N
N

N

HAL

open science

Dynamical properties of the spatial distribution of snow
T. Skaugen, S. Beldring, H.-C. Udnees

» To cite this version:

T. Skaugen, S. Beldring, H.-C. Udnes. Dynamical properties of the spatial distribution of snow.
Hydrology and Earth System Sciences Discussions, 2003, 7 (5), pp.744-753. hal-00304926

HAL Id: hal-00304926
https://hal.science/hal-00304926
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00304926
https://hal.archives-ouvertes.fr

Hydrology and Earth System Sciences, 7(5), 744-753 (2003)

© EGU A Hydrology & Earth

System Sciences

Dynamical properties of the spatial distribution of snow

Thomas Skaugen'?, Stein Beldring' and Hans-Christian Udnees!

"Norwegian Water Resources and Energy Directorate, P.O. Box 5091, Maj., 0301 Oslo, Norway

*Department of Geophysics, University of Oslo, Norway

Email for corresponding author: ths@nve.no

Abstract

A simulation exercise has been performed to study the temporal development of snow covered area and the spatial distribution of snow-water
equivalent (SWE). Special consideration has been paid to how the properties of the spatial statistical distribution of SWE change as a
response to accumulation and ablation events. A distributed rainfall-runoff model at resolution 1 x 1 km? has been run with time series of
precipitation and temperature fields of the same spatial resolution derived from the atmospheric model HIRLAM. The precipitation fields are
disaggregated and the temperature fields are interpolated. Time series of the spatial distribution of snow-water equivalent and snow-covered
area for three seasons for a catchment in Norway is generated. The catchment is of size 3085 km? and two rectangular sub-areas of 484 km?
are located within the larger catchment. The results show that the shape of the spatial distribution of SWE for all three areas changes during
winter. The distribution is very skewed at the start of the accumulation season but then the skew decreases and, as the ablation season sets in,
the spatial distribution again becomes more skewed with a maximum near the end of the ablation season. For one of the sub-areas, a consistently
more skewed distribution of SWE is found, related to higher variability in precipitation. This indicates that observed differences in the spatial
distribution of snow between alpine and forested areas can result from differences in the spatial variability of precipitation. The results
obtained from the simulation exercise are consistent with modelling the spatial distribution of SWE as summations of a gamma distributed

variable.
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Introduction

A major cause of flooding in Norway is the combination of
intense snowmelt and precipitation. To forecast these events,
reliable forecasts of precipitation and temperature are
needed and a good estimate of the snow reservoir and its
coverage in the catchment at the time of the forecast. The
Swedish HBV model (Bergstrom, 1995; Salthun, 1996) is
used operationally for flood forecasting at the Norwegian
water Resources and Energy Directorate (NVE) and has been
supplemented with a snow routine developed for use in
Norway which accounts for the development of the snow
reservoir and the snow coverage at different altitude levels
(Killingtveit and Seelthun, 1995). The snow routine assumes
that snowfall events are log-normally distributed in space,
with a fixed coefficient of variation and perfectly correlated
in space. These assumptions imply that the maximum of a
new snowfall event will appear, at all times, in exactly the
same location as the maximum snowfall from previous
snowfall events. Also, the distribution of accumulated snow
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will have a fixed coefficient of skew and not comply with
the principles of the central limit theorem (Feller, 1971,
p. 258), which would suggest an increasingly less skewed
distribution after accumulations. The ablation process is
modelled as uniform over the snow-covered fraction of the
catchment.

The shape of the distribution of SWE is important when
the snow-covered area (SCA) starts to play a role in the
ablation process. When only a fraction of the catchment
produces melt water, is the possibility of predicting errors
in runoff caused by wrongly estimated SCA increased? The
shape of the distribution is central to how the amount of
melted snow translates into changes in SCA. If the frequency
of small values is small, as would be the case for a normal
distribution, the response in SCA to a melting event is small.
If, on the other hand, the frequency of small values is high,
then significant changes in SCA in response to a melting
event can be expected.

From studies of the spatial distribution of daily



precipitation, a positively skewed distribution has been
favoured. The exponential distribution has been a popular
choice (Gao and Sorooshian, 1994; Skaugen, 2002), and
other studies have indicated that a gamma distribution is
suitable (Onof et al., 1998; Mackay et al., 2001). However,
studies of the spatial distribution of accumulated SWE in
forested areas, often measured at the peak of the
accumulation period, show that a normal distribution is often
a good model (Marchand and Killingtveit, 1999, 2002;
Alfnes et al., 2004). In alpine areas, however, more skewed
distributions are found (Marchand and Killingtveit, 2002;
Alfnes et al., 2004). Thus, based on the very limited
information to hand, an accumulation—ablation model for
snow should take into account that single events are
positively skewed, whereas accumulated events tend
towards a less skewed and even a normal distribution,
indicating a process in accordance with the principles of
the central limit theorem.

As data on the temporal development of the spatial
distribution of SWE is rare and expensive to obtain, a
simulation exercise produced time series of spatial
distribution of snow for a catchment over three winter
seasons. A distributed rainfall-runoff model of resolution
1 x 1 km? the Gridded Water Balance model (GWB)
(Beldring et al., 2003), which is based largely on the Swedish
HBYV model, computes the water balance elements for
Norwegian conditions with precipitation and temperature
as input data. To produce input for the GWB model of
appropriate spatial resolution, time series of precipitation
and temperature fields generated by the High Resolution
Limited Area Model (HIRLAM) have been disaggregated
and interpolated respectively. The intention of this study is
to produce realistic, spatial fields of snow as time series.
Although none of the models used here to produce the spatial
fields of SWE is a true representation of the processes, it is,
however, assumed that by using a distributed approach,
important features of the dynamical properties of the spatial
snow distribution are captured.

Methodology

Different models were used to produce the time series of
the spatial distribution of SWE. Obviously, each of the
models represents only an approximation to the true process
in question. However, as the purpose of this exercise is to
study the temporal behaviour of the spatial distribution of
SWE, it is assumed that even systematic errors in the models
will not disguise the overall features of the dynamical
evolution of the snow reservoir. A distributed approach to
the estimation of the snow reservoir implies that, in principle,
the accumulation and ablation properties of snow at points,
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are estimated and the collection of points analysed. It is
assumed that this procedure limits the effects of the errors
associated with the individual models.

THE GRIDDED WATER BALANCE MODEL

A spatially distributed version of the HBV-model
(Bergstrom, 1995) was used. The model carries out water
balance calculations for 1 km? grid cell elements which are
characterised by their altitude and land use. Each grid cell
may be divided into two land use zones with different
vegetation: a lake area and a glacier area. The model has
components for accumulation, subgrid scale distribution and
ablation of snow, interception storage, subgrid scale
distribution of soil moisture storage, evapotranspiration,
groundwater storage and runoff response, lake runoff
response and glacier mass balance, and it considers the
effects of seasonally varying vegetation characteristics on
potential evapotranspiration. The algorithms of the model
were described by Szlthun (1996).

The model was run with daily precipitation and air
temperature data, using a globally applicable set of model
parameters determined by Beldring ez a/l. (2003). The model
was calibrated using available information about climate
and hydrological processes from gauged catchments in
different parts of Norway; parameter values were transferred
to other catchments based on a classification of landscape
characteristics. The calibration procedure rests on the
hypothesis that model elements having common vegetation
characteristics, plus land use, pedological, topological and
geological conditions controlling their hydrological process
dynamics, should be assigned the same parameter values. A
multi-criteria calibration strategy was applied, where the
residuals between model simulated and observed monthly
runoff from 141 catchments located in areas with different
runoff regimes and landscape characteristics were
considered simultaneously. SWE is computed when
temperature is lower than a pre-set threshold value. Snow
melt is computed according to a degree-day method, where
the melted amount is a function of a degree-day factor and
the difference between actual temperature and a pre-set
temperature threshold (Selthun, 1996).The model’s
capability of simulating the water balance elements
(including SWE) is documented in Beldring et al. (2003).
Simulated time series of SWE were in good agreement with
observed values at a snowpillow located in south central
Norway (Vauldalen, 820 m.a.s.l.)

DISAGGREGATION OF PRECIPITATION

Meteorological and hydrological processes are currently
described on different spatial scales. Meteorological
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operational atmospheric models such as the HIRLAM use
grid sizes of 11 x 11 km? and 50 x 50 km? whereas
hydrological distributed models, such as the GWB, use
1 x 1 km? The problem represented by this discrepancy in
spatial scale was addressed in Skaugen (2002), where the
spatial rainfall fields are simulated according to a mixture
of exponential distributions. This methodology is applied
in this study to provide continuous precipitation fields of
spatial resolution 1 x 1 km?. From a rainfall field consisting
of grid cells of 11 x 11 km?, precipitation values for pixels
of resolution 1 x 1 km? were estimated. From the nodal
values of a grid cell, the mean and the standard deviation
are estimated and decisions made on whether or not the grid
cell is completely covered with precipitation. If the standard
deviation is smaller than the mean, this implies a shifted
exponential distribution, with a location parameter
(minimum value) denoted b. If the standard deviation is
larger than the mean, it implies that the grid cell is only
partially covered with precipitation and the spatial fraction,
p, of the grid cell with precipitation is estimated according
to Skaugen (2002) as p=2/((var(z) / E(z)?) + 1), where var(z)
and E(z) are the unconditional variance and mean (including
zeros) of the grid cell. The disaggregation procedure is
carried out according to the following points:

(1) Let each grid cell be subdivided into 121 pixels. For
the 121 pixels in each grid cell, each pixel is assigned a
value interpolated from the nodal precipitation values
(the four corner values) of the grid cell. This procedure
is repeated for the N grid cells. Each pixel in the field is
assigned a rank (1 to N*121), according to its
interpolated value.

(2) For each grid cell, the spatial mean and the spatial
variance of the grid cell are estimated from the nodal
values of the grid cell.

(3) For each grid cell, the spatial mean and variance is
calculated and intermittency, p, is estimated by p= 2/
((var(z)/ E(z)*) + 1), where z is precipitation. Depending
on whether p is higher or less or equal to 1, it is decided
if the grid cell is (i) completely covered with a minimum
intensity b, and exponentially distributed precipitation,
f(z; A4, b), (p > 1), where A is the parameter of the
exponential distribution and b is a location parameter,
or (ii) intermittent with fractional coverage p and
positive precipitation is exponentially distributed, f'(z;
A, b), (p <1).

(4) In case of full coverage, 121 values are simulated from
f(z; 4, b), and in the case of intermittency, p/21 values
are simulated from f'(z; 1).

(5) Points (2) to (4) are repeated for every grid cell 1,.., N

6) The N*121 simulated values are then ordered and the
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ranked pixels from (1) are assigned the simulated value of
equal order. In case of intermittency, the (/-p)/27 lowest
ranked pixels from each grid cell are assigned the value
zero.

Figure 1 shows an example of the initial HIRLAM field
of grid cells (Fig. 1a), and the disaggregated field (Fig. 1b).
The disaggregation procedure respects intermittency, the
mean and the spatial correlation structure of the original
HIRLAM field, whereas the spatial variance is somewhat
higher for the disaggregated field (Skaugen, 2002). The
global pixel ranking may provide rather smooth fields. Other
downscaling methods that condition downscaled values on
observed spatial patterns may resolve local variability better
(Salathe Jr, 2003; Mackay et al., 2001). These methods,
however, need observed spatial patterns observed at a
reasonable spatial resolution, which is not to hand for this
study.

INTERPOLATION OF TEMPERATURE

Daily temperature values for the model grid cells were
determined by inverse distance interpolation of data from
the two closest HIRLAM grid cells. Differences caused by
elevation were corrected by fixed temperature lapse rates
equal to —0.47 and —0.62 °C per 100 metres for days with
and without precipitation, respectively.

Results and discussion

Time series of daily values of precipitation and temperature,
disaggregated and interpolated to 1 x 1 km?, were estimated
from the output of the HIRLAM model for the Gaula
catchment for the period Ist October 1999—1st September
2002. Figure 2 shows the location of the Gaula catchment
(3085 km?) with the topography and the location of the sub-
areas, each with size 484 km?. The mean altitude of the Gaula
catchment is 729 m.a.s.l whereas the northern sub-area has
amean altitude of 585 m.a.s.l and the southern sub-area has
a mean altitude of 858 m.a.s.l. Daily values of SWE are
calculated for the time period for each grid cell.

Figure 3 shows the cumulative distribution function for
SWE (not including zeros) for the three catchments for the
start of the accumulation season, the peak of the
accumulation season and at the end of the ablation season.
Table 1 shows the spatial mean, spatial standard deviation,
coefficient of variation (CV) and the coefficient of skew
for the same periods of the season. For the Gaula and
southern sub-area, the distributions are relatively skewed
in the beginning of the season. The skew has decreased at
the peak of accumulation and increases significantly at the
end of the ablation season. For the northern sub-area, it
appears that the skew has increased steadily throughout the
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Fig. 1. Hirlam field (a) and disaggregated field (b) of the 6th August 2000. + marks locations of precipitation gauges. The unit is mm day™".

season.

Note that the northern sub-area, being situated in the lower
region of the Gaula catchment, only received about 60% of
the amount of snow compared to the southern sub-area at
the peak of the accumulation season.

A similar pattern of temporal variability in the statistical
parameters CV and skew can be observed in Fig. 4, where
the CV, skew and SCA for the three areas are plotted as
time series. The coefficient of variation and the skew are

obviously correlated; high fluctuations occur at the
beginning of the season, then decrease during the
accumulation season, before increasing as the melting season
sets in. This development is in accordance with the principle
of the central limit theorem (Feller, 1971, p.258) which
would give a decrease in skew during accumulations, then
the ablation process acts as a reverse providing an
increasingly more skewed distribution.

An interesting feature of Fig. 4 is that the coefficient of
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Fig. 2. The topography of the Gaula catchment (m.a.s.l. in metres) with the two sub-areas (coordinate system UTM zone 32). Norway and
location of the Gaula catchment (small square) is seen in the upper right corner.

Table 1. Statistical parameters for the spatial distribution of SWE for the start of the accumulation
season (8" October 1999) peak of the accumulation season (14" April 2000) and end of the ablation

season (18" August 2000)

Catchment Date 8th October 14th April 18th August
Gaula Mean (mm) 3.5 579.5 97.3
Std.dev. (mm) 4.7 369.9 173.9
(Y 1.34 0.63 1.78
Skew 1.12 0.88 1.55
Northern Sub-area Mean (mm) 1.3 383.6 3.22
Std.dev. (mm) 1.5 114.5 3.2
(Y 1.15 0.30 0.99
Skew 1.13 0.49 1.09
Southern Sub-area Mean (mm) 5.5 661.8 55.25
Std.dev. (mm) 4.7 3155 102.1
(Y 0.85 0.48 1.85
Skew 0.76 0.93 1.45

skew is consistently much higher for the southern sub-area
than for the northern sub-area. It is commonly observed that
the distribution of snow courses in alpine areas (above the
timber line) tend to be more skewed than those in forested
areas (Alfnes et al., 2004; Marchand and Killingtveit, 2002).
There have been many attempts to link the spatial
distribution of SWE to physical parameters such as
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elevation, slope, aspect, net solar radiation and the type and
density of vegetation cover (Erxleben et al., 2002; Elder et
al., 1989). However, large portions of the observed
variability in the snow depth remain unexplained.
Redistribution due to wind has also been a popular
descriptor, but more difficult to verify, although at
sufficiently small spatial scales, redistribution caused by
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Fig. 3. Cumulative distribution functions of the spatial distribution of SWE for the Gaula catchment (left column), northern sub-area (middle
column) and southern sub-area (right column) for the start of the accumulation season (top row), peak of accumulation season (middle row)
and end of the ablation season (bottom row).

wind is certainly an issue. These unsuccessful attempts to of SWE, at least in the accumulation season, stem from the
link distribution of SWE to physical parameters may be effects of accumulating disaggregated precipitation fields.
explained by a mismatch in spatial scales between predictor From Fig. 5, which shows the temporal development of

and descriptors which, as pointed out by Bloschl (1999), the spatial mean and the spatial standard deviation for the
may seriously affect predictions. This important point is three catchments, it can be observed that for similar values
valid when there is a mismatch in process scales, but will of'the spatial mean for the three areas, the spatial variability
also play a role when the spacing and extent of observations is considerably less for the northern sub-area, thus having
do not capture the variability of the processes involved. In the smallest CV during the accumulation season. The daily
this study, features of the spatial distribution of SWE were spatial (log) variability of precipitation from the grid cells
not explicitly linked to such physical parameters as described (3 x 3) covering the each of the two sub-areas are sorted
above, and all features observed of the spatial distribution and plotted, as shown in Fig. 6. Observe that the spatial
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Fig. 4. Time series of the CV and Skew for the spatial distributions of SWE and SCA, for the Gaula catchment (solid line), northern sub area
(dotted line) and southern sub area (dashed line). The label “Time” refers to week numbers starting from the beginning of the first
accumulation season.
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Fig. 5. Time series of the mean and standard deviation for the spatial distributions of SWE, for the Gaula catchment (solid line), northern sub-

area (dotted line) and southern sub-area (dashed line). The label “Time " refers to week numbers starting from the beginning of the first
accumulation season.
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Fig. 6. Spatial daily (log) variability for the northern and southern sub-areas. Daily spatial variability
is calculated for 3 X 3 grid cells covering the respective sub-areas and sorted.

variability of daily events for the high altitude sub-area is
consistently higher than for the low altitude sub-area, thus
explaining the increased CV for the high altitude sub area.
Figure 5 further shows that the coefficient of skew and the
CV appear to be correlated. Several popular choices for the
distribution of SWE, like the lognormal and gamma
distribution (Selthun and Killingtveit, 1995; Skaugen, 1999;
Skaugen et al., 2004), have theoretical expressions of the
coefficient of skew being an unambiguous function of the
CV. It thus appears that the skewed spatial distribution of
SWE found in alpine areas can be explained partly by the
increased spatial variability of precipitation in such areas.
Only in a very few cases can the distribution of
accumulated events be described analytically. Spatial
independence and independence between events are typical
constraints. Also, seen from a spatial point of view, the
events should be identically distributed. Both the normal
and the gamma distribution have analytical expressions for
the distribution of the accumulations. Analytically, these
models break down for precipitation fields of varying spatial
distributions which are correlated in space and time. Despite
these theoretical problems, Skaugen et al., (2004) proposed
a statistical model that takes account of the dynamic
behaviour of the spatial distribution of SWE. In Skaugen
(1999), the distribution of accumulated snow was modelled
as a summation of independent, identically distributed
gamma variables. This modelling framework allows
positively skewed gamma distributed single events, whereas
the distribution of the accumulated events will also be

gamma distributed but with parameters determined by the
original gamma distribution and the number of
accumulations. The distribution of the accumulated events
will converge to a normal with a rate depending on the
parameters of the gamma distribution and the number of
accumulations. This approach was carried further in
Skaugen ef al., (2004), where a gamma distributed unit SWE
was introduced. An event of accumulation or ablation, which
may comprise a number of units will, under an assumption
of'independence, also be gamma distributed. This modelling
framework was implemented within the HBV model, and a
routine for modelling the temporal development of the snow-
covered area was developed, linking the change in SCA as
a response to an accumulation or ablation event directly to
the parameters of the spatial distribution of SWE. The main
features of the accumulation-ablation model of Skaugen et
al., (2004) are described as follows: Let y be a SWE
equivalent and a gamma distributed random variable with
probability density function (PDF):

1 v V—. —
fa,v(y):ﬁa ye?

where « is the scale parameter and v is the shape parameter.
The mean equals E(y) = v/ and the variance equals Var(y)
= v /o’ If the variable y, is approximated to be an
independent and identically distributed gamma variable in
time and space, then z/(x) =y, +y, + .. +y, is distributed as
a gamma variable with parameters « and nv (Feller, 1971,
p.47). The parameters « and v are catchment-specific
parameters determined by the local climate, whereas the

a,v,y>0 )
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parameter n represents the accumulated number of SWE
equivalents in the snow reservoir at a certain time of interest.
Thus, the spatial distribution of accumulated SWE, z, at a
given time has mean and variance equal to:

E@)=nv/a )
and
Var(z)=nv/a? 3)

When implemented in the HBV model, y is allowed to
fluctuate around its mean for each accumulation or ablation
event, so that y = u v/, where u is gamma distributed with
mean, E(u) =1 and Var(ux) = 1/v. When running the model,
u and n are monitored and » updated as N, = N, + U, for
an accumulation event and N, =N, —U,, for a melting
event.

The coefficient of variation CV and the skew, y; are found
to be dynamical parameters in that they are functions of the
parameter n:

CV =1//nv 4)

and the skew is:

y=21-/nv (5)

or, when nv is substituted by E(Z)r (see Eqn. (2)):

y =21 [(E@a ©

It is clear from Eqns. (4), (5) and (6) that the value of the
CV and ) should decrease during the accumulation season
when n grows, and increase in the ablation season when »
decreases, in a manner similar to that demonstrated by the
simulation exercise. Figure 7 compares simulated values of
skew with theoretical values according to Eqn. (6) for the
two sub-areas. The values of « used in Eqn. (6) for the two
sub-areas are estimated roughly to obtain a reasonable fit.
A more accurate estimation of o cannot be made as data for
this area are insufficient. Although the skew appears to be
highly overestimated by Eqn. (6) for the start and end of the
accumulation seasons, Fig. 7 shows that the model does
capture the dynamical behaviour of the skew parameter. This
is important in order to generate snow-free areas properly
in response to melt events and, further, to provide realistic
dynamics for the spring flood in hydrological models.

The procedure of modelling the spatial distribution of
SWE as a summation of a gamma-distributed variable is
approximate in that the assumption of independence in time
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Fig. 7. Temporal development of the skew parameter for simulated
SWE (solid line) and by Eqn. (6) (dashed line). Southern sub- area
left, and northern sub-area right. Days with less than 6 mm SWE
(northern sub-area) and 40 mm SWE (southern sub-area) are
excluded from the plot.

and space may be compromised to an unknown degree.
Regarding the spatial independence, several authors (Elder
et al., 1989, Faanes and Kolberg, 1996; Gottschalk and
Jutman, 1979) report low autocorrelation for a range of
distances. The studies of the latter two references were
carried out for Norwegian and Swedish data respectively
and are thus representative for the present study. Studies
attempting to link snow depth to terrain features have often
showed very weak correlations (Elder ef al., 1989; Faanes
and Kolberg, 1996; Erxleben et al., 2002), so that an
assumption of independence in space can be justified. To
investigate possible temporal dependencies, Skaugen et al.,
(2004) reports on data from a snowpillow, Vauldalen (820
m.a.s.l.) located in the central southern Norway, which was
tested for autocorrelation. Of the 16 sequences with more
than 13 days with snowfall, only 5 had significant
autocorrelation for lag 1 day; none of the sequences showed
significant autocorrelation for longer time lags. An
assumption of temporal independence can thus be justified.



Conclusions

Time series of the spatial distribution of SWE have been
constructed for three areas at different mean altitudes. All
three areas display the same dynamic behaviour in the
parameters of the distribution of SWE in that the skew
decreases during accumulation season and increases during
the ablation season.

The simulation exercise shows that the spatial variability
of precipitation could explain a more skewed spatial
distribution of SWE in mountainous areas. This may prove
important for modelling snow in rainfall-runoff models in
that model parameters can be determined from an analysis
of the spatial variability of precipitation and not from the
calibration process of the rainfall-runoff model. This is a
point of departure for further study.

Modelling the spatial distribution of SWE as sums of
gamma distributed variables takes into account the dynamic
properties of the spatial distribution of SWE in that it allows
for a dynamic change in the shape of the distribution in
accordance with the simulation exercise, observations and
the principles of the central limit theorem.
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