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Abstract

Rainfall data from 18 stations in the vicinity of Tokyo city, measured to a precision of 1 mm, were analysed for multifractal properties. A

multifractal model based on the scaling properties of temporal distribution of rainfall intensities was formulated to investigate the intensity
distribution relationships in the available scaling regime. Although conventional analysis did not provide encouraging results with these
measurements, an alternative approach that could be applied to rainfall data of widely variable quality and duration was used to establish a
scaling relationship between daily and hourly rainfall intensities. Using a discrete cascade algorithm based on the log-Levy generator, synthetic
hourly rainfall series were generated from the multifractal statistics of daily-accumulated rainfall. Several properties of rainfall time series

that are relevant to the use of rainfall data in surface hydrological studies were used to determine, statistically, the degree of agreement

between the synthetic hourly series and observed hourly rainfall.
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Introduction

The relationship between rainfall intensities at different
scales is not trivial owing to the high variability that rainfall
exhibits in time and space, particularly at the scales that are
of interest to the hydrologist. Rainfall intensities increase
sharply in magnitude as the temporal accumulation length
(time scale) is decreased. Thus, an understanding of the
scaling relationship of rainfall intensity is an important
requirement for assessing the effects of rainfall at smaller
scales than those at which it is commonly observed. One
important example is the utilisation of historical rainfall
records to make statistical evaluation of catchment response:
Long historical rainfall records are important resources for
understanding the ‘behaviour’ of catchments, without
excessive interference from possible annual or inter-annual
anomalies. However, most historical data sets spanning more
than a several decades are of daily observations — a fact
that is especially true in the developing world. Development
of techniques to estimate rainfall properties at higher
resolutions such as hourly, based on daily records,
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thereforem is important in utilising these data resources
effectively in response studies.

Since the introduction of the theory of fractals by
Mandelbrot (1967), numerous attempts have been made to
apply fractals to modelling various physical phenomena;
Lovejoy and Mandelbrot (1985) applied them to studies of
rainfall). However, Gupta and Waymire (1990), Lavallée et
al. (1991), Lovejoy and Schertzer (1990) showed that many
geophysical fields like cloud formations, temporal and
spatial distributions of rainfall, river network formations,
river flows and topography are modelled better by multiple
scaling schemes.

Unlike single fractals, the multifractal models involve
infinite numbers of parameters in general in their original
forms and are of limited practical use. Several simplified
forms, more useful in actual data analysis, have been
proposed. In the ‘Universal Multifractal Theory’ proposed
by Schertzer and Lovejoy (1987), the multifractal
distributions are realised by a finite number of parameters
based on the simplifying assumption that the multifractal
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Fig. 1. A multiplicative cascade in one-dimension. A field of a fixed
intensity is divided into two parts and each is multiplied by a
‘weight’ w,, which is derived from a log-Levy random variable.

measure is a result of a special type of multiplicative cascade
process. Figure 1 shows a ‘discrete version’ of a
multiplicative cascade in one-dimension. Cascades had been
widely used to model the energy transfer in turbulence
(e.g. Novikov and Stewart, 1964; Mandelbrot, 1974; Frisch
et al., 1978). Schertzer and Lovejoy (1987) proposed a
physical basis for the use of multiplicative cascade processes

in modelling atmospheric turbulence. A multiscaling
approach has become the basis for statistical models that
are widely used to model geophysical phenomena like
rainfall and cloud formations, which are closely related to
atmospheric turbulence (Lovejoy and Schertzer, 1990;
Gupta and Waymire, 1990; Svensson et al., 1996; de Lima
and Grasman, 1999; Deidda et al., 1999).

Many of the multifractal analyses and especially modelling
efforts on rainfall process had been carried out with relatively
high quality rainfall data, which are available under very
special circumstances (see Olsson, 1996; Svensson ef al.,
1996; Olsson, 1998; de Lima and Grasman, 1999, for some
examples). While being extremely useful in understanding
the multifractal nature of rainfall and in validating
multifractal models proposed to describe the scaling of
rainfall process, these approaches, when applied to rainfall
data of typical accuracy and durations, often produce
discouraging results, particularly in the case of modelling
high resolution distributions from observations at a lower
resolution.

The calculation scheme described here makes it possible
to use a multifractal model to predict hourly rainfall
properties successfully from daily rainfall observations.
First, the details of the data analysis are presented. Hourly
rainfall records over two decades from 18 raingauges around
Tokyo (Fig. 2 and Table 1) were selected for the study. These
were measured by tipping bucket raingauges of Imm
precision. Daily rainfall series, obtained by accumulating
those hourly records, were used as source data to fit the
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Fig. 2. Locations of the selected rain gauges.
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Table 1. Some statistical and multifractal properties of the selected rainfall series.

Elevation Average rainfall Series length C, H o ﬂ
(m) (mm/yr) (yrs)
Ebina 18 1702 22 0.35 -0.06 1.34 1.05
Enoshima 60 1551 17 0.32 -0.04 1.35 1.00
Funabashi 24 1295 20 0.32 -0.05 1.37 0.84
Hachioji 121 1570 8 0.40 -0.07 1.09 1.11
Hakone 850 3421 22 0.31 -0.06 1.47 1.21
Haneda 3 1374 22 0.33 -0.05 1.37 0.99
Hiratsuka 20 1574 22 0.35 -0.06 1.45 1.01
Hiyoshi 57 1510 22 0.31 -0.05 1.63 1.07
Kisarasu 5 1453 22 0.35 -0.05 1.21 0.90
Miura 42 1567 17 0.35 -0.06 1.42 1.05
Odawara 28 1968 22 0.39 -0.05 1.09 1.12
Sagamihara 149 1677 22 0.38 -0.06 1.29 1.05
Sagamiko 188 1552 22 0.42 -0.08 1.23 1.11
Setagaya 41 1526 22 0.35 -0.06 1.33 0.88
Shinkiba 6 1311 22 0.34 -0.05 1.31 0.96
Tokyo 7 1450 22 0.36 -0.05 1.19 1.03
Yokohama 39 1625 22 0.26 -0.04 1.92 1.06
Average 0.345 -0.056 1.357 1.026
St.dev. 0.038 0.009 0.198 0.094

multifractal model. Then the next section explains the
procedure of generating synthetic hourly rainfall series based
on that model. Finally, several statistical properties that are
relevant for the use of rainfall data for surface hydrology,
were used to compare the synthetic rainfall series with actual
hourly observations, the results are discussed and
conclusions are arrived at.

Data Analysis

UNIVERSAL MULTIFRACTALS

A field ¢ is said to be conserved if the overall mean of the
field ({¢#)) is independent of the scale 7. In the formulation
of the Probability Distribution Multiple Scaling (PDMS)
method (Lovejoy and Schertzer, 1990), where data are
considered continuous rather than as a set, the properties of
a conserved multiscaling field ¢, are represented by the
following probabilistic relation (Tessier et al., 1993):

|:)(¢/1 > 1)~ A7) (1)

where scale ratio A is obtained by dividing the largest scale
ofinterest 7 (T=1024 h was selected for the present analysis
and this selection is discussed later.) by the scale 7. ¢ is the
field obtained by normalising the original field by the overall
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mean of the field at the highest resolution (largest 1) of
interest. y is a scaling exponent and c(y) is known as the
codimension function. (Although this relationship is
sometimes written as an exact equation in recent literature,
this relationship is an approximation valid only for “slowly
varying quantities like logarithms” (Tessier et al., 1993) and,
thus, cannot be treated as an exact equality.) Assuming that
the underlying cascade process is based on a Levy-stable
distribution, the codimension function can be shown to have
the following functional form (Tessier ef al., 1993), which
reduces the infinite number of parameters in the general
multifractal case, to three:

a#l

C(&+2)
Coexp(&-1) a=1
(for0<<2)

c(y—H)= (@)

where / / o+ 1 /o’ = 1. H is the exponent of the power-
law filter in the frequency domain required to obtain ¢ the
non-conserved (observed) field R, ( R, = A", C, isthe
value of the codimension for the mean process. The
multifractality parameter ¢, also known as the Levy index,
indicates the probability distribution involved in the
underlying multiplicative cascade process. & = 0 is for the
monofractal case and values larger than zero indicate
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multifractals. The case o =2 corresponds to multifractals
with lognormal, or Gaussian generators.

Two important properties of the codimension curve (the
plot of ¢(y) against y) are: (1) it is a convex function for
a > 0; (2) the tangent drawn to the curve at the mean process
(c(p») =C, ) should be parallel to the bisectrix, c(y) =y (it
passes through the origin in case of a conserved process,
H=0).

METHODOLOGY

The widely used method (based on descriptions by Lavallée
et al., 1991 and Olsson et al., 1993) for calculation of the
codimension function is as follows: the multifractal theory
proposes rainfall process to be a scale-independent
phenomenon. However, rainfall data are measured (or
processed later as in the case of tipping bucket data) at some
specific resolution (temporal in the present context), which
will be referred to as ‘measured-scale’ hereafter. Firstly, the
data will be normalised at the measured-scale, by dividing
each intensity value by the average rainfall intensity, so that
the average value of the rainfall series is unity. The rainfall
series is then analysed at different temporal scales, ¢
(sometimes known as the ‘box-size’). For example, in the
case of data of hourly measured-scale, it is possible to
analyse at £ =1h, 2h, 24h, etc., i.e. any multiple of measured-
scale can be analysed. However, due to the power-law nature
of the relationship of ¢(y) to the other terms in Eqn. (1), it is
logical and statistically robust to follow a power series like
2h, 4h, 8h, 16h, etc., unless there is a special reason to do
otherwise.

To compute rainfall values at a scale ¢, starting from the
beginning of the rainfall series, each consecutive n value
(n=t/t ,where isthe measured-scale) are added together.
This will make a new series of length L =L /n, where L
is the length of series at measured-scale. Then at scale ¢, the
exceedance probability, P( ¢, >4") is computed for a number
of y values.

The applicable range of y values for a particular analysis
is determined by two factors: (1) The upper bound of y
values depends on the availability of high values of the
measure, beyond some value of y the A7 value becomes
so large that, there almost are no boxes which satisfy the
condition R > A7 (see Tessier et al., 1993, for a theoretical
discussion on this upper bound). (2) At small values of
(i.e. small A7), the effect of the precision of measurement
becomes prominent. This becomes a problem especially at
small box sizes (large A). Low precision of measurement
can induce a step-like behaviour in (the lower values of)
the exceedance probabilities.

The exceedance probability is approximated by N, (7) /

N, where N, (y) is the number of boxes whose average
intensity exceeds A7 (where A= 7/7), out of the total number
of boxes, N,=L/t.

To test the validity of Eqn. (1), P(¢,> 1) is plotted against
A in a log-log domain. Figure 3 shows a number of such
curves resulting from the standard application of PDMS
method to the Tokyo dataset. (For this analysis, hourly
observations at the original hourly resolution were used.)
The straight regression lines obtained for each value of y
indicate the existence of a scaling regime covering
resolutions from one hour to about two days. The values
for the codimension function were estimated from the slope
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Fig. 3. The P — A curves for the observations at Tokyo station. Only
a limited number of yvalues are shown in the figure for clarity.
Ordinates corresponding to scales of lday and 2days are marked on
the graph.
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Fig. 4. The codimension function estimated for Tokyo. The scatter
observed at low yvalues may be attributed to the low measuring
precision.
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of'the linear fit for each value of y. A non-linear estimation
method (methods proposed by Meyer and Roth, 1972 and
Rosenbrock, 1960, work well for this problem) was used to
estimate the parameters /7, C,and o of a fitted codimension
function. The fitted codimension function for the example
series is shown in Fig. 4, together with the values estimated
from data.

Modelling hourly rainfall from daily
observations

To attain the intended objective of this paper, a multifractal
model has to be calibrated from daily data alone. For a
hypothetical case of perfect scaling behaviour, this will not
be a problem since scales above one day will have the same
scaling behaviour as those below. However, in general,
rainfall does not always show such perfect scaling
properties. It has been reported that rainfall shows ‘breaks’
in scaling around a scale of a few days (see Pathirana, 2001).
One of the widely used methods to understand scaling is
the power-law behaviour of the spectral density function of
a field. Within the scaling regime, the power spectral density
S(k) (defined as S(k)=lim, ,1/T |Y(k,T)f where Fourier
transform is denoted by Y(%, T) ) relates to the wave number,
k as follows:

S(k) ~k™” 3)

Figure 5 shows the power spectral density functions for the
rainfall series selected. The spectra indicate that the scaling
regime. present in smaller scales, does not continue beyond
two days resolution. This break in scaling of temporal
rainfall spectra has been widely reported. The precise level
of scale breaking appears to be affected by the sampling
properties of data sets such as measurement precision and
resolution, in addition to the characteristics of the rainfall
itself.

As in previously reported studies, the present analysis also
indicates the existence of a continuous scaling regime from
daily to hourly scale. However, the fundamental problem in
using daily data to model hourly rainfall is that the early
break in scaling causes the ‘available’ scales for fitting a
multifractal model to become severely limited. In the case
of the Tokyo data, only 24 h and 48 h scales are available in
the required scaling regime. The PDMS method described
earlier, as well as the other methods involving linear
regression in log-log space (e.g. the double trace moment
method proposed by Lavallée, 1991) fail to work due to the
above limitation in the data.
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Fig. 5. Power spectral density plots for the rainfall series. In many
cases the scaling breaks at a scale around 1-2days. The spectral
slopes are given within parentheses for each station. The data were
smoothed by averaging over a variable interval proportional to the
logarithm of wave number before plotting. The power spectral
curves were shifted vertically.

AN ALTERNATIVE APPROACH FOR ESTIMATING C(}/ )
For a given y value, the variation of log(P(R > A?)) with the

logarithm of non-dimensional scale, A, can be represented
by the following exact equation:

log(P(R > &) =—c(plog(A) + log(b(p) @)

where b(y) is a function independent of ¢(y) and /. Strictly,
b(y) can be a slowly varying function of the other variables,
so that it ‘appears’ to be constant in the log-log space, for a
given y . In order to propose the alternative method, b is
assumed to be a constant. The consequence of this
assumption is illustrated in Fig. 6. All the ¥ = constant lines
should converge at (log[1] =0, P@®R> A7) = b). Then, by
rearranging,
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A

Fig. 6. The assumption of D(¥) = O requires the y = const. lines to
be converged on the y-axis(1 = 1)..
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Fig. 7. When there are breaks in the scale, the value of b may not be
equal to the exceedance probability of the mean of the field at the
largest scale of interest (A = 1). While the point A indicates the
exceedance probability of the mean of the field at 1 = I, the scaling
regime in higher resolutions (larger 1) has a b value corresponding
to the ordinate at point B.

_log(P(¢, > 17)/b)
log(4)

where b is a proportionality constant. For a hypothetical
case of perfect scaling along the whole range of scales of
interest (from largest 4 to A=1), one is compelled to derive
a value for b by an obvious means: by definition, the value
of A for the largest scale of interest is 1. Hence, b = P(R,
>1) (from Eqn. 1). Since the original series is normalised
(mean = 1) before analysis, this indicates the probability of
exceedance of the mean of the field at the largest scale of
interest.

However, most geophysical fields do not show a
continuous scaling property all through the scale range of
interest, but show one or more breaks in scale (Fig. 7.) So,
it is generally not possible to estimate b by the above means

c(y) = ®)

and a different empirical approach is used to find a suitable
estimate for b.

ESTIMATING THE CONSTANT B

In the case of modelling with daily data only, the value of
b is calculated as follows: since there are two scales (24 h
and 48 h) available for analysis, given a value for b, two
different estimations for ¢(y) can be made as o0 (V) and
and ¢, () using Eqn. 5. However, there are properties of
c(y) function that these estimates should satisfy, namely:
(1) the estimations of ¢(y) at different scales in the same
scaling regime must be similar and (2) since rainfall is a
conserved process, the bisectrix should be tangential to the
codimension function (Tessier et al., 1993). It was found
that the above two properties are adequate to estimate a value
for b using the following trial and error process: The values
of ¢, ,,(y)and and ¢, (y)were estimated for various
values of b until a value which satisfies both the above
conditions approximately, is selected. Typical values of b
were found to be around 0.30 to 0.40, for the rainfall series
used. Figure 8 shows the estimation of b for Tokyo series.

SIMULATION OF MULTIFRACTAL FIELDS

There is a number of different multifractal simulation
methods. Since the universal multifractal model is based on
a Levy-stable distribution, a cascade model with a log-Levy
process was used for the simulations. Two major variations
of cascade schemes are used widely, namely, continuous
cascade models and discrete cascade models. The former
are sometimes claimed to be superior in maintaining the
structure of rainfall, so that the data generated preserves
indicators of the structure like spectra and autocorrelations
more accurately. The main advantage of the discrete cascade
models is that they are comparatively simpler and
economical in computing. In the present research, a discrete
cascade algorithm was used, based on the model described
in Monin and Yaglom (1975), generalised to include a Levy-
stable distribution.

The model operation is simple and is based on the cascade
model described in Fig. 1. The generation is started with a
uniform field of unit intensity. The field is divided into two
equal parts and each part is multiplied by a weight, ¥, that
is derived from a log-Lévy random variable.

A Lévy random variable, L, with the following probability
distribution was used in the model:

P(X >x) ~[x[* (0<x)
P(X > x) ~exp(- | x[)(x < 0)
(O<a<2)andl/a+1/a'=1 (6)
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Fig. 8. Estimation of b and the computation of the codimension function are done together. Appropriate value of b is selected such that the
codimension estimates at 24h and 48h are similar and the bisectrix is tangential to the estimate. Example: Funabashi. The trivial value, b = 1
(left) does not work. A value of b = 0.37 approximately fulfills the above conditions (right). Hourly estimate of the codimension function which
is not involved in estimation, is also shown for the purpose of comparison.

While it is difficult to provide close-form expressions for
the random variables of these distributions (with the
exception of the oo = 2 case where the distribution is log-
normal), Lévy-stable random variables can be generated
numerically. Wilson et al. (1991) and Grigoriu (1995),
among others have described numerical algorithms to
generate Leévy-stable random variables.

A value s drawn from a unit Lévy random variable, should
be modified as

=

to obtain a Leévy variable with proper magnitude and
centering. The cascade weight is given by

W =exp[L].-

(U )
Cl i 1
|[1- | [1-e |

where + signsfor a <1

(7

®)

This procedure makes sure that the expected value of the
cascade weights, E(W) = 1.

One other variable that is important in analysis of data as
well as generating rainfall series synthetically, is the
selection of the largest scale of interest 7' Trials with different
values of T for data analysis using both PDMS (traditional
method) and the new method proposed in this paper showed
that the analysis depends critically on the selected 7 values.
T=1024 h worked well for analysing present data. Selection
of values of T far from this (e.g. T smaller than 512 h or
larger than 2048 h) caused the generated rainfall fields to
have different intensity distributions than the observations,
especially for extreme (rare) events, even after the proper
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magnification given in Eqn. (9) was applied. In the
simulation phase, it is important to use an appropriate
number of cascade steps, depending on the selection of 7.
For example, to generate hourly data when T=1024, 10
cascade steps (log, (1024) where b is the number of branches,
each value is divided at cascading, which is two for the
present case) should be performed.

SYNTHETIC RAINFALLS FROM MULTIFRACTAL
FIELDS

Once a multifractal field representing prescribed values of
C, and « is obtained, two main steps have to be performed
to convert it into a synthetic rainfall field. The generation
process was started with a field of unit intensity and thus,
the generated field’s average value, M should satisfy
E(M)=1.0 . To obtain a ‘rain’ series R of proper magnitude,
the multifractal field is transformed as

R =MR/M )

Where R is the rainfall value corresponding to the
multifractal value M, . M is the average of the multifractal
field generated (whose expected value is 1) and Ris the
mean hourly rainfall intensity computed from daily rainfall
observations.

The multifractal simulation model does not produce any
zero values. The no-rain periods are created by
implementing a lower cut-off limit to the intensities.
However, the appropriate value of the lower cutoff can be
decided only by comparing synthetic data with actual
observations. In a situation where only daily data are
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available, the value is decided by comparing the zero value
fractions at the daily scale. This was done in the present
study. Since the introduction of zero values reduces the
average of the series by a small fraction (though in reality
this reduction is negligibly small due to the inherent nature
of multiplicative fields — the majority of low intensity
values have negligible mass concentrations), magnitude
adjustment was performed after introducing the zero values.

Results

Firstly, the consistency and accuracy of the model was tested
by investigating the spectra and codimension functions. The
model-generated synthetic data showed similar multifractal
scaling properties to the observed series (Fig. 9 shows the
spectrum and codimension functions for synthetically
generated rainfall for Funabashi station.) The spectra of
synthetic data also show a break, though the spectra at
smaller frequencies are less flat than those of the
observations.

The comparison of Quantile-Quantile plots of data to
evaluate the hourly intensity prediction performance of the
model is shown in Fig. 10 for six of the 17 rainfall series
analysed. To obtain a statistically meaningful comparison,
the whole set of non-zero intensity values in the observed
series, divided into an equal number of quantiles (400), was
compared with the estimated intensities for the same
quantiles.

While the overall agreement between observed and
generated distributions is satisfactory, there is some
deviation towards the high-intensity end. The estimation
error at the last quantile varies from a virtually negligible
level (e.g. Funabashi) to about 30% in the case of Hakone.
With a few exceptions, most of the deviations at the high
intensities observed in this study were towards
overestimating the intensities by the generated distributions.

Comparison of the fractal dimension, d, (Feder,1989)
provides important clues to the structure of occurrence/non-
occurrence of rainfall at a range of scales. A comparison of
the wet-fractions at different scales, using the fractal scaling
theory, is presented in Fig. 11. The agreement at different
scales indicates that the amounts as well as the structure of
the wet fractions are in close agreement.

The autocorrelation functions for some data sets are shown
in Fig. 12. The observed and generated values agree closely
at small lags (up to about 6 or 7 h). However, there is a
residual amount of autocorrelation left in the synthetic data
at larger lags. Though it was not possible to find a definite
explanation for this spurious autocorrelation at long lags,
the following is a likely reason: the observed data show a
break in scaling (indicated both by a flattening down of the

spectra and breaks in P — A curves) at scales above two
days. However, since such imperfection in scaling was not
considered explicitly in the cascade scheme, it produces
fields with perfect scaling at all scales and as a result has a
larger correlation at coarser scales than observed data.
The reason for this extended autocorrelation structure of
synthetic data may be the implicit assumption that the rainfall
process is perfectly scaled at the simulation stage, while
actual data showed a break of scaling around two days.
For hydrological response studies such as flood
simulations, the properties of whole rainfall events are also
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Fig. 9. Spectrum (top) and codimension function (bottom) of
generated series for Funabashi station.
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important. Rainfall events were identified using the rule that
a continuous dry-stretch of more than 6 h separates one event
from another. (There is no special reason to select the
particular value of 6 h. However, the large drop in
autocorrelations at initial lags and the prime importance of
the rainfall structure at several hours in urban flood analysis,
supports a value around this.) Both the total rainfall amount
and the duration of the events had similar distributions in
synthetic and observed data (Fig. 13).

To examine the model performance further in predicting
extreme rainfall events, an analysis on an annual basis was
performed. The largest annual hourly rainfall values were
extracted from observed and synthetic hourly data and an
extreme value distribution was fitted. Type III distribution
was given by:

P(X < x) = g [-o@-er (10)
where ¢, @and k are constants. Figure 14 shows the plots
for Tokyo and Funabashi stations on log-extremal (Weibull)
probability paper (Haan, 1977). Estimated magnitudes of
10, 25, 50 and 100 year events are also given. Taking into
consideration the widely accepted problems related to
extrapolation of extremal fittings (Chow, 1964), it can be
concluded that the proposed method reproduces the extreme
events reasonably well.

Conclusions

The multifractal properties of rainfall fields provide a means
of relating rainfall distributions at various temporal scales.
The widely adopted method of analysing multifractal
properties of various fields does not work well for estimating
higher resolution rainfall distributions from those observed
at a daily resolution. This may be because of the
unavailability of a sufficient scaling regime above the daily
scale — a key requirement of all methods based on linear
regression in log-log space. However, with a slight
modification of the method of model fitting, it was possible
to devise a method that performed better than the linear
regression-based approaches.

To convert the ‘approximately equal’ relation (in Eqn. 1)
to an exact equality, some functional form has to be
introduced as a multiplier. In the present analysis, its simplest
form, namely a constant, was assumed to be sufficient for
that purpose. The results indicate that this is indeed a fair
assumption for the purpose of predicting rainfall
distributions at higher temporal resolutions than those at
which they had originally been measured.

The disadvantage of this method of calculating the
codimension function directly is that a value for a
normalising constant, b, has to be calculated. However, as
illustrated in Fig. 15, the sensitivity of the quality of
estimation to small variations (+ 10%, for example) in the
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value of b is not high. Thus, estimating an approximate value
for the constant may be adequate for accurate prediction of
high-resolution data if the same value is used to derive
multifractal parameters and to generate rainfall values.
However, using the trivial value of unity can neither be
justified nor does it result in a reasonable estimation.
Previous research has established that the multifractal
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parameters C, and « are not completely independent of each
other. For example Pathirana (2001) found a negative
correlation of about 0.41 between the two parameters in an
analysis (using a double trace moment method proposed by
Lavallée, 1991) involving about 1000 datasets from Japan.
Further, when the available range of y values is limited, (1)
small changes in & do not affect the shape of the codimension
function and (2) very similar codimension curves can result
from quite different pairs of C, and « values. These
observations are equally true for the present analysis and,
therefore, the individual values of C, and « should be used
with care in comparison with different studies.

The general pattern observed in the quantile-quantile plots
is that the estimation deviates gradually from that observed
at high intensity rainfall values. Even so, the deviations
would not generally exceed five to ten percent of the
observed values for the last quantile (most extreme values)
estimated. In a similar study of Canadian rainfall, Nguyen
and Panday (1994) reported an opposite tendency. At present
it is difficult to avoid this tendency consistently. Perhaps
this disagreement at the extreme end may be the relatively
low number of statistics for fitting the model at those
intensities. Assuming that the codimension model can
capture the variability at all intensities perfectly, one may
argue that fitting the model using moderate and small
intensities should get the extreme values correct. However,
it is difficult at present to resolve the argument.

In addition to the intensities, several properties that are
crucial to the use of rainfall series for hydrological studies
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were used to compare the quality of the synthetic hourly
data against the observed data. These included: temporal
structure of rainstorm distribution, autocorrelations, statistics
at the level of rainfall events and the return period of different
intensities based on extreme value distributions. These tests
indicated that the synthetic rainfall series mimic closely the
observed hourly data, from a statistical point of view.

It can be concluded that it is possible to apply multifractal
theories to derive hourly rainfall distributions from those
observed at daily scale, using the direct calculation of the
codimension function. It has been shown that it is possible
to estimate hourly rainfall distributions using a daily dataset
of about 20 years with only Imm precision: such
requirements which can be satisfied by operational rainfall
observations available in many parts of the world.
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