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Abstract

Fundamental to the spatial sampling design of a groundwater quality monitoring network is the spatial structure of groundwater quality

variables. The entropy theory presents an alternative approach to describe this variability. A case study is presented which used groundwater

quality observations (13 years; 1987-2000) from groundwater domestic wells in the Gaza Strip, Palestine. The analyses of the spatial structure
used the following variables: Electrical Conductivity (EC), Total Dissolved Solids (TDS), Calcium (Ca), Magnesium (Mg), Sodium (Na),
Potassium (K), Chloride (Cl), Nitrate (NO,), Sulphate (SO,), alkalinity and hardness. For all these variables the spatial structure is described
by means of Transinformation as a function of distance between wells (Transinformation Model) and correlation also as a function of distance
(Correlation Model). The parameters of the Transinformation Model analysed were: (1) the initial value of the Transinformation; (2) the rate

of information decay; (3) the minimum constant value; and (4) the distance at which the Transinformation Model reaches its minimum value.
Exponential decay curves were fitted to both models. The Transinformation Model was found to be superior to the Correlation Model in
representing the spatial variability (structure). The parameters of the Transinformation Model were different for some variables and similar
for others. That leads to a reduction of the variables to be monitored and consequently reduces the cost of monitoring.
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Introduction

Prior to the design of groundwater quality monitoring
networks, it is essential to investigate the spatial structure
of the groundwater quality variables to be monitored.
Generally, the objective of monitoring introduces these
variables. For example, greater monitoring effort is required
for groundwater to be used for domestic (municipal)
purposes than for agricultural use. Several variables, such
as EC, TDS, Cl, NOL bacteria, alkalinity, hardness, ph, etc.,
are usually measured in the groundwater used for municipal
purposes. The aim of characterising the spatial structure of
these variables is not only to assess their monitoring, which
is needed to assess the cost of monitoring, but also to give a
clear picture about their spatial variability (structure). The
spatial structure of the groundwater quality variables can
produce, for example, contour maps of the variable means.
These maps can be used for predicting and signifying
pollution areas. Accordingly, protection measures and

management and planning decisions can be made to
minimise the deterioration in the polluted areas.
Groundwater quality variables can often be characterised
by a known distribution in space, called the spatial
distribution function; examples are: EC, TDS, Cl, NO,,
groundwater level, rainfall, etc. The spatial distribution
function is known in the literature as the semivariogram
(e.g. Journel and Huijbregts, 1978; Olea, 1999) which
contains the structural information on the variable. In
applications of the Kriging technique, the spatial correlation
structure (experimental semivariogram or covariance) of the
variable is determined from real data (measurements).
Consequently, to complete the estimation approach using
the Kriging technique, analytical curves, such as linear,
spherical, exponential, Gaussian and cubic curves, are fitted
to the experimental semivariogram (e.g. Marsily, 1986;
Cressie, 1990). Kriging techniques are employed to assess
the spatial dependencies of the water quality variables such
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as TDS (e.g. Jager et al., 1990), groundwater level (e.g.
Hudak and Loaiciga, 1993; Geo et al., 1996; Ahmed, 2002)
and groundwater quality variables such as NO, and ClI (e.g.,
Rouhani and Hall, 1988; Loaiciga, 1989).

Application of the entropy theory in spatial structure
analysis can be comparable to semivariogram analysis.
Entropy theory has four types of entropy (also referred to
as coefficients): marginal entropy, conditional entropy, joint
entropy and Transinformation (e.g., Kapur and Kesavan,
1992; Lubbe, 1996). Transinformation was used to measure
the dependency between different water quality variables
(Wu and Zidek, 1992; Harmancioglu ef al., 1999), rainfall
values measured at different points (e.g. Sounga, 1976;
Husain, 1989; Krastanovic and Singh, 1992), groundwater
level (e.g. Bueso ef al., 1998) and Cl (e.g. Mogheir and
Singh, 2002a).

Mogheir and Singh (2002a) characterised the spatial
structure of a groundwater quality variable by means of
Transinformation as a function of distance (T Model) and
joint entropy as a function of distance. In this article, the
main objective is to investigate the ability of the T Model to
characterise the spatial structure of different groundwater
quality variables that are being monitored by the municipal
monitoring wells in the Gaza Strip, Palestine. These
variables are: Electrical Conductivity (EC), Total Dissolved
Solids (TDS), Calcium (Ca), Magnesium (Mg), Sodium
(Na), Potassium (K), Chloride (CI), Nitrate (NO,), Sulphate
(S0,), alkalinity and hardness. Electrical Conductivity (EC)
is defined as the ability of a substance to conduct an electric
current. In this respect, salt does not conduct when it is solid
but becomes a conductor when it is dissolved in water.
Therefore, EC is used to estimate the amount of total
dissolved salts (TDS), or the total amount of dissolved ions
in the water. Alkalinity is a measure of the concentration of
carbonate, bicarbonate, and hydroxide, and contributes to
the total hardness. Alkalinity is also defined as the ability to
neutralise acids. The alkalinity is the total concentration of
calcium carbonate (CaCO,). Hardness is a measure of the
concentration of calcium and magnesium salts in water.
Hardness reacts chemically with soap and the higher the
hardness the more soap is required to form lather. The
alkalinity and hardness of groundwater supply generally
depend on the soil or rocks from which the water is derived.
High alkalinity and hardness in groundwater are derived
from chalk and limestone in the aquifer. The units of EC are
microSiemens per centimetre, uS cm™', while the units of
the rest of groundwater quality variables are milligram per
litre, mg 1" (William, 1997).

The Transinformation Model (T Model) (e.g.
Harmancioglu et al., 1999; Mogheir and Singh, 2002a) of
each of the previously mentioned variables will be
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determined and will be compared with correlation as a
function of distance between wells (Correlation Model, C
Model) (e.g. Mogheir et al. 2004a, b). The T and C Models
for all groundwater quality variables will be represented by
the exponential decay curves. The T Model contains four
parameters: (1) the initial value of Transinformation T ; (2)
the Transinformation decay rate (k); (3) the minimum
Transinformation value T __ ; (4) the distance at which the
Transinformation Model approaches a constant minimum
value (L). Using these parameters. the spatial variability of
the groundwater quality variables will be assessed.

Groundwater in the Gaza Strip
GROUNDWATER QUANTITY

The Gaza Strip, located in the southern corner of Palestine,
is divided into five Governorates: Northern, Gaza, Middle,
Khanyunes and Rafah (Fig. 1). Each Governorate has its
own municipal wells. The water resources in the Gaza Strip
are essentially limited to the part of the groundwater in the
coastal aquifer that underlies its 360 km? area. This coastal
aquifer is the only aquifer in the Gaza Strip and is composed
of Pleistocene marine sand and sandstone, intercalated with
clay layers. The maximum thickness of different bearing
horizons occurs in the northwest along the coast (150 m)
and decreases gradually towards the east and south-east
along the eastern border of the Gaza Strip to less that 10 m
(Fig. 2). Near the coast, coastal clays extend about 2—5 km
inland, and divide the aquifer sequence into three or four
subaquifers, depending upon the location (referred to as
subaquifers A, B1, B2, and C — Fig. 2). The base of the
coastal aquifer is formed of impervious clay shale rocks of
Neogene age (Saqiyah formation) with total thickness
ranging between 500 to 1000 m. The depth to groundwater
level of the coastal aquifer varies between a few metres in
the low land area along the shoreline and about 70 m along
the eastern border. The coastal aquifer holds approximately
5 x 10°m’ of groundwater of varying quality. However, only
1.4 x 10°m? of this is ‘freshwater’, with CI content of less
than 500 mg I". This fresh groundwater typically occurs in
the form of lenses that float on the top of the brackish and/
or saline groundwater. That means approximately 70% of
the aquifer is brackish or saline water and only 30% is fresh
water found mainly in the Northern Governorate. Moreover,
the freshwater can be found in the shallow aquifer (A
subaquifer — Fig. 2) where most of the groundwater wells
(municipal and agricultural) penetrate. The major source of
water that generates the renewable groundwater in the
aquifer is rainfall. Rainfall is sporadic across the Gaza Strip
and generally varies from 400 mm year™ in the north to
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Fig. 1. Location map of Gaza Strip, Palestine.
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Fig. 2. Generalised hydrogeological cross section of the Gaza Strip aquifer (Source: Metcalf and Eddy, 2000).
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about 200 mm year™ in the south (Metcalf and Eddy, 2000).
The lateral inflow to the aquifer is estimated at between
10 x 10°m?® year™ and 15 x 10°m® year™'. Some recharge is
available from the major surface flow (Wadi Gaza).
However, the extensive extraction from Wadi Gaza in Israel
limits this recharge to 1.5 x 10° to 2 x 10°m°®. As a result,
the total freshwater recharge at present is limited to
approximately 56 x 10°to 62 x 10°m® year™' (Metcalf and
Eddy, 2000). Under natural conditions, groundwater flow
in the Gaza Strip is towards the Mediterranean Sea, where
it discharges. However, pumping over 40 years has disturbed
natural flow patterns significantly. In the year 2000, a large
cone of depression has formed in the northern and southern
part of the Gaza Strip, where the groundwater levels are
approximately 2 m below the mean sea level.

GROUNDWATER QUALITY

More water has been pumped from the aquifer than
recovered by the aquifer in recent decades. This over-
extraction from the aquifer has resulted in a significant
drawdown of the groundwater, with resulting intrusion of
seawater and upconing of the underlying saline water. The
major water quality problems are the high salinity (CI) and
the high nitrate (NO,) concentrations in the aquifer. The CI

and NO, concentrations in some of the municipal wells in
1999 are shown in Fig. 3. High levels of Cl groundwater
have caused high salinity in the water supply. Most of the
municipal wells exceed the WHO drinking standard of Cl
(250 mg I'"). In addition, most of the municipal wells in the
Gaza Strip show nitrate levels in excess of the WHO drinking
water standard of 50 mg I™'. In urban areas the main sources
of nitrates are domestic sewage effluent and in rural areas
the problem in the use of fertilisers and its concentration is
increasing at a rate up to 10 mg I"! per year. As shown in
Fig. 3, if both Cl and NO, are considered, the potable
groundwater is found in the northern part of the Gaza Strip.
Therefore, considerable monitoring and control measures
are envisaged by the Palestinian Water Authority (PWA) in
this part of the Gaza Strip.

GROUNDWATER MONITORING NETWORKS

In the Gaza Strip, the groundwater monitoring networks are
divided into: (1) groundwater quality, (2) groundwater depth
(level) and (3) municipal wells. The groundwater quality
network measures three variables: EC, Cl and NO,. The
measurements are undertaken twice per year using 400
agricultural wells (Mogheir and Singh, 2002b). The
groundwater depth network measures the groundwater depth
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Fig. 3. Cl and NO, concentration in some of the domestic municipal wells in the Gaza Strip, in 2000. The location of A-180, A-185, D-67,

C-127, C-128, E-4, E-90, E-114 and E-11B is given in Fig. 4.
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on a monthly basis, using around 120 agricultural wells.
The third type of monitoring network consists of the
municipal wells which measure: EC, TDS, Ca, Mg, Na, K,
Cl, NO,, SO,, alkalinity and hardness. For this purpose,
around 100 municipal wells are used. The measurements
are carried out twice per year. The three networks are used
to collect information that describes the groundwater quality
and quantity status.

Most of the municipal wells were drilled after 1997 and,
therefore, they only have a few groundwater quality
measurements. In this paper, the groundwater quality
measurements from 13 municipal wells in the Northern
Governorate will be analysed. These wells are drilled in A
Subaquifer of the total Gaza Strip aquifer (Fig. 2), which
can be assumed homogeneous. The wells measure 11
groundwater quality variables: EC, TDS, Ca, Mg, Na, K,
Cl, NO,, SO,, alkalinity and hardness. The variables were
measured twice per year: winter and summer, in the period

1987 t0 2000. The location of these 13 wells in the Northern
Governorate is shown in Fig. 4. The missing data were
interpolated linearly for all the variables. The spatial
variations of the mean of the variables are presented in Fig.
S where the contour lines were drawn using the Kriging
technique, which is an option in Surfer-7 mapping program
(Golden Software, 1999). The time series of some variables
(Ca, Mg, Na, CI, NO,, SO,) for wells D-67, E-11B and C-
128 are illustrated in Fig. 6; the basic statistics of the time
series of all variables are presented in Table 1.

Applied Methodology

MEASURING SPATIAL DEPENDENCY

The entropy of a random variable is a measure of information
or uncertainty associated with it. For a random variable x,
the marginal entropy, H(X), can be defined as the potential
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Fig. 4. Location of selected groundwater quality
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Fig. 6. Time series of variables: Ca, Mg, Na, Cl, NO, and SO , for municipal wells: D-67, E-11B and C-128. The time series were over
the period 1987 to 2000.
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Table 1. Mean (X ) and standard deviation (G ) of the groundwater variables (EC, TDS, Ca, Mg, Na, K, Cl, NO,, SO,, Alkalinity,
Hardness) for the 13 monitoring wells (A-180, A-185, C-127, C-128, D-67, D-68, E-157, E-11A, E-11B, E-156, E-4, E-90, E-92) as

presented in Fig. 4.

A-180 A-185 C-127 C-128 D-67  D-68  E-157 E-1IA E-11B E-156 FE-4 E-90  E-92

EC (uS cm™)

X 561 841 722 1204 534 654 936 1262 1368 1037 723 1043 1746

c 96 119 69 182 136 226 200 161 352 72 85 176 215
TDS (mgl™)

X 383 556 460 782 358 425 597 813 895 676 475 679 1115

() 52 70 56 99 75 120 129 81 253 51 58 98 120
Ca (mg 1)

X 59 75 52 51 62 45 61 103 110 62 81 86 114

c 15 18 9 12 47 20 15 18 46 11 105 14 13
Mg (mg I'')

X 28 40 28 34 27 28 38 59 59 44 37 45 70

) 6 8 5 9 11 7 6 12 24 6 7 9 15
Na (mg I')

X 31 50 63 162 32 51 78 69 74 104 38 74 157

c 7 9 10 29 4 26 29 23 19 11 15 19 37
K (mg 1)

X 1,4 13,0 2,7 2.3 2,0 2.3 3,7 3.1 3.8 2,9 2,1 2.3 38,9

c 0,5 3,0 1,4 0,5 0,5 0,5 1,0 0,7 1,1 1,0 0,8 0,9 20,5
Cl (mg I'")

X 51 86 88 207 52 78 106 154 176 139 90 123 224

o 8 13 12 38 11 30 37 15 53 12 13 22 32
NO, (mg 1)

X 51 85 46 42 47 44 74 232 206 125 101 146 222

c 15 28 19 16 27 23 17 76 111 23 41 34 58
SO, (mg 1)

X 15 32 17 29 13 23 27 28 42 34 35 40 80

(¢ 7 10 8 8 7 12 19 4 16 49 11 10 15

Alkalinity (mg ")
X 194 236 214 261 180 197 249 186 225 220 159 226 307
c 27 21 22 37 39 25 50 34 26 13 49 25 22
Hardness (mg 1)
X 258 355 249 268 236 228 513 523 319 311 401 559
G 42 55 21 54 57 70 71 207 65 37 69 55

information of the variable. The dependency (mutual
information) between two variables can be measured by
conditional entropy, joint entropy and Transinformation. For
two random variables, x and y, the conditional entropy
H(X‘y) is a measure of the information content of x which
is not contained in the random variable y. The joint entropy,
H(X,y), is the total information content contained in both
x and y. The mutual entropy (information) between x and y,
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also called Transinformation, T(X,Y), is interpreted as the
reduction in uncertainty in x, due to the knowledge of the
random variable y. It can also be defined as the information
content of X that is contained in y. The Transinformation for
discrete variables can be expressed as (e.g. Mogheir and
Singh, 2002a)
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s pP(x;,;)
T(X,y) =— X,y ) In| ——1— (M
() ==, 2 plcy) [p(xi)p(yj)}
where x and y are two discrete variables with values X;,
i=1,2,...,n; ¥;,j=1,2, ..., m, defined in the same probability
space, each of which has a discrete probability of occurrence
p(x,). P(X;,Y;) is the joint probability of x;, Y; and
P(X;|Y;) is the probability of X, conditional on Y;. Note
that H(X,y) =H(y,Xx) .

Many entropy theory-based applications have computed
Transinformation as a function of correlation between
variables. This approach presumes knowledge of the
probability distributions of the random variables under study
(e.g. Harmancioglu et al., 1999). The problem of not
knowing the probability distributions can, however, be
circumvented if a discrete approach is adopted (e.g. Mogheir
et al., 2003a). To calculate the discrete Transinformation
values, the joint or conditional probability is needed, and
this can be obtained using a contingency table (e.g. Gokhale
and Kullback, 1978; Mogheir and Singh, 2002a).

Contingency tables (cross-tabulations) record the
frequency for the values that fall into each possible
combination of two categories. To construct a two
dimensional contingency table (Table 2), the following steps
are involved (e.g. Mogheir ef al., 2003b).

e Let the random variable x have values consisting of v
categories (class intervals), while the random variable
y is assumed to have u categories (class intervals). There
is no general rule for choosing the number of class
intervals (NCI). To avoid such complications the
number of class intervals was calculated as (e.g., Zhou,
1996):

NCI=1+ 1,33 In(n) 2)
where, NCI is the number of class intervals and n is the

size of the time series of the variable . Notice that, the
number of class intervals should be the same for all the

Table 2. Two-dimensional contingency table (frequency).

y
1 2 3 u Total:
1 N fe T A
2 VAT S N VA
X 3 le fzz f33 f3u f?
A S S VA
Toal: f,  f, S forf,

time series of the groundwater quality variables.

® The cell density or the joint frequency for (i,]) is
denoted byfij, i=1,2,...,v;j=1,2, ..., u, where the
first subscript refers to the row and the second subscript
to the column. The cell density is the count of
measurements with the corresponding u class interval
of variable y and v class interval of variable x.

®  The marginal frequencies are denoted by /' and fJ for
the row and the column values of the variables,
respectively. £, is the summation of the cell density for
each v categories of variable x.

® The joint probability p(X;,Y;) is computed by dividing
the cell density by the total of the data recorded in one
well.

A dependency can also be measured by means of
Correlation or Covariance between variables (Olea, 1999).
The Correlation coefficient I, was calculated for each pair
of wells as:

Cov,,

I’Xy = S(
S, 3)

where COny is the Covariance between random variables
xandy; S and S are the standard deviations of variables
x and y, respectively COVXy . can be obtained as

n

Z(Xi =X)(Y; -Y) A
_ =
Cov,, = — “4)
where ¥ and y and are the means of variable x and vy,
respectively.

The spatial dependency was measured by the
Transinformation and Correlation Models. These models
were determined by computing Transinformation and
Correlation, and the distance between wells.

EXPONENTIAL DECAY FITTING APPROACH

Nonlinear decays are common in physical systems. One of
these decays used to model many physical processes is the
exponential decay. It is used whenever the rate at which
something happens is proportional to the amount that is left.
An example of the application of the exponential decay is
the radioactive isotope decay. In this process, the number
of atoms that decay in any short interval is proportional to
the number of undecayed atoms that were present at the
beginning of the interval. The total decay of the sample
decreases with time because there are fewer and fewer
undecayed atoms (e.g. Motulsky, 1999a). Note, the atoms
decay extremely rapidly at first, however, as the time
increases, the decayed atoms fall ever more slowly. For this

715



Y. Mogheir, ].LM.E de Lima and V.E Singh

reason, the half-life parameters are introduced as the time
needed for the atoms to decay to half their original amount.
With an exponential decay process, a long time is spent at
the tail of the exponential decay curve (total life). The total
life is the time required for atoms to decay completely. In
atomic decay applications, the half-life has greater
applications than the total life, due to the difficulty of
estimating the total life amount and the interest is in the
amount of decayed atoms.

The Transinformation as a function of distance between
wells can be analogous to the case of atoms decaying as a
function of time. In the exponential Transinformation decay
curve, the initial Transinformation value is decayed over a
certain distance, is depleted and reaches the minimum value
at a distance equal to the range (L). In Transinformation
applications, the objective is to determine this value of
distance, which is comparable to the total life in the atomic
decay case.

Mogheir et al. (2004b) suggested that the exponential
decay curve could be the best representation of the discrete
T Model, and could be presented as:

T(d)=Ge™ +Q (5)

where the exponential decay curve starts with T =G + Q at
distance (d) = 0; and the curve decays to reach a Q value
with a constant rate K (1 m™). The units of G and Q are
expressed in the same way as the T unit ‘Nats’ (e.g. Husain,
1989). Equation (4) was also applied to the Correlation
Model (C Model).

The fitting of the exponential decay curve to the discrete
models was performed using the least squares fitting
procedure with the GRAPHPAD PRISM3 statistical
software (Motulsky, 1999b). The coefficient of
determination was used to quantify the goodness of fit
between the exponential decay curve and discrete model
data. The coefficient of determination (R?) was computed as:

R*=10- S (6)
ot
where SSis the sum of the squares of the residuals
between the discrete model and the best fit exponential decay
curve, and SS; is the sum of the squares of the residuals
between the discrete model and the horizontal line through
the mean.

DETERMINING L (I'HE RANGE) IN THE T MODEL

In assessing and redesigning a groundwater monitoring
network, the definition of distance between monitoring wells
(L) is particularly crucial. An accurate estimation of the
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range L plays an important role in the comparison between
characterisations of the spatial structures of different
variables. In the literature, the range of the semivariogram
is specified according to the threshold value of the sill. For
example, Journel and Huijbregts (1978) took the range at
95% of the sill. Others recommend specifying the range of
the semivariogram by hand drawing or by specifying
different range values and making different scenarios (e.g.
Olea, 1984; Yfantis et al., 1987). Mogheir et al. (2004a)
determined the value of L by drawing two lines, the first
parallel to the declining part of the T Model and the second
parallel to steady part of the T Model. The intersection point
of the two lines indicated the L value.

In this study, L value will be determined as follows. The
Transinformation as a function of distance (exponential
decay curve) in Eqn. (4) can be written as:

T(d) = (TO - Tmin)e(in) + Tmin (M

where T isthe initial value of Transinformation (K) is the
Transinformation decay rate, T . the minimum
Transinformation value and d is the distance between wells.
This L value is estimated as the distance at which the
Transinformation Model approached a constant minimum
value T .. For this exponential decay curve, T(d)
asymptotically approaches T . , therefore, the L value is
estimated when T(d) is very close to T __ . It is assumed that
atd=L, T(L) =T _ + ¢, where € is a constant number and
its unit is Nats. If T(L) is substituted in Eqn. (7) by T . + ¢,
Eqn. (7) can be written as

Tmin te= (TO - Tmin)e(iKL) + Tmin
€= (TO - Tmin)e(iKL) (8)

Taking the logarithm of both side of Eqn. (8)
In(e) =In(T, - Ty, )- KL )

Then the value of L can be computed as

L In(TO—TEn)—In(s) (10)

From Eqn. (10), L is inversely proportional to K. When
K increases, the value at which the T Model reaches the
minimum value decreases. The value of L is also affected
by €. The higher € value (difference between T(L) and T , )
to be considered, the lower L value will be estimated. The €
value can be expressed as a percentage from T as

€
% ¢ =— x100
TO
where T, is the initial Transinformation value.

)
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Assessment of the Spatial Structure

CORRELATION MODELS (C MODELS)

The C Models for all variables were obtained by computing
the correlation coefficient using Equation (2) and the
distance between wells. The exponential decay curve is fitted

(&)

to the C Models’ data using the least squares technique. An
example of fitting the exponential curve to the C Model
data for the groundwater quality variable EC is shown in
part (A) of Fig. 7. The C Model for each variable is
presented in Fig. 8 and Table 3.

Table 3. Fitting correlation (r(d), C Model) and Transinformation
(T(d), T Model) with exponential decay curves for the groundwater

1,00 quality variables: EC, TDS, Ca, Mg, Na, K, CI, NO,, SO,
. alkalinity and hardness.
0,50 -
5 et Water Quality  Fitting Equation R’
s L " Variables
o 0007 L . i o
S EC r(d) = 0,6220 ¢ -0 +0,3710 0,46
-0.50 1 Discrete T(d) = 0,9900 e 20349 + (4200 0,77
TDS r(d) =0,7700 e <> + 0.2201 0,51
-1,00 \ w w w w w T(d) = 10,9370 e 2024 + (.4200 0.84
0 500 1000 1500 2000 2500 3000 3500 4000 Ca r(d) = 0,8020 e (-0,0048 d) 4 0,1801 0,49
Distance (m) T(d) =0,8900 ¢ 20324 + (3200 0,63
(B) Mg r(d) =0,7932 ¢ %0049+ 0,2100 0,47
T(d) = 1,0500 ¢ 2030 + (3200 0,55
. Na r(d) = 0,5907 e «-021d + (,3800 0,33
§ T(d) =0,8500 ¢ -0 + (5100 0,66
z K r(d) = 0,7400 e -3¢ + 0,2500 0,30
2 © . T(d) = 0,7700 ¢ >34 + 0,3167 0,74
g 5 Discrete _ -0.0020 d)
s o ::> Cl r(d) = 10,8801 e ¢ +0,1108 0,44
k= oo~ °Te £%,°%% T(d) = 09600 ¢ %29 + 04100 0.74
8 0 P09, °go” o o NO, r(d) = 0,8802 ¢ -2 + 0, 1806 0,35
F o ° °© %o 0° T(d) = 0,9500 ¢ 2519 + (,4186 0,86
: ‘ ‘ ; ; SO, r(d) = 0,4920 e 032 + 0, 5004 0.41
0 500 1000 1500 2000 2500 3000 3500 4000 T(d) = 0,7800 ¢ %0034 + (,4186 0,58
Distance (m) Alkalinity r(d) = 0,8100 ¢ *0006d + (1108 0,44
T(d) = 1,0500 ¢ 2034 + (0. 4600 0,60
Fig. 7. (A) Correlation Models; and (B) Transinformation Models Hardness 1(d) = 0,8000 ¢ €20 + 0,1007 0,41
Sfor the groundwater quality variable: EC. T(d) = 0,8800 e “***9 +0,4550 0.73

1,00 T T T :
| | —&—EC +TDS
| | —4—Ca —%= Mg
0,80 + I —X— Na K
—a—C| ——NO,

|
|
| —6— S0,
_ L —&—Hardness

Correlation

0,00

0 500 1000 1500 2000 2500

Distance (m)

3000 3500 4000

Fig. 8. Correlation Model for groundwater quality variables: EC, TDS, Ca, Mg, Na, K, Cl, NO,, SO,, alkalinity and hardness. The symbols

(®.* A ... etc) are used to distinguish between the eleven C Models of the different groundwater quality variables.
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TRANSINFORMATION MODELS (I' MODELS)

The T Models for the groundwater variables were obtained
by computing the T values using Eqn. (1) and the distance
between wells. The exponential decay curve is fitted to the
T Model data using the least square technique (see part (B)
of Fig. 7 for EC as an example). The T Model for each
variable is presented in Fig. 9 and Table 3.

In Table 2, R?ranges between 0,55 to 0,85 in the T Models,
where it ranges between 0,30 to 0,51 in the C Models. The
variation of R? of C Models and R? of T Models are plotted
in Fig. 10. In this figure, all the variable symbols lie in a
small region close to the upper left corner of the graph.
Hence, this figure and Table 2 show that, for all variables,
the T Model selected as an exponential decay model infers
spatial variability better than does the C Model.

(A)

1,60

Transinformation (Nats)

0 500 1000 1500 2000 2500 3000 3500 4000

Distance (m)

1,60 T T T T T
oL g
I R N R
120 A\ ——+———+——— 4 ___
T eso
| | | | —e— Alkalinity
| | | |

080 +-Bct---f---1---1 —8— Hardness - -

0,40 7

Transinformation (Nats)

0,00
0 500 1000 1500 2000 2500 3000 3500 4000

Distance (m)

Fig. 9. Transinformation Model for groundwater quality variables:
(A) EC, TDS, Ca, Mg, Na, and K; and (B) CI, NO,, SO,, alkalinity,
and hardness. The symbols (®,* A, ... etc.) are used to distinguish

between the eleven T Models of the different groundwater quality
variables.
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DETERMINING THE RANGE IN THE T MODEL (L)
The L value helps to estimate the degree of dependency
between wells for one variable (spatial dependency).
Moreover, it can also be used to reflect the dependency
between the variables. The L value was estimated for all
variables using Eqn. (10). In this equation, the values of T,
T . and K are taken from the best fitted exponential decay
curve as represented in Fig. 9 and Table 3. Moreover, in
Eqn. (10), the value of ¢ is considered as 0,0001 Nats which
is particularly small. Under these conditions, the range L in
the T Model can be estimated. Table 4 shows the values of
the T Model parameters: T, T . , K and the range L for all
variables.

Table 4. TM_ parameters for: EC, TDS, Ca, Mg, Na, K, CI, NO,,
SO, alkalinity and hardness. € is considered as 0,0001 Nats for
computing L values.

Variables T, T. K L
(Nats) (Nats) (1/m) (m)

EC 1,4100 0,4200 0,0034 2706
TDS 1,3570 0,4200 0,0024 3811
Ca 1,2100 0,3200 0,0034 2675
Mg 1,3700 0,3200 0,0050 1852
Na 1,3600 0,5100 0,0060 1508
K 1,0867 03167 0,0034 2632
Cl 1,3700 0.,4100 0,0028 3275
NO, 1,3686 0.4186 0,0050 1796
SO, 1,1986 0.4186 0,0034 2636
Alkalinity 1,5100 0,4600 0,0034 2723
Hardness 1,3350 0.4550 0,0034 2671

SENSITIVITY ANALYSES

From Eqn. (10), it is inferred that the estimation of L is
influenced by T, T ., K and €. Figure 11 shows the
difference between T, and T __ for all groundwater quality
variables. It also represents the amount of redundant
information, which decays as the distance increases.
Generally, a higher amount of (T, - T . ) requires a larger L
value to be depleted. Estimation of the T, and T , values
can be influenced by the number of class intervals. This is
an essential element in the computation of the
Transinformation values using the contingency tables
(discrete approach).

In the T Model, the amount of redundant information
(T,—T_,) is diminished to reach a minimum value (very
close to zero) with a decay rate K. Figure 12 shows that K
is inversely proportional to the range L. This relation can
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1,00 .
o - " TDS
0,80 +
. ¢ . A Ca
« 1:1 X Mg
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3 0,60 CRY * Na
= e K
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0,20 - © S04
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0.00 : : : : A Hardness
0,00 0,20 0,40 0,60 0,80 1,00
R? of r(d)

Fig. 10. Comparison of R’ of the Transinformation model and the R’ of the Correlation model, for all
groundwater quality variables: EC, TDS, Ca, Mg, Na, K, Cl, NO,, SO, alkalinity and hardness.
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Fig. 11. The initial Transinformation (T,) and the minimum
Transinformation (T, ) for all groundwater quality variables: EC,
TDS, Ca, Mg, Na, K, Cl, NO,, SO,, alkalinity and hardness.

be expressed as: the amount of redundant information
(Transinformation) which completely decays in a shorter
distance when the decay rate of Transinformation (K) is high.
Figure 13 shows also the effect of € value on the estimated
L value. The analyses of all groundwater variables revealed
that increasing the € value decreases the estimated L.
Increasing the & value means neglecting some redundant
information between wells. Therefore, the value of € should
be small enough to ensure minimum redundant information.

4000

3500

3000 -

2500

The range, L (m)

2000

1500 -

1000 T T T T
0,0020 0,0030 0,0040 0,0050 0,0060
K (1/m)

0,0070

Fig. 12. The variation of the Transinformation decay rate (K) with
the range (L) for all groundwater quality variables: EC, TDS, Ca,
Mg, Na, K, Cl, NO, SO,, alkalinity and hardness.

4500
4000 - 7 Tos T Mg
Na e
NO3 —®—  Alkalinity
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RangeL (m)
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Fig. 13. The variation of the e (%) with the range (L) for the

groundwater quality variables: TDS, Mg, Na, Cl, NO,, alkalinity and
hardness.
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Discussion

From Fig. 9 and Table 4, parameters of the T Model, infer
the spatial dependency between wells for one variable. In
the analyses of the T Model of the groundwater quality
variables, it was found that L. and K dominate the description
of spatial dependency between wells. For instance, the
greatest dependency between wells can be found for TDS,
since L is the highest among the variables (3811 m) and K
is the lowest (0.0024). The lowest dependency can be found
for Na, since L equals 1508 m and K is 0,0060. It also can
be observed that EC, Ca, K, SO,, alkalinity and hardness
have the same K value (0,0034), and L for these variables
ranges between 2632 to 2723 m. In the T-Model of Cl, the L
value equals 3275 m and K is 0,0028. Mg and NO, have L
values of 1852 m and 1796 m, respectively, and the K value
for both variables is 0.0050.

These evaluations may contribute to redesigning (reducing
or extending) the groundwater quality monitoring network
in the study area (Northern Governorate). For example, the
number of wells to monitor TDS will be less than the number
of wells to monitor Na. In the TDS case, the existing
monitoring network can be reduced, since distances between
adjacent wells can be less than 3811 m. However, in the Na
case, the network can be extended by adding new wells,
since there are distances between the adjacent wells greater
than 1508 m. It can be understood that a complete monitoring
network design methodology should be arranged by
specifying: the objective of monitoring, the variable to be
monitored, the strategy of monitoring (Transinformation,
cost, hydrogeological behaviour, etc). That will certainly
affect the number, location of monitoring wells (spatial) and
monitoring temporal frequency.

The results of the T Model of the variables can also express
the dependency between the variables. As indicated in Table
4, EC, Ca, K, SO,, alkalinity and hardness variables have
similar L and K values. Thus, these variables can be
classified in one group. Based on the same criteria Na, NO,
and Mg can be classified in a second group, while TDS and
Clare in a third group. These classifications (clustering)
can be used to reduce, eventually, the variables to be
monitored. This will reduce the cost of monitoring, which
is considered as an essential criterion for an optimal
groundwater monitoring network design.

Conclusions

In this study, the groundwater quality in the Northern part
of the Gaza Strip was analysed using the Transinformation
Model (T Model) and Correlation Model (C Model). The
analysis showed that for all the studied variables (EC, TDS,
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Ca, Mg, Na, K, Cl, NO,, SO,, alkalinity and hardness), the
T Model performed better than the C Model in characterising
the spatial variability.

The T Model of the groundwater quality variables yielded
different values for L, K and T__ to be used for design
purposes. A greater L reflects a higher dependency between
wells for one variable and a smaller L indicates less
dependency between wells. These results can be used for
selecting the number and the locations of wells to be used
in monitoring these variables. The results also revealed that
some variables had similar T Model parameters (T . and
L). This similarity can infer the degree of dependency
between the variables and can also lead to a reduction of
the variables to be monitored. Basically, the parameters of
the T Model (T , and L) can be comparable to the
semivariogram parameters (sill and range), which are
commonly used to describe the spatial structure of
groundwater variables.

For further steps toward the use of the entropy theory in
groundwater monitoring network design, the methodology
of this article will be utilised. All the groundwater quality
monitoring wells in the Gaza Strip will be evaluated and
redesigned according to the criteria mentioned in this paper.
Optimisation techniques may be used for the design problem
based on the criteria mentioned in this paper.
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