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), four of the
INCA model parameters describing N transformations in the soil were optimised, while the measurement uncertainty was increased in subsequent
steps. Considering measurement uncertainty typical for N field studies, none of the synthesised datasets contained sufficient information to identify
the model parameters with a reasonable degree of confidence. Parameter equifinality occurred, leading to considerable uncertainty in model
parameter values and in modelled N concentrations and fluxes. Fortunately, combining the datasets in a multi-objective calibration was found
to be effective in dealing with these equifinality problems. With the right choice of calibration measurements, multi-objective calibrations
resulted in lower parameter uncertainty. The methodology applied in this study, using a virtual catchment free of model errors, is proposed as
a useful tool foregoing the application of a N model or the design of a N monitoring program. For an already gauged catchment, a virtual
study can provide a point of reference for the minimum uncertainty associated with a model application. When setting up a monitoring
program, it can help to decide what and when to measure. Numerical experiments indicate that for a forested, N-saturated catchment, a

fortnightly sampling of NO, and NH, concentrations in stream water may be the most cost-effective monitoring strategy.

Keywords: INCA, nitrogen model, parameter uncertainty, multi-objective calibration, virtual catchment, experimental design

Introduction

Over the past 100 years, human activity has doubled the
input of nitrogen (N) into terrestrial ecosystems (Vitousek
et al., 1997), causing environmental problems such as soil
acidification, nitrate (NO,) contamination of ground waters
and eutrophication of lakes and streams. These problems
have initiated intensive research in the field of N cycling,
including the development of mathematical models
describing N dynamics in soils and surface waters. These
models provide a basis for integrating N transformation and
transport processes and thus serve as an aid to understanding
the fate of N in ecosystems. Moreover, models that simulate
and predict N dynamics have become an indispensable tool
for the abatement and prevention of N-related environmental
problems (Neal ef al., 2002).

One such model is INCA (Wade er al., 2002; Whitehead
et al., 1998a), a semi-distributed, physically-based model
describing N dynamics in catchments. Recent investigations
have demonstrated that INCA is able closely to predict N
concentrations in rivers for a range of European catchments
(e.g. Wade et al.,2001). Unfortunately, these studies include
little information on the uncertainty in the values of the
model parameters used in the applications. However, as
INCA is ultimately developed to explore the effects of
changes in land use, N deposition and climate on N loads in
catchments, there is a strong need for this kind of
information.

Like almost any catchment model, many of the parameters
of INCA cannot be measured directly but have to be inferred
by a trial-and-error process that adjusts the parameter values
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to match the observed data. This process is called ‘model
calibration’. The aim of a model calibration is to reduce the
uncertainty in the choice of parameter values (parameter
uncertainty) while accounting for uncertainties in the
measured input and output time series and uncertainties in
the structural ability of the model to simulate the processes
of interest (Thiemann et al.,2001). Preferably, a calibration
results in well-identified parameters with narrow uncertainty
ranges around their optimum values. However, since
catchment models are only an approximate description of
reality and because the data used for calibration contain
errors, estimates of parameters are error-prone (Vrugt ef al.,
2002). As a consequence, well-identified parameters are
often the exception rather than the rule.

A serious complication for the calibration of models
describing N dynamics in catchments is the lack of reliable
calibration data, especially when considering model
parameters that describe the soil N transformations. Often,
the only data used are concentrations of NO, in stream water,
usually taken at weekly or fortnightly intervals and spanning
a period of at most three years. Stream water NO, can be
measured relatively easily, at low cost and with relatively
high accuracy. However, these measurements may not
contain useful information on the model parameters of
interest and, as such, may be of limited value for model
calibration. Measurements of N fluxes in soils, like
nitrification or net mineralisation, often are informative to
N model parameters, but these fluxes are difficult and costly
to measure and are subject to large measurement errors.
These large errors stem mainly from the heterogeneity of
the soil, which complicates the estimation of N fluxes at a
plot or catchment scale.

The Shuffled Complex Evolution Metropolis (SCEM-UA;
Vrugt et al., 2003a), is an effective and efficient search
algorithm for the calibration of model parameters. Apart
from finding the most suitable set of parameters, SCEM-
UA aims at describing parameter uncertainty using a
Bayesian inference framework. One of the desirable
properties of this Bayesian framework is that the user can
incorporate knowledge explicitly about the measurement
errors (o) of the calibration data into the estimation of the
model parameters. The size of this measurement error
determines the quality of the calibration data directly, and
as such the final estimated uncertainty intervals of the
parameters with the SCEM-UA algorithm.

The aim of this study was to explore the suitability of N
field measurements for the calibration of parameters of the
INCA model. The parameters of interest were four of the
most relevant INCA parameters describing the N
transformations in the soil-vegetation system of a well-
drained, N-saturated forest. A virtual catchment was
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designed by running INCA with a known set of parameters,
and field ‘measurements’ were selected from this model run
output. These synthetically generated observations were
subsequently used in combination with the SCEM-UA
algorithm to retrieve the uncertainty intervals of the four
INCA model parameters and to assess which measurement
types contain the most information for the identification of
the model parameters. To further explore the relationship
between the quality of the calibration data and the
uncertainty associated with the final parameter estimates,
the measurement error ¢ was increased, stepwise, in
subsequent optimisation runs.

Methods

INCA MODEL

A full description of INCA (version 1.6) appears in Wade et
al. (2002) and Wade (2004) but a slightly modified version
(version 1.7.1)was used to prevent numerical integration
problems at low stream flows. Here, only those features of
the INCA model are described which are necessary for a
clear understanding of the results found in this study.

In short, INCA is a semi-distributed (lumped), physically-
based model that simulates NO, and NH, concentrations in
stream water by tracking water and N through the catchment
soils and ground waters to the river. The soil-vegetation
system in INCA is of primary importance, as N inputs and
most N transformations take place there. As such, most of
the parameters in INCA refer to processes in the soil-
vegetation system. The groundwater zone only transports
N; no N transformations are assumed to occur. Finally, the
river system exports NO, and NH, out of the catchment,
while taking into account in-river nitrification and
denitrification.

The soil-vegetation system in INCA is represented by a
single mixing model, which is an obvious simplification of
reality. In addition to this simplification, denitrification and
NO, plant uptake were assumed not to take place in the
virtual catchment. This latter simplification is justified by
the assumed low denitrification and NO, plant uptake fluxes
in the well-drained, N saturated forest of Speuld, the
Netherlands (Tietema ez al., 1993), which served as a model
for the N cycling in the soils of the virtual catchment. As
such, the only N fluxes in the soil-vegetation system taken
into account in this study were atmospheric N deposition,
gross NH, mineralisation, gross NH, immobilisation,
nitrification, NH, plant uptake and NO, and NH, leaching.
Whereas atmospheric deposition of NO, and NH, is input
to the model, the other fluxes are calculated within the INCA
model as follows (notation as in Wade et al., 2002; fluxes
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in kg-N km= day™):

gross NH  mineralisation =C

gmi Slloo (1)

X 100

gross NH  immobilisation=Cg, - S - ———
Vit Xy 2)

itrificati Cy S ———10° 3
nitrification Y V% 3)

NI Xs 6

, plant uptake Cont"S°S,- 10

Vr s + Xll
' “)
. X, - X - 86400
NH , leaching == ®))
Vr,s + X11
X, - X, -
NO, leaching = %, - %;-86400 6)
Vr,s + X:Ll

where C_ . (kg-N ha™ day™), C. , C . and C,y (m day™)

gmi gim’ nit

denote the gross NH, mineralisation, gross NH,
immobilisation, nitrification and NH, plant uptake rate
coefficients; x, and x, represent the NH, and NO, stores in
the soil compartment (kg-N km™?); V__is the soil water
retention volume (m* km?); x, is the soil water volume
(m* km™); x, is the outflow of water from the soil (m’ s™
km?); S signifies the soil moisture factor (-); S, is the
seasonal plant growth index (-); and 100, 10° and 86400 are
constants necessary for conversion to the correct units. Full
definitions of V_, x,, X, S, and S, are given in Wade et al.
(2002). '

The NH, and NO, stores in the soil (x, and x,) are
calculated by integrating Eqns. (7) and (8):

11°

dx . .
75 _ NH , atmospheric deposition + gross NH,
dt mineralisation — NH | leaching
— NH, plant uptake — nitrification — gross NH,
immobilisation @)
dx,
ot = NO, atmospheric deposition + nitrification

—NO, leaching (8)

None of the parameters in Eqns. (1 — 8) can be measured
directly, instead they have to be inferred by model
calibration. As there is some physical meaning to the
hydrological parameters (x,, x,,, V_, S,) and the seasonal
plant growth index (S)), approprlate values for these
parameters can be assessed with relative confidence. In
contrast, the rate coefficients in Eqns. (1 — 8) are highly
conceptual, lack a clear physical meaning, and thus very
little is known about suitable values for these parameters.
As such, in the present study, focus lay on the calibration of

theC_.,C_. . C_ andC

gmi®> gim’

 rate coefficients.

SCEM-UA

To estimate the values of the rate coefficients, the recently
developed Shuffled Complex Evolution Metropolis (SCEM-
UA) algorithm was used. This algorithm is a modified
version of the original SCE global optimisation algorithm
developed by Duan ef al. (1992) and uses a Bayesian
inference scheme to estimate the best set of model
parameters, along with its underlying posterior distribution.
The SCEM-UA algorithm operates by selecting and
modifying an initial population of parameter sets merging
the strengths of a Markov Chain Monte Carlo (MCMC)
algorithm developed by Metropolis ef al. (1953), with the
concepts of controlled random search (Price, 1987),
competitive evolution (Holland, 1975) and complex
shuffling (Duan et al., 1992) to evolve the population of
initial parameter sets to a stationary posterior target
distribution.

Assuming that the error residuals between model and
measurement are mutually independent, Gaussian
distributed, with constant variance, the posterior density, or
likelihood, of a parameter set 0, for describing the observed
data y is computed by SCEM-UA using the equation
specified by Box and Tiao (1973):

} €)

in which N signifies the number of measurements, ¢ denotes
the measurement error deviation of the observations
(‘measurement error’) and e represents the error residuals
between model and measurement.

The size of the measurement error ¢ has important
implications for SCEM-UA applications. Following Eqn.
(9), an increment in the size of the measurement error will
result in a wider range of parameter sets that will be
considered acceptable in the fitting of the calibration data.
In other words, large uncertainties in the measurements will
result in a large uncertainty in the choice of parameter values
and consequently in the model simulations. In line with this
reasoning, the present study investigated how uncertainty
in observations of N concentrations and fluxes affect the
uncertainty in INCA parameters and simulations.

An important issue, when applying MCMC samplers like
the Metropolis algorithm in SCEM-UA, is the convergence
to a stationary posterior distribution. In theory, a MCMC
sampler converges when the number of sampled parameter
sets 0, approaches infinity, that is / = cc. However, in practice
one has to decide on how many draws to make with the
sampler. To help decide, Gelman and Rubin (1992)

N
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developed a quantitative conversion diagnostic, the scale
reduction factor \/§ , based on within and between Markov
chain variances. Following their recommendations,
convergence to a stationary posterior distribution can be
declared when VSR drops below 1.2. When this criterion is
not met, estimates of parameter distribution intervals derived
from the final posterior distribution are only an
approximation, and actual distribution intervals may be
wider.

VIRTUAL CATCHMENT

The Doethie sub-catchment of the River Tywi system in
South Wales (Whitehead er al., 1998b) served as a model
for the hydrology in the virtual catchment. The virtual
catchment is a 2 km? watertight forested catchment that is
drained by a single stream. Input time series (January 1991
— December 1998) of temperature, hydrologically effective
rainfall (HER) and soil moisture deficit (SMD) were taken
from the River Kennet system in southern England. The
Speuld forest in the Netherlands (Raat et al., 2002; Tietema
et al., 1993) served as a model for the N cycling in the soil-
vegetation system. As such, the virtual catchment is
considered N-saturated, receiving high levels of atmospheric
N deposition, thereby resulting in high levels of NO,
leaching.

Table 1 gives a complete list of the values of parameters
used to characterise the virtual catchment. A model run with
these ‘true’ parameters and the input data served as a
reference run, or ‘true’ run, of the N cycling in the virtual
catchment. The INCA output of this reference run is given
in Fig. 1 and Table 2.

CALIBRATION DATA

Synthetic ‘field measurements’ were selected from the
reference run output and included in the calibration datasets.
The different calibration datasets included measurements
of NO, and NH, concentrations in soil and stream water,
and net mineralisation and net nitrification fluxes in the soil
compartment. Measurements were selected on a fortnightly
basis over a period of three years (July 1991 —June 1994).
N fluxes were calculated as the 14-day sum of the daily
fluxes calculated by INCA; net mineralisation was defined
as the difference between the 14-day sum of gross NH,
mineralisation and gross NH, immobilisation. Soil and
stream water concentrations were selected from the model
output every 14th day.

A summary of all calibration datasets and their short names
as used in the text is given in Table 3. Note that no noise
was added to the synthetic measurements as is sometimes
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done in studies on virtual systems (e.g. Mclntyre and
Wheater, 2004; Vrugt ef al., 2002). As such, the synthetic
measurements are an exact representation of the catchment’s
state variables and processes.

PARAMETER OPTIMISATION AND UNCERTAINTY
ASSESSMENT
The Cgmi, Cgimy C,and Cupt rate coefficients were optimised
using the different calibration datasets. In addition, it was
explored how the uncertainty ranges of the inversely
estimated rate coefficients change with increasing
measurement error.

In each application, the SCEM-UA algorithm was set to
simultaneously optimise the four rate coefficients, using
eight complexes and a population size of 240 (Vrugt et al.,
2003a). The error residual between model and measurement
was calculated using a Simple Least Square objective
function. If the scale reduction factorx/jés did not drop
below 1.2 within the first 10 000 simulations, it was assumed
that a stationary solution could not be found. For each rate
coefficient, the feasible parameter space was a uniform
distribution between 0 and 20 times the true value of the
rate coefficient. This space can seen as relatively wide, given
the fact that normally little information is available on the
approximate values of these rate coefficients.

For each calibration dataset, in subsequent SCEM-UA
optimisations, the measurement error ¢ (Eqn. 9) was
increased from 0.1 to a maximum of 50% of the average
value of the measurement of interest during the calibration
period (July 1991-July 1994). The measurement error was
defined as the uncertainty in field observations arising from
the combined effect of analytical, sampling and support
errors. Hence, a measurement error of 0.1% is a large
underestimation of the uncertainties that are commonly
present in actual field datasets. This very small error was
used to verify whether the SCEM-UA algorithm is indeed
able to infer the original rate coefficients used to generate

Table 2. Mean annual N fluxes in reference run (kg-N ha™ yr™)

NO, deposition 6.5
NH, deposition 20.0
NH, plant uptake 48.0
Gross NH, mineralisation 134.4
Gross NH, immobilisation 87.3
Net NH, mineralisation 47.1
Nitrification 15.6
Denitrification 0.0
NO, leaching 21.8
NH, leaching 33
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Table 1. INCA parameter values used to characterise the virtual catchment. A model run
with these ‘true’ parameters and the input data served as a reference run of the N cycling

in the virtual catchment. See Wade et al. (2002) for parameter definitions.

Catchment characteristics

Area 2.00 [km?]

Land use type Forest

Maximum V _(depth - porosity) 0.16 [m]

Soilwater residence time 4.30 [day]
Groundwater residence time 56.0 [day]

Base flow index 0.43 [-]

River parameters

River length 1000 [m]

Flow-a 0.04 [m?]

Flow-b 0.67 [-]

In-river denitrification 0.05 [day™']

In-river nitrification 0.20 [day']

N deposition

NO, dry deposition 6.0 [kg-N ha! yr']
NO, wet deposition 0.5 [kg-N ha! yr']
NH, dry deposition 12.2 [kg-N ha'! yr']
NH, wet deposition 7.8 [kg-N ha! yr']
Soil hydrology

Maximum temperature difference 4.5 [°C]

Soilwater deficit maximum 150 [mm]
Response to a 10°C temperature change 2.0 [-]

Base temperature response 30 [°C]

Initial snow pack depth 0 [mm)]
Degree-day factor for snowmelt 3.0 [mm °C-! day™]
Water equivalent factor 0.30 [-]

Snow depth / soil temperature factor -0.025 [-]

Soil N transformation parameters

Gross NH, mineralisation rate (C, ) 2.00 [kg-N ha! day']
Gross NH, immobilisation rate (Cgim) 0.14 [day']
Nitrification rate (C ) 0.025 [day']
Denitrification rate 0 [day™']
Vegetation parameters

Plant growth start day 50 [julian day]
Plant growth period 253 [day]
Maximum yearly N plant uptake 70 [kg-N ha' yr']
Plant NH, uptake rate (Cum) 0.20 [day']

Plant NO, uptake rate 0 [day']

the synthetic data. In the literature, little information is
available on errors made in determining stream water
chemistry. Yet, given good mixing of stream water, small
measurement errors of 5-10% were assumed typical for NO,
concentrations. Errors in NH, concentrations are probably

somewhat higher (10-20%) as NH, concentrations in stream
water are often low and close to detection limits (e.g.
Langusch and Matzner, 2002; Whitehead et al., 2002).
Finally, mainly due to the heterogeneous nature of the soil,
measurements of soil water N concentrations (e.g.
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Fig. 1.INCA-simulated stream discharge, soil water flow and N concentrations in soil water and streamwater corresponding to the
parameters of the reference run.

Table 3. Datasets used for calibration. Synthetic ‘measurements’
were selected fortnightly between July 1991 and June 1994 (3
years). The measurement error denotes the error that was assumed
typical for real-world field measurements. See text for further
details.

Short name ~ Measurement Measurement
type error (%)
streamNO, Streamwater NO, concentration 10
streamNH, Streamwater NH, concentration 20
soilNO, Soilwater NO, concentration 50
soilNH, Soilwater NH, concentration 50
NMI Net NH, mineralisation 50
NIT Net nitrification 50
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Manderscheid and Matzner, 1995; Rothe et al., 2002) and
soil N fluxes (e.g. Laverman et al., 2000; Tietema et al.,
1993) come with large errors of 20% or more. A summary
of the measurement errors that were assumed typical for
the measurements of the different calibration datasets is
given in Table 3.

After each calibration, the distribution intervals of the rate
coefficients (95% confidence level) were computed from
the final SCEM-UA derived parameter sets in the posterior
distribution. These parameter sets were subsequently used
to compute the prediction uncertainty ranges associated with
the INCA simulated N-concentrations and fluxes.
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Results

NO, CONCENTRATIONS IN SOIL WATER (SOILNO,)
AND STREAM WATER (STREAMNO,)

Both s0iINO, and streamNO, were found to contain
sufficient information to retrieve the original rate coefficients
at a small measurement error of 0.1%. For both
optimisations, convergence was met within 2000 simulations
and the uncertainty in rate coefficient values was small
(Table 4 for streamNO,; results for soilNO, were similar to
streamNO, and are not shown). Starting at a 1%
measurement error, however, the SCEM-UA algorithm
already experienced problems converging to a stationary
posterior distribution. After 10 000 simulations,@ was
still higher than 2.0 for soilNO,. For streamNO,,
@dropped below 1.2 after 2000 simulations but
increased again to values between 1.2 and 2.0. At a 5%
measurement error, \/ﬁwas between 1.5 and 6 after
10 000 simulations with streamNO,. Extending this
optimisation run to 50,000 simulations did not improve the
optimisation, as \/§ did not drop below 2.0.

For the 1% and 5% measurement error, estimates of the
parameter distribution intervals (95% confidence level) for
streamNO; are also listed in Table 4. Similar results were
found for soilNO;, and are not shown. Note in Table 4 that
that as convergence criteria were not met for optimisations
with the 1% and 5% measurement error, actual intervals
may have been slightly wider. At a 1% measurement error,
the proposed intervals are still narrow, but at a 5%
measurement error they have become very wide. For
example, Comi varied between 0 and a maximum of 23.7.
This maximum value corresponds with a near 24 times over-
estimation of the gross NH, mineralisation. INCA runs with
the accepted rate coefficient sets showed that the sets indeed
accurately simulate NO, concentrations in stream water, but

that large uncertainties are associated with the simulations
of NH, concentrations (soil and stream) and gross NH,
mineralisation and gross NH, immobilisation fluxes (Fig.
2). Apparently, a wide variety of rate coefficient sets can
adequately simulate NO, concentrations in stream water,
while erroneously simulating N fluxes in the soil
compartment.

NH, CONCENTRATIONS IN SOIL WATER (SOILNTII,)
AND STREAM WATER (STREAMNII)

The NH, datasets showed approximate (VR ~1.4 after
10 000 simulations; streamNH,) or slow convergence
(\/§< 1.2 after 8000 simulations; soilNH,) at 0.1%
measurement error. This problematic convergence may be
due to the very strict parameter acceptance criteria associated
with such a small measurement error. Under these strict
conditions, the optimum region in the parameter space is
likely to be very small, or ‘narrow’, making it difficult to
locate.

Both streamNH, (Table 5) and soilNH, (not shown) were
successful in retrieving Comi and Cope but Cm and C , were
not effectively confined. This was due to the near perfect
correlation between C and C ; when optimising using NH,
measurements. r equalled —1.00 for both streamNH, and
soilNH,, calculated from the last 2000 SCEM-UA
simulations. This strong negative correlation indicated that
an overestimation of Cym (and a subsequent overestimation
of gross NH, immobilisation) is compensated by an
underestimation of the C , (and nitrification), thus rendering
correct estimates of the amounts of NH, removed from the
soil by these two processes. Hence, when using NH,
concentrations (either in soil or stream), it is impossible to
identify both C and C ;. Only information on the combined
effect of both parameters can be retrieved.

Table 4. Number of simulations before convergence and rate coefficient distribution intervals (95% confidence level) for optimisation
with fortnightly streamwater NO, concentrations (streamNO,). The 95% confidence levels were calculated from the last 2000 simulations.
Note that for these simulations 4/ SR > 1.2 at 1 and 5% measurement errors, and that actual intervals may have been wider.

Simulations before
VR <12 C

gmi gim Cnil Cupl
Reference 2.00 0.14 0.025 0.20
Feasible space 0-40 0-2.80 0-0.50 0-4.00
0.1% 2000 1.81 -2.23 0.12-0.16 0.0246 — 0.0254 0.18-0.22
1.0% * 1.40 —2.65 0.10-10.20 0.022 —0.030 0.15-0.29
5.0% * 1.10 - 23.7 0.75-2.75 0.023 -0.49 0.096 —3.97

* Convergence not achieved within 10 000 simulations.
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streamwaterl NO I I soil water NCI)
L 3 | 15 3

15 soil water NH

streamwater NH i ”

Gross NH4 mineralisation

Plant NH, uptake

1991 1992 1993 1994 1991 1992 1993 1994

Fig. 2. Uncertainty ranges (gray region, 95% confidence level) associated with calibration using 3-years of fortnightly streamwater NO
concentrations (streamNO ) and a 5% measurement error. Notice that for this optimization \JSR > 1.2, meaning that actual uncertainty ranges

may have been wider. The solid line denotes the reference run.

Table 5. Number of simulations before convergence and rate coefficient distribution intervals (95% confidence
level) for optimisation with fortnightly streamwater NH, concentrations (streamNH,). The 95% confidence levels
were calculated from the last 2000 simulations. Note that for these simulations ﬁ > 1.2 at 0.1 and 20%
measurement errors, and that actual intervals may have been wider.

Simulations before

v SQ <12 Cgmi Cgim Cnit Cupt
Reference 2.00 0.14 0.025 0.20
Feasible space 0-40 0-2.80 0-0.50 0-4.00
0.1% * 1.98 —2.02 0-0.165 0-0.164 0.198 — 0.202
1.0% 3000 1.82-2.21 0-0.175 0-0.172 0.186 —-0.218
5.0% 4000 1.41 -2.66 0-0.207 0-0.207 0.148 — 0.256
10% 3000 1.04 -2.94 0-0.228 0-0.230 0.118 — 0.267
20% * 1.35-3.23 0.02-0.215 0-0.214 0.120 — 0.296

* Convergence not achieved within 10,000 simulations.
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Contrary to the NO, datasets, convergence diagnostics
did not deteriorate with increasing measurement error for
soilNH, and streamNH,. At 10% measurement error,
convergence was still met after 3500 simulations and Comi
and C  were reasonably confined. Only when the
measurement error was 20% or more, VSR did not drop
below 1.2 (minimum 3.0 and 1.5 for soilNH, and streamNH,
respectively) and none of the parameter values could be
identified with acceptable precision.

Table 5 lists the rate coefficient distribution intervals found
for streamNH, (95% confidence level) for a 0.1 to 20%
measurement error. Again, similar results were found for
soilNH, and are not shown. Although C "and C could
not be confined effectively, streamNH, was found to be more
effective in confining Comi and Con than streamNO,. For
example, at 5% measurement error C, . was confined
between 1.41 and 2.66 by streamNH,, whereas streamNO,
led to Comi varying between 1.10 and 23.7. INCA runs with
the accepted rate coefficient sets showed that at a
measurement error of 20%, simulations were acceptable for
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NH, concentrations (soil and stream), gross NH,
mineralisation and NH, plant uptake (Fig. 3). The
uncertainties associated with the prediction of gross NH,
immobilisation were considerable, and very large
uncertainties accompanied the prediction of NO,
concentrations (soil and stream) and nitrification.

NET MINERALISATION (NMI) AND
NITRIFICATION(NIT) MEASUREMENTS

NMI and NIT were effective in constraining all four rate
coefficients as long as the measurement error was not more
than 5 (NIT) or 10% (NMI). At larger measurement errors,
similar problems as for the NO, datasets were encountered.
Table 6 shows the distribution intervals (95% confidence
level) after calibration with NMI and NIT, respectively, using
a 50% measurement error, a value typical for these types of
measurements. Again, note that at this measurement error
actual intervals may be wider as convergence criteria were
not met. For both datasets, intervals are very wide for Cgim,
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Fig.3. Uncertainty ranges (gray region, 95% confidence level) associated with calibration using 3-years of fortnightly streamwater NH ,
concentrations (streamNH ) and a 20% measurement error. The solid line denotes the reference run.
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Table 6. Rate coefficient distribution intervals (95% confidence level) for optimization with fortnightly
net mineralisation (NMI) and nitrification (NIT) measurements, respectively, and a 50% measurement
error. The 95% confidence levels were calculated from the last 2000 simulations. Note that for these

simulations v SR> 1.2, and that actual intervals may have been wider.

gmi gim nit Cupl
Reference 2.00 0.14 0.025 0.20
Feasable space 0-40 0-2.80 0-0.50 0-4.00
NMI 0.99 -4.95 0.09 -2.80 0.01 -0.50 0.24 -3.99
NIT 0.64 — 4.60 0.47-2.80 0.10-10.50 0.24-3.99

C, and Cope but relatively small for C,,- For NMIL, INCA
runs accompanying the intervals showed adequate
simulation of NH, plant uptake and nitrification, but poor
agreement between modelled and measured soil water NO,
concentrations and, especially, soil and stream water NH,
concentrations (results not shown). For NIT, simulations
were acceptable for NO, concentrations (soil and stream
water) and all N fluxes in the soil compartment, but very
poor for both soil and stream water NH, concentrations
(results not shown).

EXTENDING DATASETS

The results presented in the previous sections illustrate the
severity of the parameter estimation problem. When the
measurement error, specified in the density criterion in Eqn.
(9), is of the same order as that typically present in field
observations, none of the datasets utilised for model
calibration contain sufficient information to identify the four
rate coefficients with a reasonable degree of confidence.

When confronted with these problems it seems reasonable
to consider increasing the number of observations in the
calibration dataset, either by extending the period of data
collection or by increasing the measurement frequency.
Additional calibrations using stream water NO,
concentrations measured fortnightly for seven years (July
1991-June 1998) or measured daily for three years (July
1991-June 1994), showed that this strategy did not help to
tackle the current problem. The seven-years record did not
show any improvement compared to the original fortnightly
three-years streamNO, dataset. A 1% measurement error still
was the limit for correct inference of the rate coefficients.
The daily record did show some improvements compared
to streamNO,, but the maximum acceptable measurement
error still was not larger than 5%.

MULTI-OBJECTIVE OPTIMISATION

Combining different datasets may be more effective in
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reducing parameter uncertainty than extending the period
of data collection or increasing the measurement frequency.
To verify the validity of this hypothesis, the various types
of datasets were combined to yield multi-objective datasets,
which were subsequently used for parameter calibration.

Multi-objective datasets were constructed as follows. First,
to enable equal weighing of different measurement types
with different involved units, the measurements of the
original single-objective datasets were scaled to a mean of
100 by dividing by the average value of the type of
measurement (July 1991-June 1994) and multiplying by
100. Next, two or more of these scaled datasets were
combined to form a multi-objective dataset. Please note that
in optimisation runs with these multi-objective datasets,
INCA output was scaled correspondingly.

SCEM-UA optimisations with these multi-objective
datasets showed that measurements of NH, concentrations
(soil or stream) play a key role in identifying the rate
coefficients. For example, a multi-objective calibration using
soil water NO, concentrations, net NH, mineralisation and
nitrification measurements was successful only when the
measurement error was 20% or less. Adding soil water NH,
concentrations to the calibration dataset rendered successful
calibrations, even when the measurement error was set as
high as 50%. In this latter optimisation that used a
measurement error typical for measurements in the soil
compartment, all possible information on N in the soil was
combined. As such, this run set the minimum uncertainty
associated with the rate coefficient values when only
measurements conducted in the soil compartment are
available. These were 1.62-2.63, 0.10-0.21, 0.022-0.030
and 0.16-0.25 for Comi Coim Coie and Cooe respectively (95%
confidence intervals).

Finally, calibration using a combination of stream water
NO, and NH, concentrations was found to be a reasonable
alternative for using difficult, uncertain and costly soil N
measurements. At the typical measurement error of 20%,
uncertainty in rate coefficients was confined to 0.87-3.56,
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0.06-0.27, 0.021-0.027 and 0.08-0.30 for C,_, C, . C
and C, (95% confidence). INCA runs with the accepted
rate coefficient sets (Fig. 4), showed small prediction
uncertainty ranges in the simulation of NO, and NH,
concentrations (soil and stream) and nitrification, and
slightly larger uncertainty bounds for gross NH,

mineralisation and gross NH, immobilisation.

Discussion

For the ideal situation where the INCA model structure is
an exact representation of the system studied, four of the
parameters describing N transformations in the soil were
optimised using the SCEM-UA algorithm. The results
demonstrated that, given typical measurement errors in N
studies, datasets containing only one type of measurement
(single-objective calibration) contain very limited
information for the identification of the model parameters.
Only calibrations using datasets of multiple measurements
(multi-objective calibration) resulted in low parameter
uncertainty and acceptable simulations of all N
concentrations and fluxes in the soil and stream systems.

Regardless of the dataset used, parameter uncertainty for
the single-objective calibrations was high: a wide variety
of parameter sets could adequately predict the observed
measurements. This phenomenon, named equifinality by
Beven (1993), has been found in many hydrological studies
(e.g. Beven and Freer, 2001; Duan et al., 1992) and in some
soil geochemical studies (Zak et al., 1997; Zak and Beven,
1999). Recently, Schulz et al. (1999) showed that
equifinality also exists for N budget models. Contrary to
the Schulz er al. study, in which equifinality may have
resulted from uncertainty in input data (rainfall and latent
heat fluxes), measurement errors and the inability of the
model to correctly describe the system of interest (model
structural errors), the present results suggest that equifinality
may also result from measurement errors alone. As such, if
it is accepted that in nitrogen studies measurements will
always come with errors, equifinality is endemic to the type
of models used.

A closer look at the structure of the INCA model (Eqns.
1-8) provides insight into why equifinality may occur. It
was mentioned already that the near perfect negative
correlation between C, and C , when optimising using NH,
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concentrations (either in soil or stream) indicates that
erroneous gross NH, immobilisation fluxes (due to
erroneous Cgim) are compensated by (erroneous) nitrification
fluxes (erroneous C ). Similar within-model compensation,
or ‘internal budgeting’, may as well apply to other fluxes or
when using other datasets for calibration. For example, in
theory, when using NO, concentrations for calibration, a
too low net NH, mineralisation may be compensated by a
too high C , or too low Copo ensuring that the available NH,
is transformed into NO, rather than taken up by plants. Of
course, very dynamic, complex systems are being dealt with
and, thus, internal budgeting is unclear. Yet, the many runs
that provide good estimates of NO, or NH, concentrations
while overestimating soil N fluxes, at least suggest that
internal budgeting is an important mechanism causing
equifinality.

Irrespective of the exact cause for equifinality, it is evident
that none of the available measurements alone contain
sufficient information to calibrate the parameters of interest.
This does not make INCA a bad model, but does show that
INCA and alike models have a high data requirement,
making calibration difficult. The analysis showed that
increasing the measurement frequency does not necessarily
help to reduce parameter uncertainty. Seemingly, in the
virtual catchment, dynamics in stream water NO,
concentrations are almost equally well captured by
fortnightly as by daily observations, resulting in only minor
differences in information content of both datasets. As an
alternative to intensifying measurements, a more productive
way to reduce parameter uncertainty is to weigh different
measurement sets in a multi-objective framework (e.g. Vrugt
et al., 2003b).

The use of a virtual catchment, free of model and input
data errors, of course sets limits to the interpretation of the
results in a real-world context. However, analyses like those
presented in this study can serve as a useful tool preceding
the application of an environmental model or the design of
amonitoring programme (e.g. McIntyre and Wheater, 2004).
Firstly, for an already gauged catchment, with a given
amount, type and reliability of calibration data, the
methodology applied here provides insight into the
minimum uncertainty associated with a model application.
Knowing this beforehand is important as it may prevent the
modeller from an endless search for ever better parameter
combinations. For example, the multi-objective calibration
with stream water NO, and NH, concentrations set the
minimum uncertainty associated with an INCA application
to a N-saturated, forested catchment in which only stream
water N concentrations were available. Note that these
results are valid only when just the rate coefficient values
are unknown, and that input and model structural errors are
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assumed absent. As such, it is indeed a very conservative,
‘minimum’, estimate of the model and parameter
uncertainty, and actual uncertainties will be higher.

Second, when setting up a monitoring programme, the
analyses presented in this paper can help to decide what
and when to measure, especially if there is ample confidence
in the model’s capability to describe the system of interest.
In the present catchment, stream water NO, and NH,
concentrations were found almost as useful for model
calibration as difficult and costly measurements in the soil
compartment. Also, extending the period of data collection
or increasing the measurement frequency hardly reduced
parameter uncertainty. As such, three-years of fortnightly
sampling of both NO, and NH, concentrations in the stream
water may be the most cost-effective monitoring strategy
for a N-saturated, forested catchment. Again, note that these
results are only valid for the given conditions, that is when
only the rate coefficients are unknown. When more or other
parameters are uncertain, or when a catchment contains more
than one land use type, (a combination of) other
measurements or a different measurement frequency could
be more appropriate.

Conclusions

Even for the ideal situation where the INCA model structure
is an exact representation of the system studied, calibration
of'soil N parameters is difficult due to parameter equifinality.
Single-objective calibrations, using only one type of
measurement, render large uncertainty in both parameter
values and modelled N concentrations and fluxes. Increasing
the measurement frequency or extending the period of data
collection does not necessarily help to reduce this
uncertainty. Calibration using multiple sets of measurements,
however, is an effective way to deal with the equifinality
problems. With the right choice of calibration measurements,
a multi-objective calibration results in low parameter
uncertainty and proper modelling of the N cycle.

The methodology applied in this study, using a virtual
catchment that is free of model errors, can serve as a useful
tool to provide a point of reference for the minimum
uncertainty associated with a model application. In addition,
this methodology can aid the design of a N monitoring
programme. The numerical experiments indicate that for a
forested, N-saturated catchment, a fortnightly sampling of
NO, and NH, concentrations in stream water may be the
most cost-effective monitoring strategy.
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