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Abstract

A long term record of water chemistry, consisting of twenty years of weekly spot samples, from three sub-catchments draining into a loch and
the loch outflow in Galloway, S.W. Scotland have been analysed. The analysis undertaken consisted of a three component statistical trend
model. The technique allows the identification of long-term, seasonal and short-term trends, as well as differentiation between base flow and
high flow responses. The land usage in the three sub-catchments is moorland, forest and forest plus lime. The results show that, since the mid-
1980s, there has been a gradual decline in stream-water sulphate of the same order as reductions in the deposition of non-marine sulphate.
Superimposed on this trend are somewhat random but considerable perturbations to this decline, caused by sea-salt deposition. There is no
evidence of changes in surface water nitrate concentrations. The influence of different land management is evident in the sulphate, nitrate
and pH data, whilst variations in calcium concentrations are also a product of differences in hydrological routing and the impact of sea-salt

episodes.
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Introduction

The role of atmospheric inputs, both natural and pollutant,
in determining water quality in upland catchments has been
recognised since the work and reviews of Crisp (1966) and
Cryer (1976), which assessed the influence of atmospheric
inputs on surface water chemistry. In the early 1980s, upland
catchment research focussed on the concerns associated with
the impact of acid deposition on the acidification of soils
and freshwaters. This concern led to the establishment of a
range of small catchments monitored under differing
environmental conditions across Europe and N. America. A
review of many of these studies has been undertaken by
Hornung et al., (1991) and Moldan and Cerny (1994). The
data and analysis undertaken in many of these studies
showed that stream-water quality in catchments with acid
sensitive geology and overlain by base-poor acidic soils
reflects the impact of atmospheric inputs. Typically changes
in stream-water chemical characteristics such as the major
cations, anions, alkalinity and aluminium are associated with
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changes attributable to the impact of acid deposition.
Moreover, stream-water sulphate concentrations were
linearly related to atmospheric inputs of non-marine
sulphate. However, a complicating factor in assessing the
role of acid deposition at some of the sites, particularly those
in the coastal regions, has been the influence of episodic
incursions of marine sea-salts (Skartveit, 1981; Langan,
1989). These authors showed that following large
atmospheric fluxes of sea-salts to catchments, soil exchange
processes resulted in a rapid leaching of hydrogen ions from
soils with consequent acidification of surface waters during
storm events. This process occurs across a range of
catchments in western Europe, (Davies ef al., 1992)
particularly, Norway (Wright et al., 1988), Scotland
(Langan, 1989) and Ireland (Farrell, 1995). Neal et al,
(1997a,b) for determinands in which concentrations are
strongly influenced by hydrological routing, suggest a
separation of the component chemistry derived from
groundwater as distinct from soil water components provides
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a useful framework for viewing surface water chemistry.
However, the system under study is highly complex and
heterogeneous (Neal, 2004).

At the same time as evidence was accumulating on the
role acid deposition may have on water quality, there were
suggestions that soil and surface water acidification could
be exacerbated by different land management practices
(Harriman and Morrison, 1982) and, in particular, the
scavenging capacity for atmospheric pollutants of coniferous
afforestation (Fowler e al., 1989) and the uptake of soil
nutrients (Forestry Commission, 1991; Reynolds and
Edwards, 1995). Neal et al., (2001) show for a site in mid-
Wales that the major differences in water quality from
adjacent catchments under moorland and forest occurred
with the onset of clear felling which gave rise to increased
stream concentrations of nitrate and aluminium while Neal
et al. (1998a, b) considered forestry and acidification in a
regional context based on regional monitoring studies.
Helliwell et al., (2001) suggested that waters draining
forested catchments in S.W. Scotland were more acidic than
moorland catchments and that declining emissions of
sulphur had not led to a recovery in afforested streams. Neal
et al. (1998a) showed in the case of deforestation that
acidification of streams due to nitrate release was often of
second order importance due to a variety of compensating
mechanisms.

With recent reductions in European emissions of sulphur
dioxide, scientific research has centred on the degree to
which soils and surface waters may recover in the light of
declining atmospheric inputs, at least of sulphur (Ferrier et
al., 2001, 2003). The immediate effect has been increases
in Acid Neutralising Capacity, but recovery in alkalinity,
pH and Aluminium show a much smaller response. Evans
et al., (2001) document that recovery across Europe shows
a strong geographical and spatial pattern: it is the weakest
in Germany, strongest in the Czech Republic and moderate
in Scandinavia and the UK. Within Scotland, acidification
of surface waters is viewed as major pressure on the water
quality of upland areas (SEPA, 2000; Langan et al., 2001).
In a modelling study, Jenkins et al. (2003) suggest that
predictions to 2016 show, with the exception of Central
England, that other acid sensitive areas of the UK will show
a recovery of surface waters from acidification.

This paper presents analysis of a hydrochemical data set
to identify the contrasting response of three inflowing
streams to an upland loch and the outflow from the loch.
Differences in water quality are analysed according to the
differences between sub-catchment land uses and temporal
trends (yearly, seasonal and episodic) over 20 years of
record, 1981-2000.

Study area and data collection

To enhance the understanding of the effect of acid deposition
and upland land management on surface water quality, a
long-term catchment study was established at Loch Dee,
S.W. Scotland. The Loch Dee Project was established in
1979 as a joint venture between the Solway River
Purification Board (subsequently part of Scottish
Environment Protection Agency), the Forestry Commission
and the Freshwater Fisheries Laboratory, Pitlochry.

GENERAL SETTING

Loch Dee is situated in the Galloway Hills of south-west
Scotland (national grid reference NX 470 790). The
catchment consists of three distinct sub-catchments that flow
into the loch. The total catchment area to the loch outflow
is 15.6 km? and the surface area of the loch is 1 km?.
Catchment altitude ranges from 716 m to 216 m at the loch
outflow. Precipitation inputs to the catchment are of the order
0f2000-2500 mm per year. Acid inputs from the atmosphere
in the period 1986-1988 were in excess of 25 kg S ha™ yr,
whereas contemporary deposition is of the order of 9—12 kg
S ha™! yr! (DEFRA, 2001).

The three distinct sub-catchments which flow into Loch
Dee are: the Green Burn (2.5 km?), the White Laggan
(5.68 km?) and Dargall Lane (2.1 km?). Summary details of
the catchment and management practices are given in Fig.
1 and Table 1. Approximately 70% of the Green Burn sub-
catchment was planted between 1973 and 1976,
predominantly with Sitka spruce (Picea sitchenis) and
smaller areas of Lodgepole pine (Pinus contorta). The
productivity of the trees in the catchment is poor (yield class
10) compared to other forests in the Galloway region (yield
class 16). In 1975 30% of the White Laggan was planted
with Sitka spruce. This sub-catchment has also been used
in various experimental management exercises, comprising
different lime applications, to ameliorate surface water
acidification (Table 1). The Dargall Lane sub-catchment is
the control, with no change in land use (semi-natural
moorland) and limited management. The monitoring of these
three sub-catchments together with the loch outflow form
the basis of the project.

The catchment is typical of much of upland Scotland,
comprising part of a glaciated valley with steep upper slopes
leading down to a broad valley floor. The natural vegetation
of the catchment is heather moor (Calluna vulgaris) and
acid grassland (Deschampsia flexuosa). The soils of the
catchment range from rankers and peaty podzols on the
upper slopes with some peaty gleys on the lower slopes and
peat on the valley floor. The soil parent materials and the
underlying geology comprise predominantly granite
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Fig. 1. General setting and monitoring programme at Loch Dee

(Countesswells, Dalbeattie, Priestlaw Association) although
the upper parts of the catchment are underlain by
metamorphosed greywackes (Ettrick Association). Both of
these rock-soil type assemblages have been recognised as
sensitive to acidification due to their slow weathering and
release of base cations (Langan and Wilson, 1994).

THE MONITORING AND SAMPLING PROGRAMME

From early 1980, weekly spot samples have been taken at
the three feeder sub-catchments and loch outflow. In
addition, weekly bulk precipitation samples have been
collected from the catchment. These samples are returned
to the SEPA laboratories in Dumfries on the day of collection
where they are refrigerated until analysis. Samples are
analysed for all major cations and anions, following standard
analytical methods for surface waters (Lees, 1992). Other
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details of the catchment and monitoring programme can be
found in Burns ef al. (1984), Tervet and Harriman, (1988),
Langan (1989), Farley and Werritty (1989) and Grieve
(1990).

The data record and method of
analysis

DATA RECORD

Weekly samples for the period January 1981 to December
2000 have been used in the analysis of spatial and temporal
variation in the water quality. To overcome some initial
limitations of the data, particularly in the earlier part of the
record, the following assumptions and manipulation of the
data were undertaken:
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Table 1. Site Details of Loch Dee.

Catchment Description Area Affores-  Vegetation Treatment
(km?)  tation species Mar 1980
Dargall Upper part of catchment steep sided corrie 2.1 0% Sphagnum (sp.) St scallop shells at road bridge
Lane forming armchair hollow. Soils of peaty Calluna vulgaris
rankers, peaty podzols and peats. Standing Gramineae
surface water in boggy hollows. Channel is
incised into peat. Channel bed is armoured by
rocks and boulders.
White Broad upper valley, rock outcrops are common. 5.7 30% In addition to Mar 1980 5t scallop shells at
Laggan Uppermost part of catchment-moor/rough above: road bridge
pasture, lower area-forested, although incomplete Picea sitchensis ~ Oct 1980 5t scallop shells as
canopy. Planted 1975. Soils dominted by peaty Pinus contorta road bridge
podzols. Channel cut in peat and alluvium in Buffer zone: Mar 1981 58.2t limestone
lower reaches. ‘Buffer zone’ flanks major water Sorbus salix powder
course. Betula alnus Oct 1980 20.4t limestone chips
Jan 1982 19.6t
Feb 1982 20.7t
Apr 1983 56.5t limestone
powder
Green Gently sloping catchment forested in all but 2.5 70% Picea sitchensis ~ Sep 1982 PK fertiliser over
Burn highest altitudes. Planted 1973-75, canopy still Pinus contorta 3.99 km?
incomplete. Catchment drainage dominated by Green Burn and upper area of
forest drains. Soils are peaty podzol although peat White Laggan

occurs more extensively in lower catchment.
Some parts of channel in bedrock, otherwise in
peat and alluvium

t = metric tonnes

(i) In the absence of flow data for the Dargall Lane and
Green Burn sub-catchments (pre-1983) the flow
weighting of the data for these sites is based on a
regression relationship from the measured flow at the
White Laggan. These estimated flows were provided
by the local SEPA hydrologists.

(ii) Pre 1984 Nitrogen data were reported as total oxidised
nitrogen (TON): after this date they were reported as
nitrate, so it has been assumed that all of TON occurs
as nitrate.

(iii) The authors are aware of changes in the method of
analysis for sulphate between 1981-1983 and recorded
concentrations were lower than might otherwise have
been expected. Hence, this early sulphate data record
have not been included in the analysis. After 1984, ion
chromatography has been used for all analyses.
Similarly post 1998, after a change in laboratory and
method of determination, the sulphate data became
highly irregular and have been excluded from the trend

analysis. In compiling the data, it also became evident
that changes in the undertaking, determination and
reporting of alkalinity have varied through the data
record. Whilst recognising the importance of alkalinity
as a parameter in indicating acidification status, the
authors decided to exclude the data because of the
uncertainty in detecting a trend due to environmental
change as opposed to one introduced through
determination and analysis.

TREND ANALYSIS OF WATER QUALITY DATA

In terms of the available data, the determinands of greatest
interest for changing water quality in the uplands as a result
of atmospheric deposition and land-use change are calcium,
the major anions (sulphate, nitrate and chloride) and pH.
One of the principal difficulties in interpreting such
environmental data sets is separating trends from natural
variations in the data. Using additive models it is possible
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to examine the variation in water quality due to changes in
flow, seasonality and long term trends. Similar approaches
have been described elsewhere (Robson and Neal, 1996;
Hirst, 1998; Miller and Hirst, 1998). The model used here
is a time series model with three components; trend, variable
amplitude seasonality and variable slope flow. The form of
the model is:

log(determinand) = baseline + a x log(flow)
+ b x season + resid (D)

(pH is not logged)
in which baseline is an autocorrelated time series:
baseline(t)= baseline(t—1)+u

Here ¢ is time in days. The variance of the independent
Gaussian error term # determines the smoothness of the
trend.

The relationship with log(flow) is determined by the
regression coefficient a, which is allowed to vary in time in
a similar way to the trend, i.e. a(f)=a(t—1) + v, where v is
another independent Gaussian term. The ratio of the
variances of # to v is fixed at 50:1. This ensures that the
trend picks up long term changes, while the relationship

with flow is allowed to vary more quickly (in particular it
can vary within a year). log(flow) is corrected to have zero
mean so the trend can be interpreted as the log concentration
at mean flow.

The seasonality is modelled by the sine curve season, with
the amplitude b allowed to vary in time: b(¢) = b(+—1) + w,
w is independent Gaussian noise with variance equal to that
of v; resid is another independent Gaussian noise term.

The parameters are fitted by maximum likelihood using
the Kalman filter.

The trend results from the analysis can be interpreted as
the concentration that would be achieved at any time, if the
flow were at its mean value. It is therefore a ‘flow adjusted
concentration’, which removes the effect of wet and dry
periods. This has the advantage that trends at flows other
than the mean can be investigated. Because the flow
relationship varies, trends at high and low flow can be very
different. This can be seen by predicting concentrations at,
e.g. 5 and 95 percentile flow. A similar methodology can be
found in Hirst (1998) and Potts ez al. (2003).

Results

Table 2 details the inter-annual variation in bulk precipitation
collected in the catchment between 1981-1999. The salient
features of the data are the increase in the pH over the last

Table 2. Annual mean bulk precipitation concentrations based on weekly data at Loch

Dee (units ueq I!, NA- not available, * incomplete year no data August to December).

Year pH Ca S0, NO, Cl

1981 4.7 16 48 16 106
1982 NA NA NA NA NA
1983 4.9 18 65 16 207
1984 4.7 15 56 19 187
1985 4.8 13 51 15 100
1986 4.5 10 47 14 152
1987 4.6 9 41 19 66

1988 4.7 11 52 18 159
1989 4.8 9 39 14 159
1990 4.8 11 43 14 173
1991 4.7 10 42 16 144
1992 4.8 11 37 15 96

1993 4.7 9 38 19 89

1994 4.8 11 36 18 106
1995 4.9 14 37 37 121
1996 4.7 10 47 22 106
1997 5 12 31 14 123
1998 5 23 30 13 102
1999 52 19 34 13 138
2000* NA 10 35 18 101

426



Long-term variation in stream water quality for three upland catchments in SW Scotland under contrasting land management

three years of the record, the decreasing concentration of
sulphate since the late 1980s and early 1990s and the large
annual variation in chloride inputs. It is against this
background that the variation in the water chemistry of the
streams and loch outflow at Loch Dee are modelled and
examined in more detail with specific reference to the role
of land management.

Table 2 summarises water quality in terms of annual flow
weighted minimum, mean and maximum concentrations for
each site. Results of the modelling of the water quality
parameters of pH, calcium, nitrate, sulphate and chloride
are in Table 4 for each of the catchment sites and
determinands.

pH

The annual mean pH at the White Laggan (with the exception
0f 1993) is always greater than 6.0 and higher than the other
sites (Table 3a). Annual pH at the Dargall Lane has the lowest
inter-annual range, between 5.2 and 5.8 (Table 3b). Green
Burn demonstrates the largest range in pH within individual
years. pH at the loch outflow follows the same annual pattern
as the streams and is closest to that of Green Burn, although
slightly more acidic. This is shown graphically in Fig. 2
from which the damped response of the loch outflow
compared to the three inflowing streams is evident. Figure
2 also suggests some improvement in the minimum pH
associated with low flows over the latter part of the record.
From the trend analysis, Table 4 suggests the variance in
the pH data is most strongly influenced by flow. The degree
to which the percentage variance accounted for by the
change in flow across the catchments reflects differences in
the hydrolological responses of the catchments; hence, the
variance from the loch is lower as the loch level rises and
falls, damping the response at the outflow. There is little
longer term trend in the pH data and the seasonality in the
data largely reflects seasonal differences in flow. The results
from the trend analysis are presented graphically in Fig. 3
for overall trend and high and low flow component trends
of the fitted model (1). The results show significant sub-
catchment differences. With the exception of a perturbation
in 1985, there is little or no trend over time in the overall
data (Fig. 3a). The data representing high flow conditions
(Fig. 3b) suggest a separation of the sub-catchments with
White Laggan maintaining the highest pH and Dargall Lane
and Green Burn having the lowest pH pre the mid-1990s.
However after 1996, Dargall Lane indicates an increase in
pH and, from then, Green Burn shows the lowest pH. A
similar change in pH is observed in the White Laggan data.
The loch outflow is intermediary to the inflow stream
responses. During low flow conditions (Fig. 3¢), the Dargall

Dargall Lane

White Laggan

T 6
55
5
45
4
Green Burn
8
75
7 . Y I I
4. i s . " “
65 IR b1 B -.’ i Rl 1 } b : )
g B (4 | | B W 0l 4. I8
z o [l kT '11‘“\“ 1]l “I { KT ke T
ss {HHEHOIED W ' Al Iu} -y
1l l R0 " ‘ i I ot "
5 | T g .: i Py ¥ i i '
45 i 5 o
4!
Loch Dee Outflow

+ observed — fitted

Fig. 2. Observed versus modelled pH data for the three inlet streams
and loch outflow.

Lane and Loch outflow show the lowest pH, although from
1996 this suggests an increase. The White Laggan and Green
Burn data demonstrate higher low flow pH. In contrast to
Dargall Lane and the loch outflow the trend in pH with time
has been an initial increase and, latterly, a decline. This is
reflected in the trend variance data in Table 4

CALCIUM

As with pH, the concentrations of calcium are consistently
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analysis accounts for the variation in calcium concentration
due to flow. Figure 5 illustrates the trend analysis examined
for different flow regimes. The results show that calcium
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concentrations have a downward trend over the record,
particularly in Green Burn and White Laggan. This is most
marked in the overall data and during low flows (Table 4
and Fig. 5¢). Superimposed on the overall declining trend
are undulations giving rise to smaller increases in

higher in the White Laggan than in the other sub-catchments

and the loch outflow. The Dargall Lane has the lowest
calcium concentration (Table 3 and Fig. 4). The loch outflow
has similar mean concentrations but variations are larger

than those of Dargall Lane. Over the early part of the record
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Dargall Lane

White Laggan

Green Burn

Loch Dee Outflow

Fig. 4. Observed versus modelled calcium data for the three inlet
streams and loch outflow.

concentrations, the most noticeable of these occurring in
1985/86 and 1996. The same pattern occurs in all of the
trend analyses. In contrast to the low flow data, the high
flow record (Fig. 5b) shows no overall trend with time,
although during the latter part of the record the Green Burn
responds in a similar manner to the Dargall Lane. This
contrasts markedly to the earlier part of the record. During
these higher flow periods, the Loch outflow is clearly
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Overall trend

Ca
P

High flow trend

Low flow trend

‘7 Green Burn White Laggan —— Loch Dee outlet —— Dargall Lane ‘

Fig. 5. Trend analysis for calcium using: a) all data b) high flow and
¢) low flow data (for the three inlet streams and loch outflow)

dominated by the calcium input from the largest sub-
catchment, the White Laggan.

CHLORIDE

Table 3 shows the difference between the concentrations of
chloride at the four sampling points is relatively small,
particularly in comparison to the annual differences.
Concentrations of chloride in annual bulk deposition inputs
vary three fold (Table 2) whilst stream concentrations can
vary by 100% across the data record (Table 3). The data
suggest that the highest mean surface water concentrations
occurred in three periods: 1983—84, 1989-91 and 1999—
2000. In terms of maximum concentrations, the years 1984,
1986, 1989, 1991, 1999 and 2000 stand out (an additional
response at the White Laggan in 1994 is thought to coincide
with a fertiliser application, although this has not been
possible to verify). The highest concentrations occur in the
two forested catchments (Green Burn and White Laggan),
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Table 4. Summary of the trend analysis results indicating the variance (%) the
model accounts for due to: flow, season, trend and residual.

Flow Season Trend Residual
PH
Dargall Lane 33 10 11 31
White Laggan 37 11 7 29
Green Burn 58 3 2 23
Loch Dee Outlet 23 18 10 30
Ca
Dargall Lane 27 5 23 25
White Laggan 41 1 19 20
Green Burn 38 1 24 20
Loch Dee Outlet 9 4 46 20
Cl
Dargall Lane 2 25 43 19
White Laggan 4 32 45 11
Green Burn 3 31 46 12
Loch Dee Outlet 1 22 55 12
NO3
Dargall Lane 1 69 10 10
White Laggan 3 68 14 11
Green Burn 3 61 12 11
Loch Dee Outlet 1 60 13 17
S04
Dargall Lane 5 2 61 17
White Laggan 4 2 80 10
Green Burn 5 0 60 24
Loch Dee Outlet 1 4 54 9

the Green Burn having the highest mean concentration. Table
4 suggests the major variance in the data is due to seasonal
and annual trend. The time series data in Fig. 6 illustrate a
well-defined pattern with maximum concentrations
occurring during the late winter/early spring months. This
is confirmed in the variance data from the trend analysis
(Table 4) which indicates a seasonal component and trend
over the data record. The trend is dominated by the
underlying events centred on the winters of 1984, 1991 and
1999-2000. There is no discernable difference in the trend
observed in the sub-catchments or loch outflow. Analysis
for low and high flows is not illustrated as it accounts for
such a small amount of the variance (see Table 4).

NITRATE

Comparison of the annual concentration data in Table 3a
suggests that mean concentrations are low across all of the
monitoring sites although there are differences both between
sites and between years. The maximum concentrations of

nitrate occur during the years 1986, 1989 and 1996 but these
annual data yield no information of a systematic basis to
this variation. Table 4 shows that the trend in the data is
overwhelmingly dominated by the seasonal differences.
Figure 7 shows that minimum concentrations occurred
during the summer when biological uptake is maximal and
maximum concentrations occur in the winter when
biological uptake is low. The trend analysis (Fig. 7¢)
suggests there is a difference between Dargall Lane and the
loch outflow in comparison to the forested sub-catchments
(White Laggan and Green Burn). The overall trend in the
data apparently corresponds to the events noted for chloride.

SULPHATE

Table 2 shows that from the mid-1980s there has been a
gradual decline in sulphate concentration in precipitation;
similarly, from 1984, the surface waters illustrate a gradual
decline in sulphate concentration (Table 3a, Fig. 8a-d). The
unresolved issues regarding the quality of the sulphate data

431



SJ. Langan and D. Hirst

Dargall Lane

White Laggan

Dargall Lane

Date

White Laggan

0.9

Green Burn
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Green Burn

Loch Dee outflow
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Fig. 6. Observed versus modelled chloride data (a-d) and trend
analysis results (e) for the three inlet streams and loch outflow.
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Fig. 7. Observed versus modelled nitrate data (a-d) and trend
analysis results (e) for the three inlet streams and loch outflow.
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Dargall Lane at the beginning and end of the record are clear from the
loch outflow data (Fig. 8d). The trend analysis shows the
high percentage of variance in the modelled data that can
be ascribed to the overall trend of the record. Figure 8e
shows there is little difference between the sub-catchments
and loch outflow. Whilst the decline in sulphate
_ . concentrations is evident over the period 1984 to 1994, it
- - ’ becomes more rapid after 1996 as that over the period 1984—
T 2000, there is a reduction in concentration of some 50%.

White Laggan
0 _ Discussion and conclusion

The results have presented the salient features of weekly
spot samples and modelled data that together describe the
water quality at Loch Dee over a 20 year period. The data
have been presented in terms of some of the key parameters
of spatial and temporal trends between sub-catchments.
Ideally, the analysis should have included alkalinity and acid
neutralising capacity. Unfortunately, constraints on the data
made it impossible to consider these determinands.

This discussion considers the relative role of atmospheric
inputs, land management and other factors that interact to
affect the water quality at Loch Dee. On the basis of the
results presented, it is evident that both natural and pollutant
sources of ions from the atmosphere influence water quality.
There are four substantive issues concerning changes in
water quality:

Green Burn

Loch Dee outflow 1. The trend over the existing data record, resulting from
01 changes in deposition inputs
Two dominant aspects of atmospheric deposition influence
the water quality in the Loch Dee catchments. The first is
the influence of chloride and, specifically, ‘sea-salt’ laden
storm episodes; detailed descriptions of the mechanisms and
the short-term impacts of these episodes have been
documented elsewhere (Langan, 1989; Neal and Kirchner,
2000). The influence of these storms is apparent in all of
the water quality determinands considered, ranging from
calcium through to nitrate. The present analysis shows that
these episodes affect water quality for several years. To the
authors’ knowledge such longevity in the influence of the
process has not been reported previously and provides an
important insight into understanding the process and
assessment of catchment responses to atmospheric
deposition in regions subject to maritime conditions. Evans
and Monteith (2002) suggested that the incidence of such
events may be related to periods of high NAO index. A
Fig. 8. Observed versus modelled sulphate data (a-d) and trend comparison of the winter months and a more generalised
analysis results (e) for the three inlet streams and loch outflow. winter NAO index with the observed and trend data reported
here showed a broadly similar seasonal pattern when

S04
SR N -

Overall trend

S04
L - I )
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examined but the similarity was not reproduced statistically.
Secondly, the data record also shows a gradual decline in
stream water sulphate concentrations. This is concurrent
both in magnitude and timing with reductions in pollutant
sulphur deposition inputs.

2. Water quality changes associated with land-management
and the modification of atmospheric inputs

It is widely recognised that coniferous trees have a greater
ability to capture atmospheric borne aerosols than short or
low lying vegetation such as Calluna moorland. For both of
the atmospherically derived ions considered, chloride and
sulphate, it is interesting to note the highest peak
concentrations occur in the forested streams. Similarly both
the annual mean data and the time series data for sulphate
suggest that there are significant differences between the
sub-catchment responses. The decline is greatest in the
Dargall Lane and least in the Green Burn. This may be
attributed to the greater efficiency of trees in the Green Burn
sub-catchment (70% forest cover) in capturing atmospheric
pollutants. Nitrate concentrations in the stream-water are
also influenced strongly by the land uses in the sub-
catchment. This is illustrated by the very strong seasonal
variation in concentration; negligible during the summer
growing season (when there is a high biological demand)
but which rise during the winter months when the vegetation
is dormant and nitrate is flushed from the catchment soils.

3. Land management practices

The influence of land management, through the experimental
liming programme, on the sub-catchment water quality is
less clear. It could also be argued that the liming programme
(Table 1) has led to the higher calcium concentrations of
the White Laggan in comparison to the others. This is
probably best observed in the early part of the data.
Unfortunately the paucity of data, prior to the liming
programme, precludes the analysis of the extent to which
this factor may be contributing. However, it is likely that
some of this difference is due to geological control. This
could be in the form of an outcrop of base rich material in
the greywacke/shale lithology in the upper part of the
catchment. This point is emphasised by the similarity in the
low flow pH record of White Laggan and Green Burn during
the middle of the data record (1989-1995).

4. Catchment hydrology

Further differences in the variability of the water quality
between the sub-catchments exist as a result of hydrological
differences. Both calcium and pH are highly (negatively)
correlated with flow. During low flows, higher calcium and
pH water from buffered, longer resident shallow

434

groundwaters feed the streams; during higher flows, an
increasing proportion of the water in the stream is derived
from the more acid, calcium-poor upper soil horizons. The
comparison of the variability in these quantities indicates
that ,over the period of the data record, hydrological controls
are important. The soils and topography of the Dargall Lane
give rise to a damped hydrological response in which waters
from the various soil horizons are well mixed and,
consequently, the chemical variation with time is limited.
Conversely in the Green Burn and White Laggan where
forestry plough furrows permit the rapid transit of storm
runoff, the difference between storm and base flow
chemistry is more marked. For the loch outflow, the loch
itself provides a large buffer, so that the chemical response
of the outflow is damped in relation to concentrations that
are hydrologically dependent.

The Loch Dee data provide a long record of the
hydrochemistry of upland catchments with different land-
uses. The value of these records is their longevity and
continuous nature. The interpretation of these data has been
aided by the use of a simple generalised additive model that
has identified the time-scales of trends and differences
between sub-catchment responses. The analysis has
identified the differing contributions of atmospheric
deposition inputs (both natural and anthropogenic) and land
use influences on the water quality. Of particular note is the
substantial role of sea-salts in modifying longer term trends
brought about by changing atmospheric pollutant inputs.
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